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4.3. SYMBOLS FOR SPACE GROUPS

4.3.3.2.2. Maximal t subgroups of type 1

(i) Orthorhombic subgroups

The standard full symbol of a P group of class mmm indicates all
the symmetry elements, so that maximal ¢ subgroups can be read at
once.

Example

P2y/m2/m2/a(51) has the following four ¢ subgroups:
P2,22 (P222,); Pmm2; P2yma (Pmc2); Pm2a (Pma2).

From the standard full symbol of an 7 group of class mmm, the
t subgroup of class 222 is read directly. It is either 1222 [for
Immm (71) and Ibam (72)] or 12,22, [for Ibca (73) and Imma
(74)]. Use of the two-line symbols results in three maximal ¢
subgroups of class mm?2.

Example
Ibam (72) has the following three maximal 7 subgroups of

cen
class mm2: Iba2; Ib2im (Ima2); I121am (Ima2).

From the standard full symbol of a C group of class mmm, one
immediately reads the maximal ¢ subgroup of class 222, which is
either C222 [for Cmcm (63) and Cmce (64)] or C222 (for all other
cases). For the three maximal ¢ subgroups of class mm?2, the two-line
symbols are used.

Example
Cmce (64) has the following three maximal ¢ subgroups of
bna
class mm2: Cmc2,; Cm2e (Aem2); C2ce (Aea?l).

Finally, Fmmm (69) has maximal ¢ subgroups F222 and Fmm?2
(plus permutations), whereas Fddd (70) has F222 and Fdd2 (plus
permutations).

(i1) Monoclinic subgroups

These subgroups are obtained by substituting the symbol ‘1" in
two of the three positions. Non-standard centred cells are reduced to
primitive cells.

Examples

(1) C222; (20) has the maximal ¢ subgroups C211 (C2), C121 (C2)
and C112;. The last one reduces to P112; (P2,).

(2) Ama?2 (40) has the maximal ¢ subgroups Am11, reducible to Pm,
Alal (Cc) and A112 (C2).

(3) Pnma (62) has the standard full symbol P2;/n2,/m2/a,
from which the maximal ¢ subgroups P2;/nll (P2;/c),
P12y /m1 (P2;/m) and P112y/a (P2, /c) are obtained.

(4) Fddd (70) has the maximal ¢ subgroups F2/d11, F12/d1 and
F112/d, each one reducible to C2/c.

4.3.4. Tetragonal system
4.3.4.1. Historical note and arrangement of the tables

In the 1935 edition of International Tables, for each tetragonal P
and [ space group an additional C-cell and F-cell description was
given. In the corresponding space-group symbols, secondary and
tertiary symmetry elements were simply interchanged. Coordinate
triplets for these larger cells were not printed, except for the space
groups of class 4m2. In IT (1952), the C and F cells were dropped
from the space-group tables but kept in the comparative tables.

In the present edition, the C and F cells reappear in the sub- and
supergroup tabulations of Part 7, as well as in the synoptic Table
4.3.2.1, where short and extended (two-line) symbols are given for
P and C cells, as well as for I and F cells.
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4.3.4.2. Relations between symmetry elements

In the crystal classes 42(2), 4m(m), 42(m) or 4m(2),
4/m 2/m (2/m), where the tertiary symmetry elements are between
parentheses, one finds

dxm=(m)=4x2; 4x2=2)=4xm.

Analogous relations hold for the space groups. In order to have the
symmetry direction of the tertiary symmetry elements along [110]
(cf. Table 2.2.4.1), one has to choose the primary and secondary
symmetry elements in the product rule along [001] and [010].

Example
In P4,2(2) (91), one has 4; x 2 = (2) so that P4,2 would be the
short symbol. In fact, in IT (1935), the tertiary symmetry element
was suppressed for all groups of class 422, but re-established in
IT (1952), the main reason being the generation of the fourfold
rotation as the product of the secondary and tertiary symmetry
operations: 4 = (m) X m etc.

4.3.4.3. Additional symmetry elements

As aresult of periodicity, in all space groups of classes 422, 4m2
and 4/m 2/m 2 /m, the two tertiary diagonal axes 2, along [110] and
[110], alternate with axes 2;, the screw component being 1, F 1, 0
(cf. Table 4.1.2.2).

Likewise, tertiary diagonal mirrors m in x, x, z and x, X, z in space
groups of classes 4mm, 42m and 4/m 2/m 2 /m alternate with glide
planes called g,* the glide components being %, i%, 0. The same
glide components produce also an alternation of diagonal glide
planes ¢ and n (cf. Table 4.1.2.2).

