
We consider a crystal pattern with its vector lattice L referred to a
primitive basis. Then, by definition, each vector of L has integral
coefficients. The linear part of a symmetry operation maps L onto
itself: L � WL � L. Since the coefficients of all vectors of L are
integers, the matrix W is an integral matrix, i.e. its coefficients are
integers. Thus, the trace of W, tr�W� � W 11 � � � �� W nn, is also an
integer. In V3, by reference to an appropriate orthonormal (not
necessarily crystallographic) basis, one obtains another condition
for the trace, tr�W� � ��1 � 2 cos��, where � is the angle of
rotation or rotoinversion. From these two conditions, it follows that
� can only be 0, 60, 90, 120, 180� etc., and hence the familiar
restriction to one-, two-, three-, four- and sixfold rotations and
rotoinversions results.* These results imply for dimensions 2 and 3
that the matrix W satisfies the condition �W�k � I , with k � 1, 2, 3,
4 or 6.† Consequently, for the operation (W, w) in point space the
relation

�W , w�k � �I , �W k	1 � W k	2 � � � �� W � I�w
 � �I , t�
holds.

For the motion described by (W, w), this implies that a k-fold
application results in a translation � (with translation vector t) of the
crystal pattern. The (fractional) translation �1�k�� is called the
intrinsic translation part (screw or glide part) of the symmetry
operation. Whereas the ‘translation part’ of a motion depends on the
choice of the origin, the ‘intrinsic translation part’ of a motion is
uniquely determined. The intrinsic translation vector �1�k�t is the
shortest translation vector of the motion for any choice of the origin.

If t � o, the symmetry operation has at least one fixed point and
is a rotation, inversion, reflection or rotoinversion. If t �� o, the term
�1�k�t is called the glide vector (for a reflection) or the screw vector
(for a rotation) of the symmetry operation. Both types of operations,
glide reflections and screw rotations, have no fixed point.

For the geometric visualization of symmetry, the concept of
symmetry elements is useful.‡ The symmetry element of a
symmetry operation is the set of its fixed points, together with a
characterization of the motion. For symmetry operations without
fixed points (screw rotations or glide reflections), the fixed points of
the corresponding rotations or reflections, described by �W , w��
with w� � w 	 �1�k�t, are taken. Thus, in E2, symmetry elements
are N-fold rotation points (N � 2, 3, 4 or 6), mirror lines and glide
lines. In E3, symmetry elements are rotation axes, screw axes,
inversion centres, mirror planes and glide planes. A peculiar
situation exists for rotoinversions (except �1 and �2 
 m). The
symmetry element of such a rotoinversion consists of two
components, a point and an axis. The point is the inversion point
of the rotoinversion, and the axis of the rotoinversion is that of the
corresponding rotation.

The determination of both the nature of a symmetry operation
and the location of its symmetry element from the coordinate
triplets, listed under Positions in the space-group tables, is
described in Section 11.2.1 of Chapter 11.2.

8.1.6. Space groups and point groups

As mentioned in Section 8.1.3, the set of all symmetry operations of
an object forms a group, the symmetry group of that object.

Definition: The symmetry group of a three-dimensional crystal
pattern is called its space group. In E2, the symmetry group of a
(two-dimensional) crystal pattern is called its plane group. In E1,
the symmetry group of a (one-dimensional) crystal pattern is called
its line group. To each crystal pattern belongs an infinite set of
translations �j which are symmetry operations of that pattern. The
set of all �j forms a group known as the translation subgroup � of
the space group � of the crystal pattern. Since the commutative law
�j�k � �k�j holds for any two translations, � is an Abelian group.

With the aid of the translation subgroup � , an insight into the
architecture of the space group � can be gained.

