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1.7.3.1. Layer symmetries in three-dimensional crystal structures .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 137

1.7.3.2. The symmetry of domain walls .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 138

PART 2. THE SPACE-GROUP TABLES .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 141

2.1. Guide to the use of the space-group tables (Th. Hahn, A. Looijenga-Vos, M. I. Aroyo, H. D. Flack,

K. Momma and P. Konstantinov) .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 142

2.1.1. Conventional descriptions of plane and space groups (Th. Hahn and A. Looijenga-Vos) .. .. .. .. .. .. .. .. .. .. .. 142

2.1.1.1. Classification of space groups .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 142

2.1.1.2. Conventional coordinate systems and cells .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 142

2.1.2. Symbols of symmetry elements (Th. Hahn and M. I. Aroyo) .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 144

2.1.3. Contents and arrangement of the tables (Th. Hahn and A. Looijenga-Vos) .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 150

2.1.3.1. General layout .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 150

2.1.3.2. Space groups with more than one description .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 150

2.1.3.3. Headline .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 151

2.1.3.4. International (Hermann–Mauguin) symbols for plane groups and space groups .. .. .. .. .. .. .. .. .. .. .. 151

2.1.3.5. Patterson symmetry (H. D. Flack) .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 152

2.1.3.6. Space-group diagrams .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 154

2.1.3.7. Origin .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 158

2.1.3.8. Asymmetric unit .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 159

2.1.3.9. Symmetry operations .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 160

2.1.3.10. Generators .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 161

2.1.3.11. Positions .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 162

2.1.3.12. Oriented site-symmetry symbols .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 163

2.1.3.13. Reflection conditions .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 163

2.1.3.14. Symmetry of special projections .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 167



x

CONTENTS

2.1.3.15. Monoclinic space groups .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 169

2.1.3.16. Crystallographic groups in one dimension .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 172

2.1.4. Computer production of the space-group tables (P. Konstantinov and K. Momma) .. .. .. .. .. .. .. .. .. .. .. .. .. 172

2.2. The 17 plane groups (two-dimensional space groups) .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 175

2.3. The 230 space groups .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 193

PART 3. ADVANCED TOPICS ON SPACE-GROUP SYMMETRY .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 697

3.1. Crystal lattices (H. Burzlaff, H. Grimmer, B. Gruber, P. M. de Wolff and H. Zimmermann) .. .. .. .. 698

3.1.1. Bases and lattices (H. Burzlaff and H. Zimmermann) .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 698

3.1.1.1. Description and transformation of bases .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 698

3.1.1.2. Lattices .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 698

3.1.1.3. Topological properties of lattices .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 698

3.1.1.4. Special bases for lattices .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 698

3.1.1.5. Remarks .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 699

3.1.2. Bravais types of lattices and other classifications (H. Burzlaff and H. Zimmermann) .. .. .. .. .. .. .. .. .. .. .. .. 700

3.1.2.1. Classifications .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 700

3.1.2.2. Description of Bravais types of lattices .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 700

3.1.2.3. Delaunay reduction and standardization .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 701

3.1.2.4. Example of Delaunay reduction and standardization of the basis .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 707

3.1.3. Reduced bases (P. M. de Wolff) .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 709

3.1.3.1. Introduction .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 709

3.1.3.2. Definition .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 709

3.1.3.3. Main conditions .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 709

3.1.3.4. Special conditions .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 710

3.1.3.5. Lattice characters .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 712

3.1.3.6. Applications .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 713

3.1.4. Further properties of lattices (B. Gruber and H. Grimmer) .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 714

3.1.4.1. Further kinds of reduced cells .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 714

3.1.4.2. Topological characterization of lattice characters .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 714

3.1.4.3. A finer division of lattices .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 715

3.1.4.4. Conventional cells .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 715

3.1.4.5. Conventional characters .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 717

3.1.4.6. Sublattices .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 718

3.2. Point groups and crystal classes (Th. Hahn, H. Klapper, U. Müller and M. I. Aroyo) .. .. .. .. .. .. .. 720

3.2.1. Crystallographic and noncrystallographic point groups (Th. Hahn and H. Klapper) .. .. .. .. .. .. .. .. .. .. .. .. 720

3.2.1.1. Introduction and definitions .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 720

3.2.1.2. Crystallographic point groups .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 721

3.2.1.3. Subgroups and supergroups of the crystallographic point groups .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 731

3.2.1.4. Noncrystallographic point groups .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 731

3.2.2. Point-group symmetry and physical properties of crystals (H. Klapper and Th. Hahn) .. .. .. .. .. .. .. .. .. .. .. 737

3.2.2.1. General restrictions on physical properties imposed by symmetry .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 737

3.2.2.2. Morphology .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 739

3.2.2.3. Etch figures .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 740

3.2.2.4. Optical properties .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 740

3.2.2.5. Pyroelectricity and ferroelectricity .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 741

3.2.2.6. Piezoelectricity .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 741

3.2.3. Tables of the crystallographic point-group types (H. Klapper, Th. Hahn and M. I. Aroyo) .. .. .. .. .. .. .. .. .. .. 742

