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1.3. GENERAL INTRODUCTION TO SPACE GROUPS

excluding 1. In particular, if the translation part of a coset

representative is a lattice vector, it is usually chosen as the zero

vector o.

Note that due to the fact that T is a normal subgroup of G, a

system of coset representatives for the right cosets is at the same

time a system of coset representatives for the left cosets.

1.3.3.3. Symmorphic and non-symmorphic space groups

If a coset with respect to the translation subgroup contains an

operation of the form ðW ;wÞ with w a vector in the translation

lattice, it is clear that the same coset also contains the operation

ðW ; oÞ with trivial translation part. On the other hand, if a coset

does not contain an operation of the form ðW ; oÞ, this may be

caused by an inappropriate choice of origin. For example, the

operation ð�I; ð1=2; 1=2; 1=2ÞÞ is turned into the inversion

ð�I; ð0; 0; 0ÞÞ by moving the origin to 1=4; 1=4; 1=4 (cf. Section

1.5.1.1 for a detailed treatment of origin-shift transformations).

Depending on the actual space group G, it may or may not be

possible to choose the origin such that every coset with respect to

T contains an operation of the form ðW ; oÞ.

Definition

Let G be a space group with translation subgroup T . If it is

possible to choose the coordinate system such that every coset

of G with respect to T contains an operation ðW ; oÞ with trivial
translation part, G is called a symmorphic space group, other-

wise G is called a non-symmorphic space group.

One sees that the operations with trivial translation part form a

subgroup of G which is isomorphic to a subgroup of the point

group P. This subgroup is the group of operations in G that fix the

origin and is called the site-symmetry group of the origin (site-

symmetry groups are discussed in detail in Section 1.4.4). It is the

distinctive property of symmorphic space groups that they

contain a subgroup which is isomorphic to the full point group.

This may in fact be seen as an alternative definition for

symmorphic space groups.

Proposition. A space group G with point group P is symmorphic

if and only if it contains a subgroup isomorphic to P. For a non-

symmorphic space group G, every finite subgroup of G is

isomorphic to a proper subgroup of the point group.

Note that every finite subgroup of a space group is a subgroup

of the site-symmetry group for some point, because finite groups

cannot contain translations. Therefore, a symmorphic space

group is characterized by the fact that it contains a site-symmetry

group isomorphic to its point group, whereas in non-symmorphic

space groups all site-symmetry groups have orders strictly smaller

than the order of the point group.

Symmorphic space groups can easily be constructed by

choosing a lattice L and a point group P which acts on L. Then

G ¼ fðW ;wÞ j W 2 P;w 2 Lg is a space group in which the coset

representatives can be chosen as ðW ; oÞ.
Non-symmorphic space groups can also be constructed from a

lattice L and a point group P. What is required is a system of

coset representatives with respect to T and these are obtained by

choosing for each operation W 2 P a translation part w. Owing

to the translations, it is sufficient to consider vectors w with

components between 0 and 1. However, the translation parts

cannot be chosen arbitrarily, because for a point-group operation

of order k, the operation ðW ;wÞk has to be a translation ðI; tÞ
with t 2 L. Working this out, this imposes the restriction that

ðW k�1 þ . . .þW þ IÞw 2 L:

Once translation parts w are found that fulfil all these restrictions,

one finally has to check whether the space group obtained this

way is (by accident) symmorphic, but written with respect to an

inappropriate origin. A change of origin by p is realized by

conjugating the matrix–column pair ðW ;wÞ by the translation

ðI;�pÞ (cf. Section 1.5.1 on transformations of the coordinate

system) which gives

ðI;�pÞðW ;wÞðI; pÞ ¼ ðW ;Wpþ w� pÞ ¼ ðW ;wþ ðW � IÞpÞ:

Thus, the space group just constructed is symmorphic if there is a

vector p such that ðW � IÞpþ w 2 L for each of the coset

representatives ðW ;wÞ.
The above considerations also show how every space group

can be assigned to a symmorphic space group in a canonical way,

namely by setting the translation parts of coset representatives

with respect to T to o. This has the effect that screw rotations are

turned into rotations and glide reflections into reflections. The

Hermann–Mauguin symbol (see Section 1.4.1 for a detailed

discussion of Hermann–Mauguin symbols) of the symmorphic

space group to which an arbitrary space group is assigned is

simply obtained by replacing any screw rotation symbol Nm by

the corresponding rotation symbol N and every glide reflection

symbol a, b, c, d, e, n by the symbol m for a reflection. A space

group is found to be symmorphic if no such replacement is

required, i.e. if the Hermann–Mauguin symbol only contains the

symbols 1, 2, 3, 4, 6 for rotations, �1, �3, �4, �6 for rotoinversions and
m for reflections.

