4.3. SYMBOLS FOR SPACE GROUPS

4.3.3.2.2. Maximal t subgroups of type I

(i) Orthorhombic subgroups

The standard full symbol of a P group of class mmm indicates all the symmetry elements, so that maximal t subgroups can be read at once.

Example

$P 2_{1} / m 2 / m 2 / a(51)$ has the following four t subgroups: $P 2_{1} 22\left(P 222_{1}\right) ;$ Pmm2; P2 ${ }_{1} m a\left(P m c 2_{1}\right) ; ~ P m 2 a(P m a 2)$.
From the standard full symbol of an I group of class $m m m$, the t subgroup of class 222 is read directly. It is either $I 222$ [for Immm (71) and Ibam (72)] or I2 $22_{1} 2_{1}$ [for Ibca (73) and Imma (74)]. Use of the two-line symbols results in three maximal t subgroups of class mm2.
Example
Ibam (72) has the following three maximal t subgroups of ccn
class $m m 2$: Iba2; Ib2 ${ }_{1} m$ (Ima2); I2 ${ }_{1} a m$ (Ima2).
From the standard full symbol of a C group of class $m m m$, one immediately reads the maximal t subgroup of class 222 , which is either $C 222_{1}$ [for Cmcm (63) and Cmce (64)] or C222 (for all other cases). For the three maximal t subgroups of class $m m 2$, the two-line symbols are used.

Example

Cmce (64) has the following three maximal t subgroups of bna
class mm2: Cmc_{1}; Cm2e (Aem2); C2ce (Aea2).
Finally, Fmmm (69) has maximal t subgroups $F 222$ and $F m m 2$ (plus permutations), whereas $F d d d$ (70) has $F 222$ and $F d d 2$ (plus permutations).

(ii) Monoclinic subgroups

These subgroups are obtained by substituting the symbol ' 1 ' in two of the three positions. Non-standard centred cells are reduced to primitive cells.

Examples

(1) $C 222_{1}$ (20) has the maximal t subgroups $C 211$ (C2), $C 121$ (C2) and $C 112_{1}$. The last one reduces to $P 112_{1}\left(P 2_{1}\right)$.
(2) Ama2 (40) has the maximal t subgroups Am11, reducible to $P m$, $A 1 a 1(C c)$ and $A 112(C 2)$.
(3) Pnma (62) has the standard full symbol $P 2_{1} / n 2_{1} / m 2_{1} / a$, from which the maximal t subgroups $P 2_{1} / n 11\left(P 2_{1} / c\right)$, $P 12_{1} / m 1\left(P 2_{1} / m\right)$ and $P 112_{1} / a\left(P 2_{1} / c\right)$ are obtained.
(4) $F d d d$ (70) has the maximal t subgroups $F 2 / d 11, F 12 / d 1$ and $F 112 / d$, each one reducible to $C 2 / c$.

4.3.4. Tetragonal system

4.3.4.1. Historical note and arrangement of the tables

In the 1935 edition of International Tables, for each tetragonal P and I space group an additional C-cell and F-cell description was given. In the corresponding space-group symbols, secondary and tertiary symmetry elements were simply interchanged. Coordinate triplets for these larger cells were not printed, except for the space groups of class $\overline{4} m 2$. In $I T$ (1952), the C and F cells were dropped from the space-group tables but kept in the comparative tables.

In the present edition, the C and F cells reappear in the sub- and supergroup tabulations of Part 7, as well as in the synoptic Table 4.3.2.1, where short and extended (two-line) symbols are given for P and C cells, as well as for I and F cells.

4.3.4.2. Relations between symmetry elements

In the crystal classes $42(2), 4 m(m), \overline{4} 2(m)$ or $\overline{4} m(2)$, $4 / m 2 / m(2 / m)$, where the tertiary symmetry elements are between parentheses, one finds

$$
4 \times m=(m)=\overline{4} \times 2 ; 4 \times 2=(2)=\overline{4} \times m
$$

Analogous relations hold for the space groups. In order to have the symmetry direction of the tertiary symmetry elements along [110] ($c f$. Table 2.2.4.1), one has to choose the primary and secondary symmetry elements in the product rule along [001] and [010].