3.2.4. Molecular symmetry (U. Müller) .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 772



xi

CONTENTS

3.2.4.1. Introduction .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 772

3.2.4.2. Definitions .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 772

3.2.4.3. Tables of the point groups .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 773

3.2.4.4. Polymeric molecules .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 774

3.2.4.5. Enantiomorphism and chirality .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 775

3.3. Space-group symbols and their use (H. Burzlaff and H. Zimmermann) .. .. .. .. .. .. .. .. .. .. .. .. 777

3.3.1. Point-group symbols .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 777

3.3.1.1. Introduction .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 777

3.3.1.2. Schoenflies symbols .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 777

3.3.1.3. Shubnikov symbols .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 777

3.3.1.4. Hermann–Mauguin symbols .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 777

3.3.2. Space-group symbols .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 779

3.3.2.1. Introduction .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 779

3.3.2.2. Schoenflies symbols .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 779

3.3.2.3. The role of translation parts in the Shubnikov and Hermann–Mauguin symbols .. .. .. .. .. .. .. .. .. .. .. 779

3.3.2.4. Shubnikov symbols .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 779

3.3.2.5. International short symbols .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 780

3.3.3. Properties of the international symbols .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 780

3.3.3.1. Derivation of the space group from the short symbol .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 780

3.3.3.2. Derivation of the full symbol from the short symbol .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 781

3.3.3.3. Non-symbolized symmetry elements .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 781

3.3.3.4. Standardization rules for short symbols .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 782

3.3.3.5. Systematic absences .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 789

3.3.3.6. Generalized symmetry .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 790

3.3.4. Changes introduced in space-group symbols since 1935 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 790

3.4. Lattice complexes (W. Fischer and E. Koch) .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 792

3.4.1. The concept of lattice complexes and limiting complexes .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 792

3.4.1.1. Introduction .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 792

3.4.1.2. Crystallographic orbits, Wyckoff positions, Wyckoff sets and types of Wyckoff set .. .. .. .. .. .. .. .. .. .. .. 792

3.4.1.3. Point configurations and lattice complexes, reference symbols .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 793

3.4.1.4. Limiting complexes and comprehensive complexes .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 794

3.4.1.5. Additional properties of lattice complexes .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 795

3.4.2. The concept of characteristic and non-characteristic orbits, comparison with the lattice-complex concept .. .. .. .. .. .. 796

3.4.2.1. Definitions .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 796

3.4.2.2. Comparison of the concepts of lattice complexes and orbit types .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 796

3.4.3. Descriptive lattice-complex symbols and the assignment of Wyckoff positions to lattice complexes .. .. .. .. .. .. .. .. 798

3.4.3.1. Descriptive symbols .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 798

3.4.3.2. Assignment of Wyckoff positions to Wyckoff sets and to lattice complexes .. .. .. .. .. .. .. .. .. .. .. .. .. 800

3.4.4. Applications of the lattice-complex concept .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 800

3.4.4.1. Geometrical properties of point configurations .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 800

3.4.4.2. Relations between crystal structures .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 823

3.4.4.3. Reflection conditions .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 823

3.4.4.4. Phase transitions .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 823

3.4.4.5. Incorrect space-group assignment .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 824

3.4.4.6. Application of descriptive lattice-complex symbols .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 824

3.4.4.7. Weissenberg complexes .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 824

3.5. Normalizers of space groups and their use in crystallography (E. Koch, W. Fischer and U. Müller) .. .. 826

3.5.1. Introduction and definitions (E. Koch, W. Fischer and U. Müller) .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 826



xii

CONTENTS

3.5.1.1. Introduction .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 826

3.5.1.2. Definitions .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 826

3.5.2. Euclidean and affine normalizers of plane groups and space groups (E. Koch, W. Fischer and U. Müller) .. .. .. .. .. 827

3.5.2.1. Euclidean normalizers of plane groups and space groups .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 827

3.5.2.2. Affine normalizers of plane groups and space groups .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 830

3.5.3. Examples of the use of normalizers (E. Koch and W. Fischer) .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 838

3.5.3.1. Introduction .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 838

3.5.3.2. Equivalent point configurations, equivalent Wyckoff positions and equivalent descriptions of crystal structures .. .. 838

3.5.3.3. Equivalent lists of structure factors .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 849

3.5.3.4. Euclidean- and affine-equivalent sub- and supergroups .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 849

3.5.3.5. Reduction of the parameter regions to be considered for geometrical studies of point configurations .. .. .. .. .. 850

3.5.4. Normalizers of point groups (E. Koch and W. Fischer) .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 851

3.6. Magnetic subperiodic groups and magnetic space groups (D. B. Litvin) .. .. .. .. .. .. .. .. .. .. .. .. .. 852

3.6.1. Introduction .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 852

3.6.2. Survey of magnetic subperiodic groups and magnetic space groups .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 852

3.6.2.1. Reduced magnetic superfamilies of magnetic groups .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 852

3.6.2.2. Survey of magnetic point groups, magnetic subperiodic groups and magnetic space groups .. .. .. .. .. .. .. .. 853

3.6.3. Tables of properties of magnetic groups .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 857

3.6.3.1. Lattice diagram .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 857

3.6.3.2. Heading .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 857

3.6.3.3. Diagrams of symmetry elements and of the general positions .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 859

3.6.3.4. Origin .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 861

3.6.3.5. Asymmetric unit .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 861

3.6.3.6. Symmetry operations .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 861

3.6.3.7. Abbreviated headline .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 862

3.6.3.8. Generators selected .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 862

3.6.3.9. General and special positions with spins (magnetic moments) .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 862

3.6.3.10. Symmetry of special projections .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 862

3.6.4. Comparison of OG and BNS magnetic group type symbols .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 863

3.6.5. Maximal subgroups of index �� 4 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 863

Author index .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 867

Subject index .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 869



xv

Foreword to the Sixth Edition

Carolyn Pratt Brock

Standardizing the space-group tables has been a priority for

crystallographers since at least 1929. The 1935 publication of the

first set of such tables predated the founding of the International

Union of Crystallography (IUCr) by 12 years. That book was one

of the two volumes of Internationale Tabellen zur Bestimmung

von Kristallstrukturen (or International Tables for the Determi-

nation of Crystal Structures). It established conventions so

fundamental to the field that it is hard to imagine the confusion

they prevented.

