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Definition

The geometric crystal class of a point group P is called a

holohedry (or lattice point group, cf. Chapters 3.1 and 3.3) if P

is the Bravais group of some lattice L.

Example

LetP be the point group of type �3m generated by the threefold

rotoinversion

W 1 ¼

0 1 0

�1 1 0

0 0 �1

0
@

1
A

around the z axis and the twofold rotation

W 2 ¼

1 �1 0

0 �1 0

0 0 �1

0
@

1
A;

expressed with respect to the conventional basis a; b; c of a

hexagonal lattice. The group P is not the Bravais group of the

lattice L spanned by a; b; c because this lattice also allows a

sixfold rotation around the z axis, which is not contained in

P. But P also acts on the rhombohedrally centred lattice L0

with primitive basis a0 ¼ 1
3 ð2a þ b þ cÞ, b0 ¼ 1

3 ð�a þ b þ cÞ,

c0 ¼ 1
3 ð�a � 2b þ cÞ. With respect to the basis a0; b0; c0 the

rotoinversion and twofold rotation are transformed to

W 0
1 ¼

0 0 �1

�1 0 0

0 �1 0

0
@

1
A and W 0

2 ¼

0 �1 0

�1 0 0

0 0 �1

0
@

1
A;

and these matrices indeed generate the Bravais group of L0.

The geometric crystal class with symbol �3m is therefore a

holohedry.

Note that in dimension 3 the above is actually the only

example of a geometric crystal class in which the point groups are

Bravais groups for some but not for all the lattices on which they

act. In all other cases, each matrix group P corresponding to a

holohedry is actually the Bravais group of the lattice spanned by

the basis with respect to which P is written.

1.3.4.4. Other classifications of space groups

In this section we summarize a number of other classification

schemes which are perhaps of slightly lower significance than

those of space-group types, geometric crystal classes and Bravais

types of lattices, but also play an important role for certain

applications.

1.3.4.4.1. Arithmetic crystal classes

We have already seen that every space group can be assigned

to a symmorphic space group in a natural way by setting the

translation parts of coset representatives with respect to the

translation subgroup to o. The groups assigned to a symmorphic

space group in this way all have the same translation lattice and

the same point group but the different possibilities for the

interplay between these two parts are ignored.

If we want to collect together all space groups that correspond

to symmorphic space groups of the same type, we arrive at the

classification into arithmetic crystal classes. This can also be seen

as a classification of the symmorphic space-group types. The

distribution of the space groups into arithmetic classes, repre-

sented by the corresponding symmorphic space-group types, is

given in Table 2.1.3.3.

The crucial observation for characterizing this classification is

that space groups that correspond to the same symmorphic space

group all have translation lattices of the same Bravais type. This

means that the freedom in the choice of a basis transformation of

the underlying vector space is restricted, because a primitive basis

has to be mapped again to a primitive basis. Assuming that the

point groups are written with respect to primitive bases, this

means that the basis transformation is an integral matrix with

determinant �1.

Definition

Two space groups G and G
0 with point groups P and P

0,

respectively, both written with respect to primitive bases of

their translation lattices, are said to lie in the same arithmetic

crystal class if P0 can be obtained from P by an integral basis

transformation of determinant �1, i.e. if there is an integral

3 � 3 matrix P with detP ¼ �1 such that

P
0
¼ fP�1WP j W 2 Pg:

Also, two integral matrix groups P and P0 are said to belong to

the same arithmetic crystal class if they are conjugate by an

integral 3 � 3 matrix P with detP ¼ �1.

Example

Let

M1 ¼

�1 0 0

0 1 0

0 0 1

0
B@

1
CA; M2 ¼

1 0 0

0 �1 0

0 0 1

0
B@

1
CA

and M3 ¼

0 1 0

1 0 0

0 0 1

0
B@

1
CA

be reflections in the planes x = 0, y = 0 and x = y, respectively,

and let P1 ¼ hM1i, P2 ¼ hM2i and P3 ¼ hM3i be the integral

matrix groups generated by these reflections. Then P1 and P2

belong to the same arithmetic crystal class because they are

transformed into each other by the basis transformation

P ¼

0 1 0

1 0 0

0 0 1

0
@

1
A

interchanging the x and y axes. But P3 belongs to a different

arithmetic crystal class, because M3 is not conjugate to M1 by

an integral matrix P of determinant �1. The two groups P1

and P3 belong, however, to the same geometric crystal class,

because M1 and M3 are transformed into each other by the

basis transformation

P ¼

1
2 � 1

2 0
1
2

1
2 0

0 0 1

0
@

1
A;

which has determinant 1
2. This basis transformation shows that

M1 and M3 can be interpreted as the action of the same

reflection on a primitive lattice and on a C-centred lattice.