Example

In $P 4_{1} 2(2)(91)$, one has $4_{1} \times 2=(2)$ so that $P 4_{1} 2$ would be the short symbol. In fact, in $I T$ (1935), the tertiary symmetry element was suppressed for all groups of class 422, but re-established in IT (1952), the main reason being the generation of the fourfold rotation as the product of the secondary and tertiary symmetry operations: $4=(m) \times m$ etc.

4.3.4.3. Additional symmetry elements

As a result of periodicity, in all space groups of classes 422, $\overline{4} m 2$ and $4 / m 2 / m 2 / m$, the two tertiary diagonal axes 2, along [110] and [110], alternate with axes 2_{1}, the screw component being $\frac{1}{2}, \mp \frac{1}{2}, 0$ (cf. Table 4.1.2.2).
Likewise, tertiary diagonal mirrors m in x, x, z and x, \bar{x}, z in space groups of classes $4 m m, 42 m$ and $4 / m 2 / m 2 / m$ alternate with glide planes called g,* the glide components being $\frac{1}{2}, \pm \frac{1}{2}, 0$. The same glide components produce also an alternation of diagonal glide planes c and n ($c f$. Table 4.1.2.2).

4.3.4.4. Multiple cells

The transformations from the P to the two C cells, or from the I to the two F cells, are

$$
\begin{array}{clll}
C_{1} \text { or } F_{1}:(\text { i }) & \mathbf{a}^{\prime}=\mathbf{a}-\mathbf{b}, & \mathbf{b}^{\prime}=\mathbf{a}+\mathbf{b}, & \mathbf{c}^{\prime}=\mathbf{c} \\
C_{2} \text { or } F_{2}:(\text { ii }) & \mathbf{a}^{\prime}=\mathbf{a}+\mathbf{b}, & \mathbf{b}^{\prime}=-\mathbf{a}+\mathbf{b}, & \mathbf{c}^{\prime}=\mathbf{c}
\end{array}
$$

(cf. Fig. 5.1.3.5). The secondary and tertiary symmetry directions are interchanged in the double cells. It is important to know how primary, secondary and tertiary symmetry elements change in the new cells $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$.

(i) Primary symmetry elements

In P groups, only two kinds of planes, m and n, occur perpendicular to the fourfold axis: a and b planes are forbidden. A plane m in the P cell corresponds to a plane in the C cell which has the character of both a mirror plane m and a glide plane n. This is due to the centring translation $\frac{1}{2}, \frac{1}{2}, 0$ ($c f$. Chapter 4.1). Thus, the C-cell description shows \dagger that $P 4 / m$.. (cell $\mathbf{a}, \mathbf{b}, \mathbf{c}$) has two maximal k subgroups of index [2], $P 4 / m$.. and $P 4 / n$.. (cells $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$), originating from the decentring of the C cell. The same reasoning is valid for $P 4_{2} / m \ldots$

A glide plane n in the P cell is associated with glide planes a and b in the C cell. Since such planes do not exist in tetragonal P groups, the C cell cannot be decentred, i.e. $P 4 / n$.. and $P 4_{2} / n$.. have no k subgroups of index [2] and cells $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$.

Glide planes a perpendicular to conly occur in $I 4_{1} / a$ (88) and groups containing $I 4_{1} / a\left[I 4_{1} /\right.$ amd (141) and $I 4_{1} /$ acd (142)]; they are associated with d planes in the F cell. These groups cannot be decentred, i.e. they have no P subgroups at all.

[^0]
[^0]: * For other g planes see (ii), Secondary symmetry elements.
 \dagger In this section, a dot stands for a symmetry element to be inserted in the corresponding position of the space-group symbol.