Major revisions of the space-group tables were published by

the IUCr in 1952 (International Tables for X-ray Crystallography

Volume I: Symmetry Groups) and 1983 (International Tables

for Crystallography Volume A: Space-Group Symmetry). The

considerably revised fifth edition of Volume A was made avail-

able online in 2006 at http://it.iucr.org/ along with the other seven

volumes of the series as International Tables Online, which

features many links within and between the electronic versions

of the volumes. In 2011 the online series was complemented

by the addition of the Symmetry Database, which provides

more extensive symmetry information than do the volumes

themselves.

Over the decades the information about space-group

symmetry has been expanded so greatly that no single volume

can contain it all. Some information about group–subgroup

relationships was present in the 1935 volume but was left out

of the 1952 edition. That information, augmented by some

group–supergroup relationships, reappeared in the 1983 book. A

full treatment of the subject was published in 2004 as the new

Volume A1: Symmetry Relations Between Space Groups. The

ability to follow electronic links back and forth between the

online versions of Volumes A and A1 makes their combination

very powerful.

In 2002 the new Volume E, Subperiodic Groups, was

published. It contains the tables for the space groups of two-

dimensional patterns that are periodic in only one dimension (the

frieze groups) and three-dimensional patterns that are periodic in

only one dimension (the rod groups) or two dimensions (the layer

groups). The distinction between the 80 layer groups and the 17

plane groups is important. The latter had been included since

1952 along with the 230 space groups because the plane groups

are so useful for teaching; they do not, however, allow for layer

thickness. Layer groups may have more symmetry elements than

are allowed for a plane group, i.e. inversion centers, a mirror

plane within the layer, and 2 and 21 axes within the layer.

The new Volume C: Mathematical, Physical and Chemical

Tables appeared in 1992 as a successor to Volume II of Inter-

nationale Tabellen zur Bestimmung von Kristallstrukturen, which

had grown to Volumes II–IV of the series International Tables for

X-ray Crystallography; Volume C includes a section on the

symmetry descriptions of commensurately and incommensu-

rately modulated structures. Since then, that field has grown so

much that the material is currently being expanded and relocated

to the next edition of Volume B, Reciprocal Space.

Symmetry descriptions of magnetic structures are still under

development. The number of magnetic groups is so large that any

volume of International Tables listing them will have to be elec-

tronic only. In 2014, as an interim step, the IUCr published an

e-book by D. B. Litvin (Magnetic Group Tables) that is available

for downloading from the IUCr website at http://www.iucr.org/

publ/978-0-9553602-2-0.

Because Volume A is usually the first volume of International

Tables encountered by non-experts, an important aim of this

edition has been to make its contents more accessible. The text

sections have been completely reorganized and new introductory

chapters have been written by authors experienced in teaching

crystallography at all levels. Many explanatory examples have

been added, and the terms and symbols used have been made

consistent throughout. Diagrams for the cubic space groups

have been redrawn so that they are easier to comprehend and

axis labels have been added for the orthorhombic groups.

Introductions to the topics covered in Volumes A1 and E, as well

as to magnetic symmetry, have been added.

Volume A continues to evolve; this new edition, the sixth, is a

major revision intended to meet the needs of scientists in the

Electronic Age: users of the online version will also have access

to the Symmetry Database, which is under continuous develop-

ment and contains far more data than can be presented in print.

The database can be used to calculate, among other things, the

symmetry operations and Wyckoff positions for nonstandard

settings in order to facilitate the tracking of symmetry relation-

ships through a series of phase transitions or chemical substitu-

tions.

We are all greatly indebted to Mois Aroyo, the Editor of this

edition, for having had the vision for this revision of Volume A

and for then having seen the project through. Getting experts to

write for a wide group of readers and to agree on consistent

terminology required erudition, tact and patience, all of which

Mois has displayed in abundance.

Those who have been involved with this sixth edition are also

indebted to all the crystallographers who contributed to previous

editions. Two of the longtime architects of Volumes A and A1,

Theo Hahn and Hans Wondratschek, recently passed on, but

not before making very significant contributions towards the

preparation of this new edition. It is an honor to acknowledge

their many contributions.

Carolyn Pratt Brock

Editor-in-Chief, International Tables for Crystallography
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Preface

Mois I. Aroyo

Like its predecessors, this new sixth edition of International

Tables for Crystallography, Volume A (referred to as ITA 6)

treats the symmetries of two- and three-dimensional space groups

and point groups in direct space. It is the reference work for

crystal symmetry and provides standard symmetry data which are

indispensable for any crystallographic or structural study. The

text and data in ITA 6 fall into three main parts: Part 1 serves as a

didactic introduction to space-group symmetry; Part 2 contains

the authoritative tabulations of plane and space groups, and a

guide to the tabulated data; and Part 3 features articles on more

specialized, advanced topics.