As explained above, the number of arithmetic crystal classes is

equal to the number of symmorphic space-group types: in

dimension 2 there are 13 such classes, in dimension 3 there are 73

arithmetic crystal classes. The Hermann–Mauguin symbol of the

symmorphic space-group type to which a space group G belongs

is obtained from the symbol for the space-group type of G by

replacing any screw-rotation axis symbol Nm by the corre-
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sponding rotation axis symbol N and every glide-plane symbol a,

b, c, d, e, n by the symbol m for a mirror plane.

It is clear that the classification into arithmetic crystal classes

refines both the classifications into geometric crystal classes and

into Bravais classes, since in the first case only the point groups

and in the second case only the translation lattices are taken into

account, whereas for the arithmetic crystal classes the combina-

tion of point groups and translation lattices is considered. Note,

however, that for the determination of the arithmetic crystal class

of a space group G it is not sufficient to look only at the type of

the point group and the Bravais type of the translation lattice. It

is crucial to consider the action of the point group on the

translation lattice.

Example

Let G and G
0 be space groups of types P3m1 (156) and P31m

(157), respectively. Since G and G
0 are symmorphic space

groups of different types, they must belong to different arith-

metic classes. The point groups P and P
0 of G and G

0 both

belong to the same geometric crystal class with symbol 3m and

the translation lattices of both space groups are primitive

hexagonal lattices, and thus of the same Bravais type. It is the

different action on the translation lattice which causes G and G0

to lie in different arithmetic classes:

In the conventional setting, the point group P of G contains the

threefold rotation

R ¼

0 �1 0

1 �1 0

0 0 1

0
@

1
A

and the reflections

M1 ¼

0 �1 0

�1 0 0

0 0 1

0
B@

1
CA; M2 ¼

�1 1 0

0 1 0

0 0 1

0
B@

1
CA

and M3 ¼

1 0 0

1 �1 0

0 0 1

0
B@

1
CA;

whereas the point group P
0 of G0 contains the same rotation R

and the reflections

M0
1 ¼

0 1 0

1 0 0

0 0 1

0
B@

1
CA; M0

2 ¼

1 �1 0

0 �1 0

0 0 1

0
B@

1
CA

and M0
3 ¼

�1 0 0

�1 1 0

0 0 1

0
B@

1
CA:

Since the threefold rotation is represented by the same matrix

in both groups, the lattice basis for both groups can be taken as

the conventional basis a; b; c of a hexagonal lattice, with a and

b of the same length and enclosing an angle of 120� and c

perpendicular to the plane spanned by a and b. One now sees

that in P
0 the reflection planes of M0

1, M
0
2 and M0

3 contain the

vectors a þ b, a and b, respectively, whereas in P these vectors

are just perpendicular to the reflection planes. In the so-called

hexagonally centred lattice with primitive basis a0 ¼ 1
3 a þ 2

3 b,

b0 ¼ � 2
3 a � 1

3 b, c0 ¼ c, the vectors a0 and b0 are perpendicular

to the vectors a and b. The group G0 can thus be regarded as the

action of G on the hexagonally centred lattice, showing that G

and G0 are actions of the same group on different lattices which

therefore belong to different arithmetic crystal classes.

As we have seen, the assignment of a space group to its

arithmetic crystal class is equivalent to the assignment to its

corresponding symmorphic space group, which in turn can be

seen as an assignment to the combination of a point group and a

lattice on which this point group acts. This correspondence

between arithmetic crystal classes and point group/lattice

combinations is reflected in the symbol for an arithmetic crystal

class suggested in deWolff et al. (1985), which is the symbol of the

symmorphic space group with the letter for the lattice moved to

the end, e.g. 4mmP for the arithmetic crystal class containing the

symmorphic space groups of type P4mm (99) and the non-

symmorphic groups derived from this symmorphic group, i.e. the

groups of space-group type P4bm, P42cm, P42nm, P4cc, P4nc,

P42mc and P42bc (100–106).

Recall that the members of one arithmetic crystal class are

space groups with the same translation lattice and the same point

group, possibly written with respect to different primitive bases.

If the point group happens to be the Bravais group of the

translation lattice, this is independent of the chosen primitive

basis and thus being a Bravais group is clearly a property of the

full arithmetic crystal class.

Definition

The arithmetic crystal class of a space group G is called a

Bravais arithmetic crystal class if the point group of G is the

Bravais group of the translation lattice of G.

