
9.3. Further properties of lattices

BY B. GRUBER

9.3.1. Further kinds of reduced cells

In Section 9.2.2, a ‘reduced basis’ of a lattice is defined which
permits a unique representation of this lattice. It was introduced into
crystallography by Niggli (1928) and incorporated into Interna-
tional Tables for X-ray Crystallography (1969), Vol. I. Originating
from algebra (Eisenstein, 1851), a reduced basis is defined in a
rather complicated manner [conditions (9.2.2.2a) to (9.2.2.5f ) in
Section 9.2.2] and lacks any geometrical meaning. A cell spanned
by a reduced basis is called the Niggli cell.

However, unique primitive cells may be introduced also in other
ways that – unlike the Niggli cell* – have significant geometrical
features based mainly on extremal principles (Gruber, 1989). We
shall describe some of them below.

If a (primitive) cell of the lattice L fulfils the condition

a � b � c � min

on the set of all primitive cells of L, we call it a Buerger cell. This
cell need not be unique with regard to its shape in the lattice. There
exist lattices with 1, 2, 3, 4 and 5 (but not more) Buerger cells
differing in shape. The uniqueness can be achieved by various
additional conditions. In this way, we can arrive at the following
four reduced cells:

(i) the Buerger cell with minimum surface;†
(ii) the Buerger cell with maximum surface;
(iii) the Buerger cell with minimum deviation;‡
(iv) the Buerger cell with maximum deviation.

Equivalent definitions can be obtained by replacing the term
‘surface’ in (i) and (ii) by the expression

sin�� sin� � sin �

or

sin� sin� sin �,

and by replacing the ‘deviation’ in (iii) and (iv) by

� cos�� � � cos �� � � cos ��
or

� cos� cos� cos ���
A Buerger cell can agree with more than one of the definitions

�i�, �ii�, �iii�, �iv�� �9�3�1�1�
For example, if a lattice has only one Buerger cell, then this cell
agrees with all the definitions in (9.3.1.1). However, there exist also
Buerger cells that are in agreement with none of them. Thus, the
definitions (9.3.1.1) do not imply a partition of Buerger cells into
classes.

It appears that case (iv) coincides with the Niggli cell. This is
important because this cell can now be defined by a simple
geometrical property instead of a complicated system of conditions.

Further reduced cells can be obtained by applying the definitions
(9.3.1.1) to the reciprocal lattice. Then, to a Buerger cell in the
reciprocal lattice, there corresponds a primitive cell with absolute
minimum surface§ in the direct lattice.

The reduced cells according to the definitions (9.3.1.1) can be
recognized by means of a table and found in the lattice by means of

algorithms. Detailed mutual relationships between them have been
ascertained.

9.3.2. Topological characteristic of lattice characters

In his thorough analysis of lattice characters, de Wolff (1988)
remarks that so far they have not been defined as clearly as the
Bravais types and that an exact general definition does not exist.
Gruber (1992) tried to base such a definition on topological
concepts.

The crucial notion is the decomposition of a set M of points of the
n-dimensional Euclidean space En into equivalence classes called
components of the set M. They can be defined as follows: Two
points X,Y of the set M belong to the same component if they can be
connected by a continuous path which lies entirely in the set M (Fig.
9.3.2.1). This partition of the set M into components is unique and is
determined solely by the set M.

Now let us return to lattices. To any lattice L there is attached a
point in E5 called the Niggli point of L. It is the point

a � a
c � c

,
b � b
c � c

,
2b � c
c � c

,
2a � c
c � c

,
2a � b
c � c

� �
�9�3�2�1�

provided that the vectors a, b, c describe the Niggli cell of L and
fulfil the conditions (9.2.2.2a) to (9.2.2.5f ) of Section 9.2.2. If � is a
set of lattices then the set of Niggli points of all lattices of � is
called the Niggli image of � .

Thus we can speak about the Niggli image of a Bravais type � .
This Niggli image is a part of E5 and so can be partitioned into
components. This division of Niggli points induces back a division
of lattices of the Bravais type � . It turns out that this division is
identical with the division of � into lattice characters as introduced
in Section 9.2.5. This fact, used conversely, can be considered an
exact definition of the lattice characters: Two lattices of Bravais
type � are said to be of the same lattice character if their Niggli
points lie in the same component of the Niggli image of � .