Apart from new topics and developments, this sixth edition

includes important modifications of the contents and of the

arrangement of the text and the tabulated material of the

previous (fifth) edition (ITA 5). The most salient feature of this

edition is the introductory material in Part 1, which offers a

homogeneous text of educational and teaching nature explaining

the different kinds of symmetry information found in the tables.

Although the first part is designed to provide a didactic intro-

duction to symmetry in crystallography, suitable for advanced

undergraduate and postgraduate students and for researchers

from other fields, it is not meant to serve as an elementary

textbook: readers are expected to have a basic understanding of

the subject. The following aspects of symmetry theory are dealt

with in Part 1:

Chapter 1.1 (Souvignier) offers a general introduction to group

theory, which provides the mathematical background for

considering symmetry properties. Starting from basic principles,

those properties of groups are discussed that are of particular

interest in crystallography. Essential topics like group–subgroup

relationships, homomorphism and isomorphism, group actions

and Wyckoff positions, conjugacy and equivalence relations or

group normalizers are treated in detail and illustrated by crys-

tallographic examples.

Chapter 1.2 (Wondratschek and Aroyo) deals with the types of

crystallographic symmetry operations and the application of the

matrix formalism in their description. The procedure for the

geometric interpretation of a matrix–column pair of a symmetry

operation is thoroughly explained and demonstrated by several

instructive examples. The last section of the chapter provides a

detailed discussion of the key concepts of a symmetry element

and its constituents, a geometric element and an element set.

Chapter 1.3 (Souvignier) presents an introduction to the

structure and classification of crystallographic space groups.

Fundamental concepts related to translation lattices, such as the

metric tensor, the unit cell and the distinction into primitive and

centred lattices are rigorously defined. The action of point groups

on translation lattices and the interplay between point groups

and lattices is discussed in detail and, in particular, the distinction

between symmorphic and non-symmorphic groups is explained.

The final part of this chapter deals with various classification

schemes of crystallographic space groups, including the classifi-

cation into space-group types, geometric crystal classes and

Bravais types of lattices.

Chapter 1.4 (Souvignier, Wondratschek, Aroyo, Chapuis and

Glazer) handles various crystallographic terms used for the

presentation of the symmetry data in the space-group tables. It

starts with a detailed introduction to Hermann–Mauguin symbols

for space, plane and crystallographic point groups, and to their

Schoenflies symbols. A description is given of the symbols used

for symmetry operations, and of their listings in the general-

position and in the symmetry-operations blocks of the space-

group tables. The Seitz notation for symmetry operations

adopted by the Commission on Crystallographic Nomenclature

as the standard convention for Seitz symbolism of the Interna-

tional Union of Crystallography [Glazer et al. (2014). Acta Cryst.

A70, 300–302] is described and the Seitz symbols for the plane-

and space-group symmetry operations are tabulated. The so-

called additional symmetry operations of space groups resulting

from the combination of the generating symmetry operations

with lattice translations are introduced and illustrated. The

classification of points in direct space into general and special

Wyckoff positions, and the study of their site-symmetry groups

and Wyckoff multiplicities are presented in detail. The final

sections of the chapter offer a helpful introduction to two-

dimensional sections and projections of space groups and their

symmetry properties.

Chapter 1.5 (Wondratschek, Aroyo, Souvignier and Chapuis)

introduces the mathematical tools necessary for performing

coordinate transformations. The transformations of crystal-

lographic data (point coordinates, space-group symmetry

operations, metric tensors of direct and reciprocal space, indices

of reflection conditions etc.) under a change of origin or a change

of the basis are discussed and demonstrated by examples. More

than 40 different types of coordinate-system transformations

representing the most frequently encountered cases are listed

and illustrated. Finally, synoptic tables of the space and plane

groups show a large selection of alternative settings and their

Hermann–Mauguin symbols covering most practical cases. It is

worth pointing out that, in contrast to ITA 5, the extended

Hermann–Mauguin symbols shown in the synoptic tables follow

their original definition according to which the characters of

the symbols indicate symmetry operations, and not symmetry

elements.

Chapter 1.6 (Shmueli, Flack and Spence) offers a detailed

presentation of methods of determining the symmetry of single-

domain crystals from diffraction data, followed by a brief

discussion of intensity statistics and their application to real

intensity data from a P�1 crystal structure. The theoretical back-

ground for the derivation of the possible general reflections is

introduced along with a brief discussion of special reflection

conditions. An extensive tabulation of general reflection condi-

tions and possible space groups is presented. The chapter

concludes with a description and illustration of symmetry deter-

mination based on electron-diffraction methods, principally using

convergent-beam electron diffraction.

Chapter 1.7 (Wondratschek, Müller, Litvin and Kopský) gives

a short outline of the content of International Tables for Crys-

tallography Volume A1, which is devoted to symmetry relations
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between space groups, and also of the content of International

Tables for Crystallography Volume E, in which two- and three-

dimensional subperiodic groups are treated. The chapter starts

with a brief introduction to the different kinds of maximal

subgroups and minimal supergroups of space groups. The rela-

tions between the Wyckoff positions for group–subgroup-

related space groups and their crystallographic applications are

discussed. Illustrative examples of the application of the rela-

tionship between a crystal space group and the subperiodic-group

symmetry of planes that transect the crystal in the determination

of the layer-group symmetry of such planes and of domain walls

are also given.