The arithmetic crystal class of an integral matrix group P is a

Bravais arithmetic crystal class if P is maximal among the

integral matrix groups with the same space of metric tensors

MðPÞ, i.e. if for any integral matrix group P
0 properly

containing P as a subgroup, the space of metric tensors MðP
0
Þ

is strictly smaller than that of P. This amounts to saying that P0

must act on a lattice with specialized metric.

Note that in the previous edition of IT A the shorter term

Bravais class was used as a synonym for Bravais arithmetic crystal

class. However, in this edition the term Bravais class is reserved

for the classification of space-group types according to their

lattices (see Section 1.3.4.3).

Since the lattice types are characterized by their Bravais

groups, the Bravais arithmetic crystal classes are in one-to-one

correspondence with the Bravais types of lattices. The 14 Bravais

arithmetic crystal classes (given by the symbol for the arithmetic

class, with the number of the associated symmorphic space-group

type in brackets) and the corresponding lattice types are: �1P (2),

triclinic; 2/mP (10), primitive monoclinic; 2/mC (12), centred

monoclinic; mmmP (47), primitive orthorhombic; mmmC (65),

single-face-centred orthorhombic; mmmF (69), all-face-centred

orthorhombic; mmmI (71), body-centred orthorhombic; 4/mmmP

(123), primitive tetragonal; 4/mmmI (139), body-centred tetra-

gonal; �3mR (166), rhombohedral; 6/mmmP (191), hexagonal;

m�3mP (221), primitive cubic; m�3mF (225), face-centred cubic;

and m�3mI (229), body-centred cubic.

Bravais flocks

In the classification of space groups according to their trans-

lation lattices, the point groups play only a secondary role (as

groups acting on the lattices). From the perspective of arithmetic

crystal classes, this classification can now be reformulated in

terms of integral matrix groups. The crucial point is that every

arithmetic crystal class can be assigned to a Bravais arithmetic

crystal class in a natural way: If P is a point group, there is a
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unique Bravais arithmetic crystal class containing a Bravais

group B of minimal order with P � B. Conversely, a Bravais

group B acting on a lattice L is grouped together with its

subgroups P that do not act on a more general lattice, i.e. on a

lattice L0 with more free parameters than L. This observation

gives rise to the concept of Bravais flocks, which is mainly applied

to matrix groups.

Definition

Two integral matrix groups P and P
0 belong to the same

Bravais flock if they are both conjugate by an integral basis

transformation to subgroups of a common Bravais group, i.e. if

there exists a Bravais group B and integral 3 � 3 matrices P

and P0 such that PWP�1 2 B for all W 2 P and P0W 0P0�1 2 B

for allW 0 2 P
0. Moreover, P, P0 and B must all have spaces of

metric tensors of the same dimension.

Each Bravais flock consists of the union of the arithmetic

crystal class of a Bravais group B and the arithmetic crystal

classes of the subgroups of B that do not act on a more general

lattice than B.

The classification of space groups into Bravais flocks is the

same as that according to the Bravais types of lattices and as that

into Bravais classes. If the point groups P and P
0 of two space

groups G and G
0 belong to the same Bravais flock, then the space

groups are also said to belong to the same Bravais flock, but this

is the case if and only if G and G0 belong to the same Bravais class.

Example

For the body-centred tetragonal lattice the Bravais arithmetic

crystal class is the arithmetic crystal class 4/mmmI and the

corresponding symmorphic space-group type is I4/mmm (139).

The other arithmetic crystal classes in this Bravais flock are

(with the number of the corresponding symmorphic space

group in brackets): 4I (79), �4I (82), 4/mI (87), 422I (97), 4mmI

(107), �4m2I (119) and �42mI (121).

1.3.4.4.2. Lattice systems

It is sometimes convenient to group together those Bravais

types of lattices for which the Bravais groups belong to the same

holohedry.

Definition

Two lattices belong to the same lattice system if their Bravais

groups belong to the same geometric crystal class (which is

thus a holohedry).

Remark: The lattice systems were called Bravais systems in

earlier editions of this volume.

Example

The primitive cubic, face-centred cubic and body-centred cubic

lattices all belong to the same lattice system, because their

Bravais groups all belong to the holohedry with symbol

m�3m.

On the other hand, the hexagonal and the rhombohedral

lattices belong to different lattice systems, because their

Bravais groups are not even of the same order and lie in

different holohedries (with symbols 6/mmm and �3m, respec-

tively).