We can, of course, also speak about Niggli images of particular
lattice characters. According to their definition, these images are
connected sets. However, much more can be stated about them:
these sets are even convex (Fig. 9.3.2.2). This means that any two
points of the Niggli image of a lattice character can be connected by
a straight segment lying totally in this Niggli image. From this
property, it follows that the lattice characters may be defined also in
the following equivalent way:

Fig. 9.3.2.1. A set M � E2 consisting of three components.

� See, however, later parts of this section.
� Meaning that this cell has the smallest surface of all Buerger cells of the lattice.
� The deviation of a cell is the number �90� 	 �� � �90� 	 �� � �90� 	 ��.
� This cell need not be a Buerger cell.
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We say that two lattices of the same Bravais type belong to the
same lattice character if one of them can be deformed into the other
in such a way that the Niggli point of the deformed lattice moves
linearly from the initial to the final position while the Bravais type
of the lattice remains unchanged.

Unlike convexity, nothing can be said whether the Niggli images
of lattice characters are open sets (with regard to their dimension) or
not. Both cases occur.

The lattice character of a lattice L can also be recognized [instead
of by means of Table 9.2.5.1 or by Tables 1 and 3 in Gruber (1992)]
by perpendicular projection of the c vector onto the ab plane
provided the vectors a, b, c describe the Niggli cell of L and fulfil
the conditions (9.2.2.2a) to (9.2.2.5f ) in Section 9.2.2 (de Wolff &
Gruber, 1991). See also Figs. 9.2.4.1 to 9.2.4.5.

9.3.3. A finer division of lattices

The 44 lattice characters form a subdivision of the 14 Bravais types.
There is another commonly known subdivision of the Bravais types,
namely the 24 Delaunay sorts (symmetrische Sorten) (Delaunay,
1933; International Tables for X-ray Crystallography, 1952, Vol. I;
cf. Section 9.1.8). However, both divisions, being based on quite
different principles, are incompatible: the 44 lattice characters do
not form a subdivision of the 24 Delaunay sorts.

A natural problem arises to construct a division of lattices which
would be a subdivision of both the lattice characters and the
Delaunay sorts. However, we do not admit a purely mechanical
intersection of both these divisions; we insist that their common
subdivision be crystallographically meaningful.

Such a division was proposed recently (Gruber, 1997a). It uses
the fact that the Niggli points of all lattices lie in two five-
dimensional polyhedra, say �� and �	. The underlying idea,
originating from H. Wondratschek, is based on the distribution of
Niggli points among the vertices, edges, faces, three- and four-
dimensional hyperfaces, and the interior of �� and �	. This leads
to a natural division of Niggli points and further to a division of
lattices. This division has 67 classes, but is not suitable for
crystallography because it does not constitute a subdivision of the
Bravais types.

A modification of the idea is necessary. It consists of representing
a lattice L by several points (instead of by one Niggli point) and the
addition of two minor conditions. One of them concerns the
diagonals of the Niggli cell and the other the bases of L which
describe the Niggli cell.

Though these conditions are of little importance in themselves,
they lead to a very useful notion, viz the division of all lattices into
127 classes which is a subdivision of both the lattice characters and

the Delaunay sorts. The equivalence classes of this division are
called genera. They form, in a certain sense, building blocks of both
lattice characters and Delaunay sorts and show their mutual
relationship.

The distribution of genera along the Bravais types is the
following (the number of genera is given in parentheses): cP(1),
cI(1), cF(1), tP(2), tI(5), oP(1), oC(8), oI(7), oF(3), hP(3), hR(4),
mP(5), mC(43), aP(43). Thus, genera seem to be especially suitable
for a finer classification of lattices of low symmetry.

The genus of a given lattice L can be determined – provided that
the Niggli point of L is known – by means of a table containing
explicit descriptions of all genera. These descriptions are formed by
open linear systems of inequalities. Consequently, the ranges of
conventional parameters of genera are open unlike those concerning
the lattice characters.

Genera are denoted by symbols derived from the geometrical
shape of �� and �	. They can be visualized in the three-
dimensional cross sections of these bodies. This gives a fairly
good illustration of the relationships between genera.