Example

The space groups with Hermann-Mauguin symbols P4mm,

P4bm, P42cm, P42nm, P4cc, P4nc, P42mc, P42bc are all

assigned to the symmorphic space group with Hermann–

Mauguin symbol P4mm.

1.3.4. Classification of space groups

In this section we will consider various ways in which space

groups may be grouped together. For the space groups them-

selves, the natural notion of equivalence is the classification into

space-group types, but the point groups and lattices from which

the space groups are built also have their own classification

schemes into geometric crystal classes and Bravais types of lattices,

respectively.

Some other types of classifications are relevant for certain

applications, and these will also be considered. The hierarchy of

the different classification levels and the numbers of classes on

the different levels in dimension 3 are displayed in Fig. 1.3.4.1.

1.3.4.1. Space-group types

The main motivation behind studying space groups is that they

allow the classification of crystal structures according to their

symmetry properties. Since many properties of a structure can be

derived from its group of symmetries alone, this allows the

investigation of the properties of many structures simultaneously.

On the other hand, even for the same crystal structure the

corresponding space group may look different, depending on the

chosen coordinate system (see Chapter 1.5 for a detailed

discussion of transformations to different coordinate systems).

Because it is natural to regard two realizations of a group of

symmetry operations with respect to two different coordinate

systems as equivalent, the following notion of equivalence

between space groups is natural.
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Definition

Two space groups G and G
0 are called affinely equivalent if G0

can be obtained from G by a change of the coordinate system.

In terms of matrix–column pairs this means that there must

exist a matrix–column pair ðP; pÞ such that

G
0
¼ fðP; pÞ�1

ðW ;wÞðP; pÞ j ðW ;wÞ 2 Gg:

The collection of space groups that are affinely equivalent with

G forms the affine type of G.

In dimension 2 there are 17 affine types of plane groups and in

dimension 3 there are 219 affine space-group types. Note that

in order to avoid misunderstandings we refrain from calling the

space-group types affine classes, since the term classes is

usually associated with geometric crystal classes (see below).

Grouping together space groups according to their space-

group type serves different purposes. On the one hand, it is

sometimes convenient to consider the same crystal structure and

thus also its space group with respect to different coordinate

systems, e.g. when the origin can be chosen in different natural

ways or when a phase transition to a higher- or lower-symmetry

phase with a different conventional cell is described. On the other

hand, different crystal structures may give rise to the same space

group once suitable coordinate systems have been chosen for

both. We illustrate both of these perspectives by an example.

Examples

(i) The space group G of type Pban (50) has a subgroup H of

index 2 for which the coset representatives relative to the

translation subgroup are the identity e: x; y; z, the twofold

rotation g: �x; y;�z, the n glide h: x þ 1
2 ; y þ 1

2 ;�z and

the b glide k: �x þ 1
2 ; y þ 1

2 ; z. This subgroup is of type

Pb2n, which is a non-conventional setting for Pnc2 (30).

In the conventional setting, the coset representatives of

Pnc2 are given by g0: �x;�y; z, h0: �x; y þ 1
2 ; z þ 1

2 and

k 0: x;�y þ 1
2 ; z þ 1

2, i.e. with the z axis as rotation axis for

the twofold rotation. The subgroup H can be transformed

to its conventional setting by the basis transformation

ða0; b0; c0Þ ¼ ðc; a; bÞ. Depending on whether the perspec-

tive of the full group G or the subgroup H is more

important for a crystal structure, the groups G and H will

be considered either with respect to the basis a; b; c

(conventional for G) or to the basis a0; b0; c0 (conventional

for H).