The essential data in Volume A are the diagrams and tables of

the 17 types of plane groups and of the 230 types of space groups

shown in Chapters 2.2 and 2.3 of Part 2. For each group type the

following symmetry data are presented: a headline block with the

relevant group symbols; diagrams of the symmetry elements and

of the general positions; specifications of the origin and of the

asymmetric unit; symmetry operations; generators; general and

special Wyckoff positions with multiplicities, site symmetries,

coordinate triplets and reflection conditions; and symmetries of

special projections (for the space-group types). Compared to the

tabulated symmetry data in ITA 5, two important differences are

to be noted:

(i) The subgroups and supergroups of the space groups were

listed as part of the space-group tables in the first to fifth

editions of Volume A (from 1983 to 2005), but the listing was

incomplete and lacked additional information on any basis

transformations and origin shifts that may be involved. A

complete listing of all maximal subgroups and minimal

supergroups of all plane and space groups is now given in

Volume A1 of International Tables for Crystallography, and

to avoid repetition of the data tabulated there, the maximal-

subgroup and minimal-supergroup data are omitted from the

plane-group and space-group tables of ITA 6.

(ii) To improve the visualization and to aid interpretation of the

complicated general-position diagrams of the cubic space

groups, the stereodiagrams that were used for them in the

previous editions of Volume A have been replaced by

orthogonal-projection diagrams of the type given in Inter-

nationale Tabellen zur Bestimmung von Kristallstrukturen

(1935). In the new diagrams the points of the general position

are shown as vertices of transparent polyhedra whose origins

are chosen at special points of highest site symmetry. To

provide a clearer three-dimensional style overview of the

arrangements of the polyhedra, additional general-position

diagrams in perspective projection are shown for each of the

ten space groups of the m�3m crystal class, and are included in

a new four-page arrangement of the data for each of these

space groups. The general-position diagrams of the cubic

groups in both orthogonal and perspective projections were

generated using the program VESTA [Momma & Izumi

(2011). J. Appl. Cryst. 44, 1272–1276].

There are further modifications of the symmetry data in the

space-group tables, some of which deserve special mention:

(iii) To simplify the use of the symmetry-element diagrams for

the three different projections of the orthorhombic space

groups, the corresponding origins and basis vectors are

explicitly labelled, as in the tables of the monoclinic space

groups.

(iv) Modifications to the tabulated data and diagrams of the

seven trigonal space groups of the rhombohedral lattice

system (the so-called rhombohedral space groups) include:

(a) changes in the sequence of coordinate triplets of some

special Wyckoff positions of five rhombohedral groups

[namely R�3 (148): Wyckoff positions 3d and 3e; R32 (155): 3d

and 3e; R3m (160): 3b; R�3m (166): 3d, 3e and 6h; R�3c (167):

6d] in the rhombohedral-axes settings in order to achieve

correspondence between the sequences of coordinate

triplets of the rhombohedral and hexagonal descriptions; (b)

labelling of the basis vectors (cell edges) of the primitive

rhombohedral cell in the general-position diagrams of the

rhombohedral-axes setting descriptions of all rhombohedral

space groups.

The diagrams and tables of the plane and space groups in Part

2 are preceded by a guide to their use, which includes lists of the

symbols and terms used in them. In general, this guide (Chapter

2.1) follows the presentation of the material in ITA 5 but with

several important exceptions related to the modifications of the

content and the rearrangement of the material as discussed

above. The improvements include new sections on: (i) symmetry

elements (Hahn and Aroyo), explaining the important modifi-

cations of the tables of symbols of symmetry elements; (ii)

Patterson symmetry (Flack), with tables of Patterson symmetries

and symmetries of Patterson functions for all space and plane

groups; and (iii) the general-position diagrams of the cubic

groups (Momma and Aroyo). An extended section on the

computer preparation of ITA 6 (Konstantinov and Momma)

discusses the specific features of the computer programs and

layout macros applied in the preparation of the set of diagrams

and tables for this new edition.

Advanced and more specialized topics on space-group

symmetry are treated in Part 3 of the volume. Most of the articles

are substantially revised, upgraded and extended with respect to

the versions in ITA 5. The major changes can be briefly described

as follows:

In Chapter 3.1 on crystal lattices and their properties, the

discussion of the Delaunay reduction procedure and the resulting

classification of lattices into 24 Delaunay sorts (‘Symmetrische

Sorten’) by Burzlaff and Zimmermann is supplemented by illus-

trative examples and a new table of data. Gruber and Grimmer

broaden the description of conventional cells, showing that the

conditions characterizing the conventional cells of the 14 Bravais

types of lattices are only necessary and to make them sufficient

they have to be extended to a more comprehensive system.

Chapter 3.2 on point groups and crystal classes (Hahn,

Klapper, Müller and Aroyo) is substantially revised and new

material has been added. The new developments include: (i)

graphical presentations of the 47 face and point forms; (ii)

enhancement of the tabulated Wyckoff-position data of the 10

two-dimensional and the 32 three-dimensional crystallographic

point groups by the inclusion of explicit listings of the coordinate

triplets of symmetry-equivalent points, and (iii) a new section on

molecular symmetry (Müller), which treats noncrystallographic

symmetries, the symmetry of polymeric molecules, and symmetry

aspects of chiral molecules and crystal structures.