However, the most important feature of genera seems to be the
fact that lattices of the same genus agree in a surprisingly great
number of crystallographically significant properties, such as the
number of Buerger cells, the densest directions and planes, the
symmetry of these planes etc. Even the formulae for the
conventional cells are the same. The genus appears to be a
remarkably strong bond between lattices.

9.3.4. Conventional cells

Conventional cells are dealt with in Chapter 9.1. They are illustrated
in Fig. 9.1.7.1 and described in Table 9.1.7.2. This description,
however, is not exhaustive enough for determining the Bravais type.
In mathematical terms, the conditions in Table 9.1.7.2 are necessary
but not sufficient. For example, the C-centred cell with

a � 6, b � 8, c � 5, cos � � 	7�15, � � � � 90�

�9�3�4�1�
has the typical shape of a conventional cell of an mC lattice. But the
lattice generated by the C-centred cell (9.3.4.1) is actually hR with
the conventional rhombohedral basis vectors

c, �a � b��2, �a 	 b��2�

It is a natural goal to establish a system of conditions for the
conventional cells which would be not only necessary but also
sufficient. This is done in Table 9.3.4.1. In order to make the
conditions as simple as possible, the usual mC description of the
monoclinic centred lattices is replaced by the mI description. The
relation between the two descriptions is simple:

aI � 	cC , bI � bC , cI � aC � cC�

The exact meaning of Table 9.3.4.1 is as follows: Suppose that a
Bravais type different from aP is given and that its symbol appears
in column 1 in the ith entry of Table 9.3.4.1. Then a lattice L is of
this Bravais type if and only if there exists a cell (a, b, c) in L such
that

(i) the centring of (a, b, c) agrees with the centring mode given in
column 2 in the ith entry, and

(ii) the parameters of the cell (a, b, c) fulfil the conditions listed
in column 3 in the ith entry of Table 9.3.4.1.

9.3.5. Conventional characters

Lattice characters were defined in Section 9.3.2 by dividing the
Niggli image of a certain Bravais type � into components. Doing

Fig. 9.3.2.2. A convex set in E2.
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the same – instead of with the Niggli points – with the parameters of
conventional cells* of lattices of the Bravais type � we obtain a
division of the range† of these parameters into components. This
leads to a further division of lattices of the Bravais type � into
equivalence classes. We call these classes – in analogy to the Niggli
characters – conventional characters. There are 22 of them.

Two lattices of the same Bravais type belong to the same
conventional character if and only if one lattice can be deformed
into the other in such a way that the conventional parameters of the
deformed lattice change continuously from the initial to the final
position without change of the Bravais type. The word ‘con-
tinuously’ cannot be replaced by the stronger term ‘linearly’
because the range of conventional parameters of the monoclinic
centred lattices is not convex.

Conventional characters form a superdivision of the lattice
characters. Therefore, no special notation of conventional char-
acters need be invented: we write them simply as sets of lattice
characters which constitute the conventional character. Denoting
the lattice characters by integral numbers from 1 to 44 (according to
the convention in Section 9.2.5), we obtain for the conventional
characters symbols like 
8, 19, 42� or 
7�.

Conventional characters are described in Table 9.3.5.1.

9.3.6. Sublattices

A sublattice L� of an n-dimensional lattice L is a proper subset of L
which itself is a lattice of the same dimension as L. A sublattice L� of

Table 9.3.4.1. Conventional cells

Bravais
type

Centring
mode of the
cell (a, b, c) Conditions

cP P a � b � c,
� � � � � � 90�

cI I a � b � c,
� � � � � � 90�

cF F a � b � c,
� � � � � � 90�

tP P a � b 
� c,
� � � � � � 90�

tI I c�
���
2

� 
� a � b 
� c, *
� � � � � � 90�

oP P a � b � c, �
� � � � � � 90�

oI I a � b � c,
� � � � � � 90�

oF F a � b � c,
� � � � � � 90�

oC C a � b 
� a
���
3

�
, �

� � � � � � 90�
hP P a � b,

� � � � 90�, � � 120�

hR P a � b � c,
� � � � �,
� 
� 60�, � 
� 90�, � 
� ��

mP P 	2c cos� � a � c,�
� � � � 90� � �

mI I 	c cos� � a � c, **
� � � � 90� � �, �9�3�4�2�
but not a2 � b2 � c2,

a2 � ac cos� � b2, �� �9�3�4�3�
nor a2 � b2 � c2,

b2 � ac cos� � a2, �� �9�3�4�4�
nor c2 � 3b2 � 9a2,

c � 	3a cos�, �� �9�3�4�5�
nor a2 � 3b2 � 9c2,

a � 	3c cos��� �9�3�4�6�

Note: All remaining cases are covered by Bravais type aP.