(ii) The elements carbon, silicon and germanium all crystallize

in the diamond structure, which has a face-centred cubic

unit cell with two atoms shifted by 1/4 along the space

diagonal of the conventional cubic cell. The space group is

in all cases of type Fd�3m (227), but the cell parameters

differ: aC = 3.5668 Å for carbon, aSi = 5.4310 Å for silicon

and aGe = 5.6579 Å for germanium (measured at 298 K). In

order to scale the conventional cell of carbon to that of

silicon, the coordinate system has to be transformed by the

diagonal matrix

aSi=aC � I3 �

1:523 0 0

0 1:523 0

0 0 1:523

0
@

1
A:

By a famous theorem of Bieberbach (see Bieberbach, 1911,

1912), affine equivalence of space groups actually coincides with

the notion of abstract group isomorphism as discussed in Section

1.1.6.

Bieberbach theorem

Two space groups in n-dimensional space are isomorphic if and

only if they are conjugate by an affine mapping.

This theorem is by no means obvious. Recall that for point

groups the situation is very different, since for example the

abstract cyclic group of order 2 is realized in the point groups of

space groups of type P2, Pm and P�1, generated by a twofold

rotation, reflection and inversion, respectively, which are clearly

not equivalent in any geometric sense. The driving force behind

the Bieberbach theorem is the special structure of space groups

having an infinite normal translation subgroup on which the point

group acts.

In crystallography, a notion of equivalence slightly stronger

than affine equivalence is usually used. Since crystals occur in

physical space and physical space can only be transformed by

orientation-preserving mappings, space groups are only regarded

as equivalent if they are conjugate by an orientation-preserving

coordinate transformation, i.e. by an affine mapping that has a

linear part with positive determinant.

Definition

Two space groups G and G
0 are said to belong to the

same space-group type if G0 can be obtained from G by an

orientation-preserving coordinate transformation, i.e. by

conjugation with a matrix–column pair ðP; pÞ with detP> 0. In

order to distinguish the space-group types explicitly from the

affine space-group types (corresponding to the isomorphism

classes), they are often called crystallographic space-group

types.

The (crystallographic) space-group type collects together the

infinitely many space groups that are obtained by expressing a

single space group with respect to all possible right-handed

coordinate systems for the point space.

Example

We consider the space group G of type I41 (80) which is

generated by the right-handed fourfold screw rotation

g: �y; x þ 1=2; z þ 1=4 (located at �1=4; 1=4; z), the centring

translation t: x þ 1=2; y þ 1=2; z þ 1=2 and the integral trans-

lations of a primitive tetragonal lattice. Conjugating the group

G to G
0
¼ mGm�1 by the reflection m in the plane z ¼ 0 turns

the right-handed screw rotation g into the left-handed screw

Figure 1.3.4.1
Classification levels for three-dimensional space groups.
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rotation g0: �y; x þ 1=2; z � 1=4, and one might suspect that

G
0 is a space group of the same affine type but of a different

crystallographic space-group type as G. However, this is

not the case because conjugating G by the translation

n ¼ tð0; 1=2; 0Þ conjugates g to g00 ¼ ngn�1: �y þ 1=2;
x þ 1; z þ 1=4. One sees that g00 is the composition of g0 with

the centring translation t and hence g00 belongs to G
0. This

shows that conjugating G by either the reflection m or the

translation n both result in the same group G
0. This can also be

concluded directly from the space-group diagrams in Fig.

1.3.4.2. Reflecting in the plane z = 0 turns the diagram on the

left into the diagram on the right, but the same effect is

obtained when the left diagram is shifted by 1
2 along either a

or b.

The groups G and G
0 thus belong to the same crystallographic

space-group type because G is transformed to G
0 by a shift of

the origin by 1
2 b, which is clearly an orientation-preserving

coordinate transformation.

Enantiomorphism

The 219 affine space-group types in dimension 3 result in 230

crystallographic space-group types. Since an affine type either

forms a single space-group type (in the case where the group

obtained by an orientation-reversing coordinate transformation

can also be obtained by an orientation-preserving transforma-

tion) or splits into two space-group types, this means that

there are 11 affine space-group types such that an orientation-

reversing coordinate transformation cannot be compensated by

an orientation-preserving transformation.

