International
Tables for
Crystallography
Volume A
Space-group symmetry
Edited by Th. Hahn

International Tables for Crystallography (2006). Vol. A. ch. 9.1, p. 742

Section 9.1.3. Topological properties of lattices

H. Burzlaffa and H. Zimmermannb*

a Universität Erlangen–Nürnberg, Robert-Koch-Strasse 4a, D-91080 Uttenreuth, Germany, and bInstitut für Angewandte Physik, Lehrstuhl für Kristallographie und Strukturphysik, Universität Erlangen–Nürnberg, Bismarckstrasse 10, D-91054 Erlangen, Germany
Correspondence e-mail:  helmuth.zimmermann@knot.uni-erlangen.de

9.1.3. Topological properties of lattices

| top | pdf |

The treatment of the topological properties is restricted here to the consideration of the neighbourhood of a lattice point. For this purpose, the domain of influence (Wirkungsbereich, Dirichlet domain, Voronoi domain, Wigner–Seitz cell) (Delaunay, 1933[link]) is introduced. The domain of a particular lattice point consists of all points in space that are closer to this lattice point than to any other lattice point or at most equidistant to it. To construct the domain, the selected lattice point is connected to all other lattice points. The set of planes perpendicular to these connecting lines and passing through their midpoints contains the boundary planes of the domain of influence, which is thus a convex polyhedron. (Niggli and Delaunay used the term `domain of influence' for the interior of the convex polyhedron only.) Without the use of metrical properties, Minkowski (1897)[link] proved that the maximal number of boundary planes resulting from this construction is equal to [2(2^{n}-1)], where n is the dimension of the space. The minimal number of boundary planes is 2n. Each face of the polyhedron represents a lattice vector. Thus, the topological, metrical and symmetry properties of infinite lattices can be discussed with the aid of a finite polyhedron, namely the domain of influence (cf. Burzlaff & Zimmermann, 1977[link]).

References

First citation Burzlaff, H. & Zimmermann, H. (1977). Symmetrielehre. Part I of the series Kristallographie, pp. 96–135. Stuttgart: Thieme.Google Scholar
First citation Delaunay, B. N. (1933). Neuere Darstellung der geometrischen Kristallographie. Z. Kristallogr. 84, 109–149.Google Scholar
First citation Minkowski, H. (1897). Allgemeine Lehrsätze über die konvexen Polyeder. In Gesammelte Abhandlungen. Leipzig, 1911. [Reprinted: Chelsea, New York (1967).]Google Scholar








































to end of page
to top of page