4.3.4.4. Multiple cells

The transformations from the P to the two C cells, or from the / to
the two F cells, are

C or Fy: (i)
C, or Fy: (ii)

a=a—-b, b= a+bh =c

a=a+b, b=-a+b, =c

(cf. Fig. 5.1.3.5). The secondary and tertiary symmetry directions
are interchanged in the double cells. It is important to know how
primary, secondary and tertiary symmetry elements change in the

new cells a’,b’, ¢'.

(1) Primary symmetry elements

In P groups, only two kinds of planes, m and n, occur
perpendicular to the fourfold axis: a and b planes are forbidden.
A plane m in the P cell corresponds to a plane in the C cell which
has the character of both a mirror plane m and a glide plane n. This
is due to the centring translation %, 1,0 (¢f: Chapter 4.1). Thus, the
C-cell description showsT that P4/m.. (cell a, b, ¢) has two maximal
k subgroups of index [2], P4/m.. and P4/n.. (cells a',b,¢),
originating from the decentring of the C cell. The same reasoning is
valid for P4, /m...

A glide plane n in the P cell is associated with glide planes a and
b in the C cell. Since such planes do not exist in tetragonal P groups,
the C cell cannot be decentred, i.e. P4/n.. and P4, /n.. have no k
subgroups of index [2] and cells a’, b/, ¢’.

Glide planes a perpendicular to ¢ only occur in /4, /a (88) and
groups containing 14, /a [[4,/amd (141) and [4,/acd (142)]; they
are associated with d planes in the F cell. These groups cannot be
decentred, i.e. they have no P subgroups at all.

* For other g planes see (i), Secondary symmetry elements.
T In this section, a dot stands for a symmetry element to be inserted in the
corresponding position of the space-group symbol.
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(ii) Secondary symmetry elements

In the tetragonal space-group symbols, one finds two kinds of
secondary symmetry elements:

(1) 2, m, c without glide components in the ab plane occur in P and /
groups. They transform to tertiary symmetry elements 2, m, ¢ in
the C or F cells, from which k subgroups can be obtained by
decentring.

(2) 21,b,n with glide components ,0,0; 0, 2,O, ;, 2,0 in the ab
plane occur only in P groups. In the C cell, they become tertiary
symmetry elements with glide components §, —1,0; 1, 1,0;
1 4.1 One has the following correspondence between P- and
C-cell symbols:

P2,.=C.2

Pb.=C.g Wlthg(4,i,0) in x,x—%,z
Pn.=C.g withgii)in xx-1z
where (g1)* and (g»)* are the centring translations . 1,1,0and

2, 2,1 Thus, the C cell cannot be decentred, i.e. tetragonal P
groups having secondary symmetry elements 2, b or n cannot
have klassengleiche P subgroups of index [2] and cells a’,b’, ¢'.

(iii) Tertiary symmetry elements

Tertiary symmetry elements 2, m, ¢ in P groups transform to
secondary symmetry elements in the C cell, from which k subgroups
can easily be deduced (—):

P.m=Cm.— P.m.

g b P.b.
P.c= C.c.— P.c.
n n P.n.
P.2=C2.— P2.
21 21 P2,

Decentring leads in each case to two P subgroups (cell a’,b’,¢’),
when allowed by (i) and (ii).

In 7 groups, 2, m and d occur as tertiary symmetry elements. They
are transformed to secondary symmetry elements in the F cells. 1
groups with tertiary d glides cannot be decentred to P groups,
whereas I groups with diagonal symmetry elements 2 and m have
maximal P subgroups, due to decentring.

4.3.4.5. Group—subgroup relations

Examples are given for maximal k subgroups of P groups (i), of /
groups (i), and for maximal tetragonal, orthorhombic and
monoclinic ¢ subgroups.

4.3.4.5.1. Maximal k subgroups

(i) Subgroups of P groups
The discussion is limited to maximal P subgroups, obtained by
decentring the larger C cell (cf. Section 4.3.4.4 Multiple cells).