The revised text of Chapter 3.4 (Fischer and Koch) on lattice

complexes is complemented by a thorough discussion of the

concepts of orbit types, characteristic and non-characteristic

orbits, and their comparison with the concepts of lattice

complexes and limiting complexes.
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Chapter 3.5 (Koch, Fischer and Müller) introduces and fully

tabulates for the first time the chirality-preserving Euclidean

normalizers of plane and space groups. Illustrative examples

demonstrate the importance of the chirality-preserving Eucli-

dean normalizers in the treatment of chiral crystal structures.

The new Chapter 3.6 (Litvin) on magnetic groups addresses

the revival of interest in magnetic symmetry. The magnetic

groups considered are the magnetic point groups, the two- and

three-dimensional magnetic subperiodic groups, i.e. the magnetic

frieze, rod and layer groups, and the one-, two- and three-

dimensional magnetic space groups. After an introduction to

magnetic symmetry groups, the existing nomenclatures for

magnetic space groups are discussed and compared. The struc-

ture, symbols and properties of the magnetic groups and their

maximal subgroups as listed in the electronic book by Litvin

[Magnetic Group Tables (2014). IUCr: Chester. http://www.iucr.

org/publ/978-0-9553602-2-0] are presented and illustrated.

Work on this sixth edition extended over the last eight years

and many people have contributed to the successful completion

of this complicated project. My acknowledgements should start

with H. Wondratschek (Universität, Karlsruhe) and Th. Hahn

(RWTH, Aachen), to whose memory this volume is dedicated.

Their constant interest, support and sometimes hard but always

constructive criticism were decisive during the preparation of this

volume.

It is my great pleasure to thank all the authors of ITA 6 who

have contributed new material or have updated and substantially

revised articles from the previous edition. Also, I should like to

express my gratitude to B. Gruber and V. Kopský for their

important contributions to ITA 6; unfortunately, and to my deep

regret, they both passed away in 2016. My sincere thanks go to

P. Konstantinov (INRNE, Sofia) and K. Momma (National

Museum of Nature and Science, Tsukuba) for their hard work

and the effort they invested in the computer production of the

plane- and space-group tables of the volume. This sixth edition is

a result of numerous discussions (some of them difficult and

controversial, but always stimulating and fruitful) with different

people: H. Wondratschek, B. Souvignier (Radboud University,

Nijmegen), H. Flack (University of Geneva), M. Nespolo

(Université de Lorraine, Nancy), U. Shmueli (Tel Aviv Univer-

sity), Th. Hahn, M. Glazer (Oxford University), U. Müller

(Phillipps-Universität, Marburg), D. Schwarzenbach (École

Polytechnique Fédérale, Lausanne), C. Lecomte (Université de

Lorraine, Nancy) and many others. I gratefully acknowledge their

constructive comments, helpful recommendations and improve-

ments, and I apologize if not all their specific proposals have been

included in this edition.

I am particularly grateful to my colleagues and friends J. M.

Perez-Mato, G. Madariaga and F. J. Zuñiga (Universidad del Paı́s

Vasco, Bilbao) for their constant support and understanding

during the work on ITA 6, and for motivating discussions on the

content and presentation of the crystallographic data. It is also

my great pleasure to thank the useful comments and assistance

provided by our PhD students and post-doctoral researchers,

especially E. Kroumova, C. Capillas, D. Orobengoa, G. de la Flor

and E. S. Tasci.

My particular thanks are due to C. P. Brock (University of

Kentucky, Lexington), and P. R. Strickland and N. J. Ashcroft

(IUCr Editorial Office, Chester) for their sage advice and

encouragement, especially during the difficult moments of the

work on the volume. I am deeply indebted to Nicola Ashcroft

for the careful and dedicated technical editing of this volume, for

her patient and careful checking and tireless proofreading, and

for the invaluable suggestions for improvements of the manu-

script. Nicola’s support and cooperation were essential for the

successful completion of this project.

Financial support by different institutions permitted the

production of this volume and, in particular, my acknowl-

edgements are due to the International Union of Crystallography,

Universidad del Paı́s Vasco (UPV/EHU), the Government of the

Basque Country, the Spanish Ministry of Science and Innovation,

the Spanish Ministry of Economy and Competitiveness and

FEDER funds.

Mois I. Aroyo

Editor, International Tables for Crystallography Volume A
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1.1. A general introduction to groups

B. Souvignier

In this chapter we give a general introduction to group theory,

which provides the mathematical background for considering

symmetry properties. Starting from basic principles, we discuss

those properties of groups that are of particular interest in

crystallography. To readers interested in a more elaborate

treatment of the theoretical background, the standard textbooks

by Armstrong (2010), Hill (1999) or Sternberg (2008) are

recommended; an account from the perspective of crystal-

lography can also be found in Müller (2013).

1.1.1. Introduction

Crystal structures may be investigated and classified according to

their symmetry properties. But in a strict sense, crystal structures

in nature are never perfectly symmetric, due to impurities,

structural imperfections and especially their finite extent.