From the definition it is obvious that lattice systems classify

lattices because they consist of full Bravais types of lattices. On

the other hand, the example of the geometric crystal class �3m

shows that lattice systems do not classify point groups, because

depending on the chosen basis a point group in this geometric

crystal class belongs to either the hexagonal or the rhombohedral

lattice system.

However, since the translation lattices of space groups in the

same Bravais class belong to the same Bravais type of lattices, the

lattice systems can also be regarded as a classification of space

groups in which full Bravais classes are grouped together.

Definition

Two Bravais classes belong to the same lattice system if the

corresponding Bravais arithmetic crystal classes belong to the

same holohedry.

More precisely, two space groups G and G
0 belong to the same

lattice system if the point groups P and P
0 are contained in

Bravais groups B and B
0, respectively, such that B and B

0

belong to the same holohedry and such that P, P0, B and B
0 all

have spaces of metric tensors of the same dimension.

Every lattice system contains the lattices of precisely one

holohedry and a holohedry determines a unique lattice system,

containing the lattices of the Bravais arithmetic crystal classes in

the holohedry. Therefore, there is a one-to-one correspondence

between holohedries and lattice systems. There are four lattice

systems in dimension 2 and seven lattice systems in dimension 3.

The lattice systems in three-dimensional space are displayed in

Table 1.3.4.1. Along with the name of each lattice system, the

Bravais types of lattices contained in it and the corresponding

holohedry are given.

1.3.4.4.3. Crystal systems

The point groups contained in a geometric crystal class can act

on different Bravais types of lattices, which is the reason why

lattice systems do not classify point groups. But the action on

different types of lattices can be exploited for a classification of

point groups by joining those geometric crystal classes that act on

the same Bravais types of lattices. For example, the holohedry

m�3m acts on primitive, face-centred and body-centred cubic

lattices. The other geometric crystal classes that act on these

three types of lattices are 23, m�3, 432 and �43m.

Table 1.3.4.1
Lattice systems in three-dimensional space

Lattice system
Bravais types of
lattices Holohedry

Triclinic (anorthic) aP �1
Monoclinic mP, mS 2/m
Orthorhombic oP, oS, oF, oI mmm
Tetragonal tP, tI 4/mmm
Hexagonal hP 6/mmm
Rhombohedral hR �3m
Cubic cP, cF, cI m�3m

Table 1.3.4.2
Crystal systems in three-dimensional space

Crystal system Point-group types

Triclinic �1, 1
Monoclinic 2/m, m, 2
Orthorhombic mmm, mm2, 222
Tetragonal 4/mmm, �42m, 4mm, 422, 4/m, �4, 4
Hexagonal 6/mmm, �62m, 6mm, 622, 6/m, �6, 6
Trigonal �3m, 3m, 32, �3, 3
Cubic m�3m, �43m, 432, m�3, 23
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Definition

Two space groups G and G
0 with point groups P and P

0,

respectively, belong to the same crystal system if the sets of

Bravais types of lattices on which P and P
0 act coincide. Since

point groups in the same geometric crystal class act on the

same types of lattices, crystal systems consist of full geometric

crystal classes and the point groups P and P
0 are also said to

belong to the same crystal system.

Remark: In the literature there are many different notions of

crystal systems. In International Tables, only the one defined

above is used.

In many cases, crystal systems collect together geometric

crystal classes for point groups that are in a group–subgroup

relation and act on lattices with the same number of free para-

meters. However, this condition is not sufficient. If a point group

P is a subgroup of another point group P
0, it is clear that P acts

on each lattice on which P
0 acts. But P may in addition act on

different types of lattices on which P
0 does not act.

Note that it is sufficient to consider the action on lattices with

the maximal number of free parameters, since the action on these

lattices implies the action on lattices with a smaller number of

free parameters (corresponding to metric specializations).

Example

The holohedry of type 4/mmm acts on tetragonal and body-

centred tetragonal lattices. The crystal system containing this

holohedry thus consists of all the geometric crystal classes in

which the point groups act on tetragonal and body-centred

tetragonal lattices, but not on lattices with more than two free

parameters. This is the case for all geometric crystal classes

with point groups containing a fourfold rotation or roto-

inversion and that are subgroups of a point group of type

4/mmm. This means that the crystal system containing the

holohedry 4/mmm consists of the geometric classes of types 4,
�4, 4/m, 422, 4mm, �42m and 4/mmm.

This example is typical for the situation in three-dimensional

space, since in three-dimensional space usually all the arithmetic

crystal classes contained in a holohedry are Bravais arithmetic

crystal classes. In this case, the geometric crystal classes in the

crystal system of the holohedry are simply the classes of those

subgroups of a point group in the holohedry that do not act on

lattices with a larger number of free parameters.