Classes 4, 4 and 422

Examples

(1) Space groups P4 (81) and P4, (p =0, 1,2 3) (75—78) have
isomorphic k subgroups of 1ndex (2], cell a',b, ¢

(2) Space groups P4,22 (p =0,1,2,3) (89, 91, 93, 95) have the
extended C-cell symbol C4,2 2, from which one deduces two

2

k subgroups, P4,22 (isomorphic, type Ilc) and P4,2;2 (non-
isomorphic, type IIb), cell a’, b’, ¢/

(3) Space groups P4 212 (90 92, 94, 96) have no k subgroups of
index [2], cell &/, b'

Classes 4m2, 4mm, 4/m, and 4/lmmm

Examples
(1) P4c2 (116) has the C-cell symbol C42 ¢, wherefrom one
_ 2
deduces two k subgroups, P42¢ and P42c, cell ', b/, ¢
(2) P4ymc (105) has the C-cell symbol C4,cm, from which the k

n
subgroups P4ycm (101) and Pd,nm (102), cell a',b’, ¢, are

/

obtained.
(3) P4y /mcm (132) has the extended C symbol C4,/mmc , where-
nb
from one reads the following k subgroups of index [2], cell
a’,b',c: P4y /mme, P4, /mbc, P4, /nmc, P4, /nbc.
(4) P4/nbm (125) has the extended C symbol C4/amg, and has no
bb
k subgroups of index [2], as explained above in Section 4.3.4.4.

(it) Subgroups of I groups

Note that I groups with a glides perpendicular to [001] or with
diagonal d planes cannot be decentred (cf. above). The discussion is
limited to P subgroups of index [2], obtained by decentring the /
cell. These subgroups are easily read from the two-line symbols of
the I groups in Table 4.3.2.1.

Examples
(1) I4cm (108) has the extended symbol /4 ce . The multiplication
42bm
rules 4 x b = m = 4, X c give rise to the maximal k subgroups:
P4cc, P4d,bc, P4bm, Pd,cm.

Similarly, I4mm (107) has the P subgroups P4mm, P4;nm,
P4nc, P4ymc, i.e. I4mm and I4cm have all P groups of class
4mm as maximal k subgroups.

(2) 14/mcm (140) has the extended symbol 74 /m ce . One obtains
4, /nbm
the subgroups of example (1) with an additional m or n plane
perpendicular to c.

As in example (1), I4/mcm (140) and 14 /mmm (139) have all

P groups of class 4 /mmm as maximal k subgroups.

4.3.4.5.2. Maximal t subgroups

(i) Tetragonal subgroups ~

The class 4/mmm contains the classes 4 /m, 422, 4mm and 42m.
Maximal ¢ subgroups belonging to these classes are read directly
from the standard full symbol.

Examples

(1) P4, /m be (135) has the full symbol P4,/m 2,/b2/c and the
tetragonal maximal 7 subgroups: P4, /m, P4,2,2, P4,bc, P42c,
P4b2.

(2) I4/m cm (140)
I4/m2/c 2/e

42/1’!2 /b21/m

14/m, 1422, T4cm, 142m, I4c2. Note that the ¢ subgroups of
class 4m2 always exist in pairs.

has the extended full  symbol
and the tetragonal maximal ¢ subgroups

(it) Orthorhombic subgroups

In the orthorhombic subgroups, the symmetry elements belong-
ing to directions [100] and [010] are the same, except that a glide
plane b perpendicular to [100] is accompanied by a glide plane a
perpendicular to [010].
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Examples
(1) P4y /mbc (135). From the full symbol, the first maximal ¢
subgroup is found to be P2,/b 2y/a 2/m (Pbam). The C-cell
symbol is C4,/m cg; and gives rise to the second maximal
orthorhombic ¢ subgroup Cccm, cell @', b, ¢/
(2) I14/m cm (140). Similarly, the first orthorhombic maximal ¢
subgroup is Iccm (Ibam); the second maximal orthorhombic ¢
ban
subgroup is obtained from the F-cell symbol as Fc cm
mmn

(Fmmm), cell a’, b, ¢'.

These examples show that P- and C-cell, as well as I- and F-cell
descriptions of tetragonal groups have to be considered together.

(iii) Monoclinic subgroups ~
Only space groups of classes 4, 4 and 4/m have maximal
monoclinic ¢ subgroups.

Examples

(1) P4, (76) has the subgroup P112; (P2;). The C-cell description
does not add new features: C112; is reducible to P2;.

(2) I4;/a (88) has the subgroup [I112;/a, equivalent to
I112/a (C2/c). The F-cell description yields the same
subgroup F11 2/d, again reducible to C2/c.

4.3.5. Trigonal and hexagonal systems

The trigonal and hexagonal crystal systems are considered together,
because they form the hexagonal ‘crystal family’, as explained in
Chapter 2.1. Hexagonal lattices occur in both systems, whereas
rhombohedral lattices occur only in the trigonal system.

4.3.5.1. Historical note

The 1935 edition of International Tables contains the symbols C
and H for the hexagonal lattice and R for the rhombohedral lattice.
C recalls that the hexagonal lattice can be described by a double
rectangular C-centred cell (orthohexagonal axes); H was used for a
hexagonal triple cell (see below); R designates the rhombohedral
lattice and is used for both the rhombohedral description (primitive
cell) and the hexagonal description (triple cell).