Referred to a coordinate system �O, a1, � � � , an�, the space group
� is described by the set ��W , w�� of matrices W and columns w.
The group � is represented by the set of elements �I , tj�, where tj
are the columns of coefficients of the translation vectors tj of the
lattice L. Let (W, w) describe an arbitrary symmetry operation � of
�. Then, all products �I , tj��W , w� � �W , w � tj� for the different j
have the same matrix part W. Conversely, every symmetry
operation � of the space group with the same matrix part W is
represented in the set ��W , w � tj��. The corresponding set of
symmetry operations can be denoted by � �. Such a set is called a
right coset of � with respect to � , because the element � is the right
factor in the products � �. Consequently, the space group � may be
decomposed into the right cosets � , � �2, � �3, � � � , � �i, where
the symmetry operations of the same column have the same matrix
part W, and the symmetry operations �j differ by their matrix parts
W j. This coset decomposition of � with respect to � may be
displayed by the array

� 
 �1 �2 �3 � � � �i

�1 �1�2 �1�3 � � � �1�i

�2 �2�2 �2�3 � � � �2�i

�3 �3�2 �3�3 � � � �3�i

��
� ��

� ��
� ��

�

Here, �1 � � is the identity operation and the elements of � form
the first column, those of � �2 the second column etc. As each
column may be represented by the common matrix part W of its
symmetry operations, the number i of columns, i.e. the number of
cosets, is at the same time the number of different matrices W of the
symmetry operations of �. This number i is always finite, and is the
order of the point group belonging to �, as explained below. Any
element of a coset � �j may be chosen as the representative element
of that coset and listed at the top of its column. Choice of a different
representative element merely results in a different order of the
elements of a coset, but the coset does not change its content.§

Analogously, a coset �� is called a left coset of �with respect to
� , and � can be decomposed into the left cosets
� ,�2� ,�3� , � � � ,�i� . This left coset decomposition of a space
group is always possible with the same �1,�2, � � � ,�i as in the
right coset decomposition. Moreover, both decompositions result in
the same cosets, except for the order of the elements in each coset. A
subgroup of a group with these properties is called a normal
subgroup of the group; cf. Ledermann (1976). Thus, the translation
subgroup � is a normal subgroup of the space group �.

The decomposition of a space group into cosets is the basis of the
description of the space groups in these Tables. The symmetry

� The reflection m 
 �2 is contained among the rotoinversions. The same restriction
is valid for the rotation angle � in two-dimensional space, where tr�W� � 2 cos� if
det �W� � �1. If det �W� � 	1, tr�W� � 0 always holds and the operation is a
reflection m.
� A method of deriving the possible orders of W in spaces of arbitrary dimension
has been described by Hermann (1949).
� For a rigorous definition of the term symmetry element, see de Wolff et al. (1989,
1992) and Flack et al. (2000).

� A coset decomposition of a group � is possible with respect to every subgroup �
of � ; cf. Ledermann (1976). The number of cosets is called the index [i] of � in �.
The integer [i] may be finite, as for the coset decomposition of a space group � with
respect to the (infinite) translation group � or infinite, as for the coset
decomposition of a space group � with respect to a (finite) site-symmetry group
�; cf. Section 8.3.2. If � is a finite group, a theorem of Lagrange states that the order
of � is the product of the order of � and the index of � in �.
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operations of the space group are referred to a ‘conventional’
coordinate system (cf. Section 8.3.1) and described by �n � 1� �
�n � 1� matrices. In the space-group tables as general position (cf.
Section 8.3.2) for each column, a representative is listed whose
coefficients wj obey the condition 0 � wj � 1. The matrix is not
listed completely, however, but is given in a short-hand notation. In
the expression Wj1x1 � � � �� Wjnxn � wj, all vanishing terms and
all Wjk � 1 are omitted, e.g.

1x � 0y � 0z � 1
2

0x � 1y � 0z � 0
0x � 0y 	 1z � 1

2

�
�

�

is replaced by x � 1
2 , y,�z � 1

2. The first entry of the general position
is always the identity mapping, listed as x, y, z. It represents all
translations of the space group too.