The only exceptions from this situation are the Bravais arith-

metic crystal classes for the hexagonal and rhombohedral lattices.

Example

A point group containing a threefold rotation

but no sixfold rotation or rotoinversion acts

both on a hexagonal lattice and on a rhom-

bohedral lattice. On the other hand, point

groups containing a sixfold rotation only act

on a hexagonal but not on a rhombohedral

lattice. The geometric crystal classes of point

groups containing a threefold rotation or

rotoinversion but not a sixfold rotation or

rotoinversion form a crystal system which is

called the trigonal crystal system. The

geometric crystal classes of point groups

containing a sixfold rotation or rotoinversion

form a different crystal system, which is called

the hexagonal crystal system.

The classification of the point-group types

into crystal systems is summarized in Table 1.3.4.2.

Remark: Crystal systems can contain at most one holohedry

and in dimensions 2 and 3 it is true that every crystal system does

contain a holohedry. However, this is not true in higher dimen-

sions. The smallest counter-examples exist in dimension 5, where

two (out of 59) crystal systems do not contain any holohedry.

1.3.4.4.4. Crystal families

The classification into crystal systems has many important

applications, but it has the disadvantage that it is not compatible

with the classification into lattice systems. Space groups that

belong to the hexagonal lattice system are distributed over the

trigonal and the hexagonal crystal system. Conversely, space

groups in the trigonal crystal system belong to either the rhom-

bohedral or the hexagonal lattice system. It is therefore desirable

to define a further classification level in which the classes consist

of full crystal systems and of full lattice systems, or, equivalently,

of full geometric crystal classes and full Bravais classes. Since

crystal systems already contain only geometric crystal classes

with spaces of metric tensors of the same dimension, this can be

achieved by the following definition.

Definition

For a space group G with point group P the crystal family of G

is the union of all geometric crystal classes that contain a space

group G
0 that has the same Bravais type of lattices as G.

The crystal family of G thus consists of those geometric crystal

classes that contain a point group P
0 such that P and P

0 are

contained in a common supergroup B (which is a Bravais

group) and such that P, P0 and B all act on lattices with the

same number of free parameters.

In two-dimensional space, the crystal families coincide with the

crystal systems and in three-dimensional space only the trigonal

and hexagonal crystal system are merged into a single crystal

family, whereas all other crystal systems again form a crystal

family on their own.

Example

The trigonal and hexagonal crystal systems belong to a single

crystal family, called the hexagonal crystal family, because for

both crystal systems the number of free parameters of the

corresponding lattices is 2 and a point group of type �3m in the

trigonal crystal system is a subgroup of a point group of type

6/mmm in the hexagonal crystal system.

Table 1.3.4.3
Distribution of space-group types in the hexagonal crystal family

Crystal
system

Geometric
crystal class

Lattice system

Hexagonal Rhombohedral

Hexagonal 6/mmm P6/mmm, P6/mcc, P63=mcm, P63=mmc
�62m P�6m2, P�6c2, P�62m, P�62c
6mm P6mm, P6cc, P63cm, P63mc
622 P622, P6122, P6522, P6222, P6422, P6322
6/m P6/m, P63=m
�6 P�6
6 P6, P61, P65, P62, P64, P63

Trigonal �3m P�31m, P�31c, P�3m1, P�3c1 R�3m, R�3c
3m P3m1, P31m, P3c1, P31c R3m, R3c
32 P312, P321, P3112, P3121, P3212, P3221 R32
�3 P�3 R�3
3 P3, P31, P32 R3
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A space group in the hexagonal crystal family belongs to either

the trigonal or the hexagonal crystal system and to either the

rhombohedral or the hexagonal lattice system. A group in the

hexagonal crystal system cannot belong to the rhombohedral

lattice system, but all other combinations of crystal system and

lattice system are possible. The distribution of the space groups in

the hexagonal crystal family over these different combinations is

displayed in Table 1.3.4.3.

Remark: Up to dimension 3 it seems exceptional that a crystal

family contains more than one crystal system, since the only

instance of this phenomenon is the hexagonal crystal family

consisting of the trigonal and the hexagonal crystal systems.

However, in higher dimensions it actually becomes rare that a

crystal family consists only of a single crystal system.

For the space groups within one crystal family the same

coordinate system is usually used, which is called the conven-

tional coordinate system (for this crystal family). However,

depending on the application it may be useful to work with a

different coordinate system. To avoid confusion, it is recom-

mended to state explicitly when a coordinate system differing

from the conventional coordinate system is used.
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