Therefore, symmetry considerations deal with idealized crystal

structures that are free from impurities and structural imperfec-

tions and that extend infinitely in all directions. In the mathe-

matical model of such an idealized crystal structure, the atoms are

replaced by points in a three-dimensional point space and this

model will be called a crystal pattern.

A symmetry operation of a crystal pattern is a transformation

of three-dimensional space that preserves distances and angles

and that leaves the crystal pattern as a whole unchanged. The

symmetry of a crystal pattern is then understood as the collection

of all symmetry operations of the pattern.

The following simple statements about the symmetry opera-

tions of a crystal pattern are almost self-evident:

(a) If two symmetry operations are applied successively, the

crystal pattern is still invariant, thus the combination of the

two operations (called their composition) is again a symmetry

operation.

(b) Every symmetry operation can be reversed by simply moving

every point back to its original position.

These observations (together with the fact that leaving all points

in their position is also a symmetry operation) show that the

symmetry operations of a crystal pattern form an algebraic

structure called a group.

1.1.2. Basic properties of groups

Although groups occur in innumerable contexts, their basic

properties are very simple and are captured by the following

definition.

Definition. Let G be a set of elements on which a binary operation

is defined which assigns to each pair ðg; hÞ of elements the

composition g � h 2 G. Then G, together with the binary opera-

tion �, is called a group if the following hold:

(i) the binary operation is associative, i.e. ðg � hÞ � k ¼

g � ðh � kÞ;

(ii) there exists a unit element or identity element e 2 G such that

g � e ¼ g and e � g ¼ g for all g 2 G;

(iii) every g 2 G has an inverse element, denoted by g�1, for

which g � g�1 ¼ g�1 � g ¼ e.

In most cases, the composition of group elements is regarded

as a product and is written as g � h or even gh instead of g � h. An

exception is groups where the composition is addition, e.g. a

group of translations. In such a case, the composition a � b is

more conveniently written as aþ b.

Examples

(i) The group consisting only of the identity element e (with

e � e ¼ e) is called the trivial group.

(ii) The group 3m of all symmetries of an equilateral triangle

is a group with the composition of symmetry operations as

binary operation. The group contains six elements, namely

three reflections, two rotations and the identity element. It

is schematically displayed in Fig. 1.1.2.2.

(iii) The set Z of all integers forms a group with addition as

operation. The identity element is 0, the inverse element

for a 2 Z is �a.

(iv) The set of complex numbers with absolute value 1 forms a

circle in the complex plane, the unit circle S1. The unit

circle can be described by S1 ¼ fexpð2�i tÞ j 0 � t< 1g

and forms a group with (complex) multiplication as

operation.

(v) The set of all real n� n matrices with determinant 6¼ 0 is a

group with matrix multiplication as operation. This group

is called the general linear group and denoted by GLnðRÞ.

If a group G contains finitely many elements, it is called a finite

group and the number of its elements is called the order of the

group, denoted by jGj. A group with infinitely many elements is

called an infinite group.

For a group element g, its order is the smallest integer n> 0

such that gn ¼ e is the identity element. If there is no such

integer, then g is said to be of infinite order.

The group operation is not required to be commutative, i.e. in

general one will have gh 6¼ hg. However, a group G in which

gh ¼ hg for all g; h is said to be a commutative or abelian group.

The inverse of the product gh of two group elements is the

product of the inverses of the two elements in reversed order, i.e.

ðghÞ
�1
¼ h�1g�1.

A particularly simple type of groups is cyclic groups in

which all elements are powers of a single element g. A

finite cyclic group Cn of order n can be written as Cn ¼

fg; g2; . . . ; gn�1; gn ¼ eg. For example, the rotations that are

symmetry operations of an equilateral triangle constitute a cyclic

group of order 3.

The group Z of integers (with addition as operation) is an

example of an infinite cyclic group in which negative

powers also have to be considered, i.e. where G ¼

f. . . ; g�2; g�1; e ¼ g0; g1; g2; . . .g.
Groups of small order may be displayed by their multiplication

table, which is a square table with rows and columns indexed by

the group elements and where the intersection of the row labelled

by g and of the column labelled by h is the product gh. It follows

immediately from the invertibility of the group elements that

each row and column of the multiplication table contains every

group element precisely once.
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In crystallography these group elements, however, were the

symmetry operations of the symmetry groups, not the crystal-

lographic symmetry elements. Therefore, the IUCr Commission

on Crystallographic Nomenclature appointed an Ad-hoc

Committee on the Nomenclature of Symmetry with P. M. de

Wolff as Chairman to propose definitions for terms of crystal-

lographic symmetry and for several classifications of crystal-

lographic space groups and point groups.

In the reports of the Ad-hoc Committee, de Wolff et al. (1989)

and (1992) with Addenda, Flack et al. (2000), the results were

published. To define the term symmetry element for any symmetry

operation was more complicated than had been envisaged

previously, in particular for unusual screw and glide components.

According to the proposals of the Committee the following

procedure has been adopted (cf. also Table 1.2.3.1):

(1) No symmetry element is defined for the identity and the

(lattice) translations.

(2) For any symmetry operation of point groups and space

groups with the exception of the rotoinversions �3, �4 and �6, the

geometric element is defined as the set of fixed points (the

second column of Table 1.2.3.1) of the reduced operation, cf.

equation (1.2.2.17). For reflections and glide reflections this is

a plane; for rotations and screw rotations it is a line, for the

inversion it is a point. For the rotoinversions �3, �4 and �6 the

geometric element is a line with a point (the inversion centre)

on this line.