In the 1952 edition the following changes took place (cf. pages x,
51 and 544 of IT 1952): The lattice symbol C was replaced by P for
reasons of consistency; the H description was dropped. The symbol
R was kept for both descriptions, rhombohedral and hexagonal. The
tertiary symmetry element in the short Hermann—-Mauguin symbols
of class 622, which was omitted in IT (1935), was re-established.

In the present volume, the use of P and R is the same as in
IT (1952). The H cell, however, reappears in the sub- and
supergroup data of Part 7 and in Table 4.3.2.1 of this section,
where short symbols for the H description of trigonal and hexagonal
space groups are given. The C cell reappears in the subgroup data
for all trigonal and hexagonal space groups having symmetry
elements orthogonal to the main axis.

4.3.5.2. Primitive cells

The primitive cells of the hexagonal and the rhombohedral
lattice, hP and hR, are defined in Table 2.1.2.1 In Part 7, the
‘rthombohedral’ description of the hR lattice is designated by
‘rhombohedral axes’; c¢f. Chapter 1.2.

4.3.5.3. Multiple cells

Multiple cells are frequently used to describe both the hexagonal
and the rhombohedral lattice.
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(i) The triple hexagonal R cell; cf. Chapters 1.2 and 2.1

When the lattice is rhombohedral hR (primitive cell a, b, c), the
triple R cell a’, b, ¢/ corresponds to the ‘hexagonal description” of
the rhombohedral lattice. There are three right-handed obverse R
cells:

Ri: a=a-b;, =b-¢; ¢/=a+b+g
Ry: a=b-¢; b=c—a;, =a+b+g;
Ry: a=c—a b =a-b;, ¢=a+b+ec

Three further right-handed R cells are obtained by changing a’ and
b’ to —a’ and —b/, i.e. by a 180° rotation around ¢’. These cells are
reverse. The transformations between the triple R cells and the
primitive thombohedral cell are given in Table 5.1.3.1 and Fig.
5.1.3.6.

The obverse triple R cell has ‘centring points’ at

.2 11, 122
0’0’05 §9§’§7 535759

whereas the reverse R cell has ‘centring points’ at
Lol 21. 212
0,0,0; 3.5.35 335

In the space-group tables of Part 7, the obverse R; cell is used, as
illustrated in Fig. 2.2.6.9. This ‘hexagonal description’ is designated
by ‘hexagonal axes’.

(ii) The triple rhombohedral D cell

Parallel to the ‘hexagonal description of the rhombohedral
lattice’ there exists a ‘rhombohedral description of the hexagonal
lattice’. Six right-handed rhombohedral cells (here denoted by D)
with cell vectors a’,b’,¢’ of equal lengths are obtained from the
hexagonal P cell a, b, ¢ by the following transformations and by
cyclic permutations of a’,b’, ¢’:

Dy : b= b+g
D, : b'=-b+ C;
The transformation matrices are listed in Table 5.1.3.1. D, follows

from D; by a 180° rotation around [111]. The D cells are triple
rhombohedral cells with ‘centring’ points at
2

11100202
030501 555537 g:g,g'

—(a+b)+c
at+b +c

a =
a=—

a+c

d=
=-a+tc¢ ¢ =

The D cell, not used in practice and not considered explicitly in the
present volume, is useful for a deeper understanding of the relations
between hexagonal and rhombohedral lattices.

(iii) The triple hexagonal H cell; cf. Chapter 1.2

Generally, a hexagonal lattice AP is described by means of the
smallest hexagonal P cell. An alternative description employs a
larger hexagonal H-centred cell of three times the volume of the P
cell; this cell was extensively used in IT (1935), see Historical note
above.

There are three right-handed orientations of the H cell (basis
vectors a’,b’, ¢/) with respect to the basis vectors a, b, ¢ of the P
cell:

H: a=a— b, b= a+2b;, ¢=c
H,: aa=2a+ b, b=—-a+b, =c
Hy: a= a+2b; b=-2a-b;, =c

The transformations are given in Table 5.1.3.1 and Fig. 5.1.3.8. The
new vectors a’ and b’ are rotated in the ab plane by —30°(H,),
+30°(H,), +90°(H3) with respect to the old vectors a and b. Three
further right-handed H cells are obtained by changing a’ and b’ to
—a’ and —b/, i.e. by a rotation of 180° around ¢'.

The H cell has ‘centring’ points at

.21 12
070907 gs §707 §9 5’0-
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