4.3. SYMBOLS FOR SPACE GROUPS

4.3.3.2.2. Maximal t subgroups of type I

(i) Orthorhombic subgroups

The standard full symbol of a *P* group of class *mmm* indicates all the symmetry elements, so that maximal *t* subgroups can be read at once.

Example

 $P_{2_1}/m^2/m^2/a$ (51) has the following four t subgroups: $P_{2_1}/22$ ($P_{22_1}/22$); $P_{22_1}/22$ ($P_{22_1}/22$); $P_{22_1}/22$

From the standard full symbol of an I group of class mmm, the t subgroup of class 222 is read directly. It is either I222 [for Immm (71) and Ibam (72)] or $I2_12_12_1$ [for Ibca (73) and Imma (74)]. Use of the two-line symbols results in three maximal t subgroups of class mm2.

Example

Ibam (72) has the following three maximal t subgroups of ccn

class mm2: Iba2; Ib2₁m (Ima2); I2₁am (Ima2).

From the standard full symbol of a C group of class mmm, one immediately reads the maximal t subgroup of class 222, which is either $C222_1$ [for Cmcm (63) and Cmce (64)] or C222 (for all other cases). For the three maximal t subgroups of class mm2, the two-line symbols are used.

Example

Cmce (64) has the following three maximal t subgroups of bna

class mm2: Cmc2₁; Cm2e (Aem2); C2ce (Aea2).

Finally, Fmmm (69) has maximal t subgroups F222 and Fmm2 (plus permutations), whereas Fddd (70) has F222 and Fdd2 (plus permutations).

(ii) Monoclinic subgroups

These subgroups are obtained by substituting the symbol 'l' in two of the three positions. Non-standard centred cells are reduced to primitive cells.

Examples

- (1) C222₁ (20) has the maximal t subgroups C211 (C2), C121 (C2) and C112₁. The last one reduces to P112₁ (P2₁).
- (2) *Ama*2 (40) has the maximal *t* subgroups *Am*11, reducible to *Pm*, *A*1*a*1 (*Cc*) and *A*112 (*C*2).
- (3) Pnma (62) has the standard full symbol $P2_1/n2_1/m2_1/a$, from which the maximal t subgroups $P2_1/n11$ ($P2_1/c$), $P12_1/m1$ ($P2_1/m$) and $P112_1/a$ ($P2_1/c$) are obtained.
- (4) Fddd (70) has the maximal t subgroups F2/d11, F12/d1 and F112/d, each one reducible to C2/c.

4.3.4. Tetragonal system

4.3.4.1. Historical note and arrangement of the tables

In the 1935 edition of *International Tables*, for each tetragonal P and I space group an additional C-cell and F-cell description was given. In the corresponding space-group symbols, secondary and tertiary symmetry elements were simply interchanged. Coordinate triplets for these larger cells were not printed, except for the space groups of class $\bar{4}m2$. In IT (1952), the C and F cells were dropped from the space-group tables but kept in the comparative tables.

In the present edition, the C and F cells reappear in the sub- and supergroup tabulations of Part 7, as well as in the synoptic Table 4.3.2.1, where short and extended (two-line) symbols are given for P and C cells, as well as for I and F cells.

4.3.4.2. Relations between symmetry elements

In the crystal classes 42(2), 4m(m), $\bar{4}2(m)$ or $\bar{4}m(2)$, 4/m 2/m (2/m), where the tertiary symmetry elements are between parentheses, one finds

$$4 \times m = (m) = \bar{4} \times 2; \ 4 \times 2 = (2) = \bar{4} \times m.$$

Analogous relations hold for the space groups. In order to have the symmetry direction of the tertiary symmetry elements along $[1\bar{1}0]$ (*cf.* Table 2.2.4.1), one has to choose the primary and secondary symmetry elements in the product rule along [001] and [010].

Example

In $P4_12(2)$ (91), one has $4_1 \times 2 = (2)$ so that $P4_12$ would be the short symbol. In fact, in IT (1935), the tertiary symmetry element was suppressed for all groups of class 422, but re-established in IT (1952), the main reason being the generation of the fourfold rotation as the product of the secondary and tertiary symmetry operations: $4 = (m) \times m$ etc.

4.3.4.3. Additional symmetry elements

As a result of periodicity, in all space groups of classes 422, $\bar{4}m2$ and 4/m 2/m 2/m, the two tertiary diagonal axes 2, along [1 $\bar{1}0$] and [110], alternate with axes 2₁, the screw component being $\frac{1}{2}$, $\mp \frac{1}{2}$, 0 (cf. Table 4.1.2.2).

Likewise, tertiary diagonal mirrors m in x, x, z and x, \bar{x} , z in space groups of classes 4mm, 42m and 4/m 2/m 2/m alternate with glide planes called g,* the glide components being $\frac{1}{2}$, $\pm \frac{1}{2}$, 0. The same glide components produce also an alternation of diagonal glide planes c and n (cf. Table 4.1.2.2).

4.3.4.4. Multiple cells

The transformations from the P to the two C cells, or from the I to the two F cells, are

$$C_1$$
 or F_1 : (i) $\mathbf{a}' = \mathbf{a} - \mathbf{b}$, $\mathbf{b}' = \mathbf{a} + \mathbf{b}$, $\mathbf{c}' = \mathbf{c}$
 C_2 or F_2 : (ii) $\mathbf{a}' = \mathbf{a} + \mathbf{b}$, $\mathbf{b}' = -\mathbf{a} + \mathbf{b}$, $\mathbf{c}' = \mathbf{c}$

(cf. Fig. 5.1.3.5). The secondary and tertiary symmetry directions are interchanged in the double cells. It is important to know how primary, secondary and tertiary symmetry elements change in the new cells $\mathbf{a}', \mathbf{b}', \mathbf{c}'$.

(i) Primary symmetry elements

In P groups, only two kinds of planes, m and n, occur perpendicular to the fourfold axis: a and b planes are forbidden. A plane m in the P cell corresponds to a plane in the C cell which has the character of both a mirror plane m and a glide plane n. This is due to the centring translation $\frac{1}{2}$, $\frac{1}{2}$, 0 (cf. Chapter 4.1). Thus, the C-cell description shows† that P4/m... (cell a, b, c) has two maximal k subgroups of index [2], P4/m... and P4/n... (cells a', b', c'), originating from the decentring of the C cell. The same reasoning is valid for $P4_2/m$...

A glide plane n in the P cell is associated with glide planes a and b in the C cell. Since such planes do not exist in tetragonal P groups, the C cell cannot be decentred, *i.e.* P4/n.. and $P4_2/n$.. have no k subgroups of index [2] and cells \mathbf{a}' , \mathbf{b}' , \mathbf{c}' .

Glide planes a perpendicular to **c** only occur in $I4_1/a$ (88) and groups containing $I4_1/a$ [$I4_1/amd$ (141) and $I4_1/acd$ (142)]; they are associated with d planes in the F cell. These groups cannot be decentred, i.e. they have no P subgroups at all.

^{*} For other g planes see (ii), Secondary symmetry elements.

[†] In this section, a dot stands for a symmetry element to be inserted in the corresponding position of the space-group symbol.