* For a � c�
���
2

�
, the lattice is cF with conventional basis vectors c, a � b, a 	 b.

† The labelling of the basis vectors according to their length is the reason for
unconventional Hermann–Mauguin symbols: for example, the Hermann–Mauguin
symbol Pmna may be changed to Pncm, Pbmn, Pman, Pcnm or Pnmb. Analogous
facts apply to the oI, oC, oF, mP and mI Bravais types.
‡ For b � a

���
3

�
, the lattice is hP with conventional vectors a, �b 	 a��2, c.

§ � � arccos�	1�3� � 109�28�16��. For � � 60�, the lattice is cF with conventional
vectors 	a � b � c, a 	 b � c, a � b 	 c; for � � �, the lattice is cI with
conventional vectors a � b, a � c, b � c.
� This means that a, c are shortest non-coplanar lattice vectors in their plane.
** This means that a, c are shortest non-coplanar lattice vectors in their plane on
condition that the cell (a, b, c) is body-centred.
†† If (9.3.4.2) and (9.3.4.3) hold, the lattice is hR with conventional vectors
a, �a � b 	 c��2, �a 	 b 	 c��2, making the rhombohedral angle smaller than 60�.
‡‡ If (9.3.4.2) and (9.3.4.4) hold, the lattice is hR with conventional vectors
a, �a � b � c��2, �a 	 b � c��2, making the rhombohedral angle between 60 and
90�.
§§ If (9.3.4.2) and (9.3.4.5) hold, the lattice is hR with conventional vectors
	a, �a � b � c��2, �a 	 b � c��2, making the rhombohedral angle between 90�

and �.
�� If (9.3.4.2) and (9.3.4.6) hold, the lattice is hR with conventional vectors
	c, �a � b � c��2, �a 	 b � c��2, making the rhombohedral angle greater than �.

Table 9.3.5.1. Conventional characters

Bravais type Conditions Conventional character

cP {3}

cI {5}

cF {1}

tP a � c {11}

c � a {21}

tI a � c�
���
2

�
{15}

c�
���
2

�
� a � c {7}

c � a {6, 18}

oP {32}

oI {8, 19, 42}

oF {16, 26}

oC b � a
���
3

�
{13, 23}

a
���
3

�
� b {36, 38, 40}

hP {12, 22}

hR* � � 60� {9}

60� � � � 90� {2}

90� � � � �† {4}

� � � {24}

mP {33, 34, 35}

mC {10, 14, 17, 20, 25, 27, 28,
29, 30, 37, 39, 41, 43}

aP � � 90� {31}

90� � � {44}

* The angle � refers to the rhombohedral description of the hR lattices.
† � � arccos�	1�3� � 109�28�16��.

� For aP lattices, these parameters are derived from the Niggli point [see (9.3.2.1)].
� This range is a subset of Ek , where k � 6.

758

9. CRYSTAL LATTICES



L causes a decomposition of the set L into, say, i mutually congruent
sublattices, L� itself being one of them (Fig. 9.3.6.1). The number i
is called the index of the sublattice L� and indicates how many times
L� is ‘diluted’ with respect to L.

Sublattices are defined in a natural way in those lattices that have
centred conventional cells, being generated by the vertices of these
cells (‘decentring’). They are primitive and belong to the same
crystal family as the given lattice. Thus, in the cI, cF, tI, oI, oF, oC,
mC and hR * lattices, we can meet sublattices of indices 2, 4, 2, 2, 4,
2, 2 and 3, respectively.

Theoretically (though hardly in crystallographic practice), the
Bravais type of centred lattices can also be determined by testing all
their sublattices with the suspected index and finding in any of these
sublattices the Niggli cell.