Groups that differ only by their handedness are closely related

to each other and share many properties. One addresses this

phenomenon by the concept of enantiomorphism.

Example

Let G be a space group of type P41 (76) generated by a fourfold

right-handed screw rotation ð4þ001; ð0; 0; 1=4ÞÞ and the transla-

tions of a primitive tetragonal lattice. Then transforming the

coordinate system by a reflection in the plane z = 0 results in a

space group G
0 with fourfold left-handed screw rotation

ð4�001; ð0; 0; 1=4ÞÞ ¼ ð4þ001; ð0; 0;�1=4ÞÞ�1. The groups G and G
0

are isomorphic because they are conjugate by an affine

mapping, but G
0 belongs to a different space-group type,

namely P43 (78), because G does not contain a fourfold left-

handed screw rotation with translation part 1
4 c.

Definition

Two space groups G and G
0 are said to form an enantiomorphic

pair if they are conjugate under an affine mapping, but not

under an orientation-preserving affine mapping.

If G is the group of isometries of some crystal pattern, then its

enantiomorphic counterpart G0 is the group of isometries of the

mirror image of this crystal pattern.

The splitting of affine space-group types of three-dimensional

space groups into pairs of crystallographic space-group types

gives rise to the following 11 enantiomorphic pairs of

space-group types: P41=P43 (76/78), P4122=P4322 (91/95),

P41212=P43212 (92/96), P31=P32 (144/145), P3112=P3212 (151/

153), P3121=P3221 (152/154), P61=P65 (169/173), P62=P64
(170/172), P6122=P6522 (178/179), P6222=P6422 (180/181),

P4332=P4132 (212/213). These groups are easily recognized by

their Hermann–Mauguin symbols, because they are the primitive

groups for which the Hermann–Mauguin symbol contains one of

the screw rotations 31, 32, 41, 43, 61, 62, 64 or 65. The groups with

fourfold screw rotations and body-centred lattices do not give

rise to enantiomorphic pairs, because in these groups the orien-

tation reversal can be compensated by an origin shift, as illu-

strated in the example above for the group of type I41.

Example

Awell known example of a crystal that occurs in forms whose

symmetry is described by enantiomorphic pairs of space

groups is quartz. For low-temperature �-quartz there exists a

left-handed and a right-handed form with space groups P3121

(152) and P3221 (154), respectively. The two individuals of

opposite chirality occur together in the so-called Brazil twin of

quartz. At higher temperatures, a phase transition leads to the

higher-symmetry �-quartz forms, with space groups P6422

(181) and P6222 (180), which still form an enantiomorphic pair.

1.3.4.2. Geometric crystal classes

We recall that the point group of a space group is the group of

linear parts occurring in the space group. Once a basis for the

underlying vector space is chosen, such a point group is a group

of 3 � 3 matrices. A point group is characterized by the relative

positions between the rotation and rotoinversion axes and the

reflection planes of the operations it contains, and in this sense a

point group is independent of the chosen basis. However, a

suitable choice of basis is useful to highlight the geometric

properties of a point group.

Example

A point group of type 3m is generated by a threefold rotation

and a reflection in a plane with normal vector perpendicular to

the rotation axis. Choosing a basis a; b; c such that c is along

the rotation axis, a is perpendicular to the reflection plane and

b is the image of a under the threefold rotation (i.e. b lies in the

plane perpendicular to the rotation axis and makes an angle of

120� with a), the matrices of the threefold rotation and the

reflection with respect to this basis are

0 �1 0

1 �1 0

0 0 1

0
@

1
A and

�1 1 0

0 1 0

0 0 1

0
@

1
A:

A different useful basis is obtained by choosing a vector a0 in

the reflection plane but neither along the rotation axis nor

perpendicular to it and taking b0 and c0 to be the images of a0

under the threefold rotation and its square. Then the matrices

of the threefold rotation and the reflection with respect to the

basis a0; b0; c0 are

Figure 1.3.4.2
Space-group diagram of I41 (left) and its reflection in the plane z = 0
(right).
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