As groups, some space groups are more complicated than others.
Most easy to survey are the ‘symmorphic’ space groups which may
be defined as follows:

Definition: A space group is called symmorphic if the coset
representatives �j can be chosen in such a way that they leave one
common point fixed.

In this case, the representative symmetry operations �j of a
symmorphic space group form a (finite) group. If the fixed point is
chosen as the origin of the coordinate system, the column parts wj of
the representative symmetry operations �j obey the equations
wj � o� Thus, for a symmorphic space group the representative
symmetry operations may always be described by the special
matrix–column pairs �W j, o�.

Symmorphic space groups may be easily identified by their
Hermann–Mauguin symbols because these do not contain any glide
or screw operation. For example, the monoclinic space groups with
the symbols P2, C2, Pm, Cm, P2�m and C2�m are symmorphic,
whereas those with the symbols P21, Pc, Cc, P21�m, P2�c, P21�c
and C2�c are not.

Unlike most textbooks of crystallography, in this section point
groups are treated after space groups because the space group of a
crystal pattern, and thus of a crystal structure, determines its point
group uniquely.

The external shape (morphology) of a macroscopic crystal is
formed by its faces. In order to eliminate the influence of growth
conditions, the set of crystal faces is replaced by the set of face
normals, i.e. by a set of vectors. Thus, the symmetry group of the
macroscopic crystal is the symmetry group of the vector set of face
normals. It is not the group of motions in point space, therefore, that
determines the symmetry of the macroscopic crystal, but the

corresponding group of linear mappings of vector space; cf. Section
8.1.2. This group of linear mappings is called the point group of the
crystal. Since to each macroscopic crystal a crystal structure
corresponds and, furthermore, to each crystal structure a space
group, the point group of the crystal defined above is also the point
group of the crystal structure and the point group of its space group.

To connect more formally the concept of point groups with that
of space groups in n-dimensional space, we consider the coset
decomposition of a space group � with respect to the normal
subgroup � , as displayed above. We represent the right coset
decomposition by � , � �2, � � � , � �i and the corresponding left
coset decomposition by � ,�2� , � � � ,�i� . If � is referred to a
coordinate system, the symmetry operations of � are described by
matrices W and columns w. As a result of the one-to-one
correspondence between the i cosets � �j � �j� and the i matrices
W j, the cosets may alternatively be represented by the matrices W j.
These matrices form a group of (finite) order i, and they describe
linear mappings of the vector space Vn connected with En; cf.
Section 8.1.2. This group (of order i) of linear mappings is the point
group � of the space group �, introduced above.

The difference between symmetry in point space and that in
vector space may be exemplified again by means of some
monoclinic space groups. Referred to conventional coordinate
systems, space groups Pm, Pc, Cm and Cc have the same �3 � 3�
matrices W j of their symmetry operations. Thus, the point groups of
all these space groups are of the same type m. The space groups
themselves, however, show a rather different behaviour. In Pm and
Cm reflections occur, whereas in Pc and Cc only glide reflections
are present.

Remark: The usage of the term ‘point group’ in connection with
space groups is rather unfortunate as the point group of a space
group is not a group of motions of point space but a group acting on
vector space. As a consequence, the point group of a space group
may contain operations which do not occur in the space group at all.
This is apparent from the example of monoclinic space groups
above. Nevertheless, the term ‘point group of a space group’ is used
here for historical reasons. A more adequate term would be ‘vector
point group’ of a space group or a crystal. It must be mentioned that
the term ‘point group’ is also used for the ‘site-symmetry group’,
defined in Section 8.3.2. Site-symmetry groups are groups acting on
point space.

It is of historic interest that the 32 types of three-dimensional
crystallographic point groups were determined more than 50 years
before the 230 (or 219) types of space group were known. The
physical methods of the 19th century, e.g. the determination of the
symmetry of the external shape or of tensor properties of a crystal,
were essentially methods of determining the point group, not the
space group of the crystal.
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