All sublattices of index i of an n-dimensional lattice L can
be constructed by a procedure suggested by Cassels (1971). If
a1, � � � , an is a primitive basis of the lattice L then primitive bases
a�1, � � � , a�n of all sublattices of index i of the lattice L can be found

by the relations

�a�1, � � � , a�n� � �a1, � � � , an�RT ,

where the matrix R � �rij� fulfils

0 � rij for 1 � i � j � n,

0 � rij � rjj for 1 � j � i � n,

r11 � � � rnn � i�

�9�3�6�1�

The number Dn, i of these matrices is equal to the number of
decompositions of an n-dimensional lattice L into sublattices of
index i. To determine this number, it is not necessary to construct
explicitly the matrices fulfilling (9.3.6.1). The following formulae
(Gruber, 1997b) can be used:

(i) If i � pq, where p � 1 is a prime number, then

Dn, i � pn 	 1
p 	 1

� pn�1 	 1
p2 	 1

� pn�2 	 1
p3 	 1

� � � � �

��������������������������������������������������������������������
q times

(ii) If i � pq1
1 � � � pqm

m ( p1, � � � , pm mutually different prime
numbers, m � 1), we deal with any factor p

qj

j � j � 1, � � � , m�
according to point (i) and multiply all these numbers to obtain the
number Dn, i.

For example, for n � 3 and i = 2, 3, 4 and 6, we obtain for Dn, i
the values 7, 13, 35 and 91, respectively.

In all considerations so far, the symmetry of the lattice L was
irrelevant. We took L simply as a set of points and its sublattices as
its subsets. (Thus, for illustrating sublattices, the ‘triclinic’ lattices
are most apt; cf. ‘derivative lattices’ in Chapter 13.2.)

However, this is not exactly the crystallographic point of view. If,
for example, the mesh of the lattice L in Fig. 9.3.6.1 were a square,
the sublattices in cases (a) and (b) would have the same symmetry
(though being different subsets of L) and therefore would be
considered by crystallographers as one case only. The number Dn, i
would be reduced. From this aspect, the problem is treated in
Chapter 13.1 in group-theoretical terms which are more suitable for
this purpose than the set-theory language used here.

Fig. 9.3.6.1. Three possible decompositions of a two-dimensional lattice L
into sublattices of index 2.

� When choosing their hexagonal description.
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diese Formen, insbesondere Berücksichtigung auf ihre tabellar-
ische Berechung. J. Math. (Crelle), 41, 141–190.

Gruber, B. (1989). Reduced cells based on extremal principles. Acta
Cryst. A45, 123–131.

Gruber, B. (1992). Topological approach to the Niggli lattice
characters. Acta Cryst. A48, 461–470.

Gruber, B. (1997a). Classification of lattices: a new step. Acta Cryst.
A53, 505–521.

Gruber, B. (1997b). Alternative formulae for the number of
sublattices. Acta Cryst. A53, 807–808.

International Tables for X-ray Crystallography (1952). Vol. I, edited
by N. F. M. Henry & K. Lonsdale, pp. 530–535. Birmingham:
Kynoch Press.

International Tables for X-ray Crystallography (1969). Vol. I, 3rd
ed., edited by N. F. M. Henry & K. Lonsdale, pp. 530–535.
Birmingham: Kynoch Press.

Niggli, P. (1928). Kristallographische und strukturtheoretische
Grundbegriffe. Handbuch der Experimentalphysik, Vol. 7, Part
1. Leipzig: Akademische Verlagsgesellschaft.

Wolff, P. M. de (1988). Definition of Niggli’s lattice characters.
Comput. Math. Appl. 16, 487–492.

Wolff, P. M. de & Gruber, B. (1991). Niggli lattice characters:
definition and graphical representation. Acta Cryst. A47, 29–36.

760

9. CRYSTAL LATTICES

references

http://it.iucr.org/Ab/ch9o3v0001/references/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /DetectCurves 0.100000
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /PreserveDICMYKValues true
  /PreserveFlatness true
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /ColorImageMinDownsampleDepth 1
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /GrayImageMinDownsampleDepth 2
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /CheckCompliance [
    /None
  ]
  /PDFXOutputConditionIdentifier ()
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [641.000 859.000]
>> setpagedevice