(3) The element set (cf. the last column of Table 1.2.3.1) is defined

as a set of operations that share the same geometric element.

The element set can consist of symmetry operations of the

same type (such as the powers of a rotation) or of different

types, e.g. by a reflection and a glide reflection through the

same plane. The defining operation (d.o.) may be any

symmetry operation from the element set that suffices to

identify the symmetry element. In most cases, the ‘simplest’

symmetry operation from the element set is chosen as the d.o.

(cf. the third column of Table 1.2.3.1). For reflections and

glide reflections the element set includes the defining

operation and all glide reflections through the same reflection

plane but with glide vectors differing by a lattice-translation

vector, i.e. the so-called coplanar equivalents. For rotations

and screw rotations of angle 2�/k the element set is the

defining operation, its 1st . . . (k � 1)th powers and all

rotations and screw rotations with screw vectors differing

from that of the defining operation by a lattice-translation

vector, known as coaxial equivalents. For a rotoinversion the

element set includes the defining operation and its inverse.

(4) The combination of the geometric element and its element

set is indicated by the name symmetry element. The names of

the symmetry elements (first column of Table 1.2.3.1) are

combinations of the name of the defining operation attached

to the name of the corresponding geometric element. Names

of symmetry elements are mirror plane, glide plane, rotation

axis, screw axis, rotoinversion axis and centre.2 This allows

such statements as this point lies on a rotation axis or these

operations belong to a glide plane.

Examples

(1) Glide and mirror planes. The element set of a glide plane

with a glide vector v consists of infinitely many different

glide reflections with glide vectors that are obtained from v

by adding any lattice-translation vector parallel to the glide

plane, including centring translations of centred cells.

(a) It is important to note that if among the infinitely

many glide reflections of the element set of the same

plane there exists one operation with zero glide vector,

then this operation is taken as the defining operation

(d.o). Consider, for example, the symmetry operation

xþ 1=2, yþ 1=2, �zþ 1=2 of Cmcm (63) [General

position ð1=2; 1=2; 0Þ block]. This is an n-glide reflec-

tion through the plane x; y; 1=4. However, the corre-

sponding symmetry element is a mirror plane, as

among the glide reflections of the element set of the

plane x; y; 1=4 one finds the reflection x; y;�zþ 1=2

[symmetry operation (6) of the General position

ð0; 0; 0Þ block].

(b) The symmetry operation xþ 5=2; y� 7=2;�zþ 3 is a

glide reflection. Its geometric element is the plane

x; y; 3=2. Its symmetry element is a glide plane in space

group Pmmn (59) because there is no lattice transla-

tion by which the glide vector can be changed to o. If,

however, the same mapping is a symmetry operation of

space group Cmmm (65), then its symmetry element is

a reflection plane because the glide vector with

components 5=2;�7=2; 0 can be cancelled through a

translation ð2þ 1
2Þaþ ð�4þ 1

2Þb, which is a lattice

translation in a C lattice. Evidently, the correct speci-

fication of the symmetry element is possible only with

respect to a specific translation lattice.

Table 1.2.3.1
Symmetry elements in point and space groups

Name of
symmetry element Geometric element Defining operation (d.o.) Operations in element set

Mirror plane Plane p Reflection through p D.o. and its coplanar equivalents†
Glide plane Plane p Glide reflection through p; 2v (not v) a lattice-

translation vector
D.o. and its coplanar equivalents†

Rotation axis Line l Rotation around l, angle 2�/N, N = 2, 3, 4 or 6 1st . . . (N � 1)th powers of d.o. and
their coaxial equivalents‡

Screw axis Line l Screw rotation around l, angle 2�/N, u = j/N times
shortest lattice translation along l, right-hand screw,
N = 2, 3, 4 or 6, j = 1, . . . , (N � 1)

1st . . . (N � 1)th powers of d.o. and
their coaxial equivalents‡

Rotoinversion axis Line l and point P on l Rotoinversion: rotation around l, angle 2�/N, followed
by inversion through P, N = 3, 4 or 6

D.o. and its inverse

Centre Point P Inversion through P D.o. only

† That is, all glide reflections through the same reflection plane, with glide vectors v differing from that of the d.o. (taken to be zero for reflections) by a lattice-translation vector. The glide planes
a, b, c, n, d and e are distinguished (cf. Table 2.1.2.1). ‡ That is, all rotations and screw rotations around the same axis l, with the same angle and sense of rotation and the same screw vector u
(zero for rotation) up to a lattice-translation vector.

2 The proposal to introduce the symbols for the symmetry elements Em, Eg, En,
Enj, En and E1 was not taken up in practice. The printed and graphical symbols of
symmetry elements used throughout the space-group tables of Part 2 are
introduced in Section 2.1.2 and listed in Tables 2.1.2.1 to 2.1.2.7.
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rotation g0: �y; xþ 1=2; z� 1=4, and one might suspect that

G
0 is a space group of the same affine type but of a different

crystallographic space-group type as G. However, this is

not the case because conjugating G by the translation

n ¼ tð0; 1=2; 0Þ conjugates g to g00 ¼ ngn�1: �yþ 1=2;
xþ 1; zþ 1=4. One sees that g00 is the composition of g0 with

the centring translation t and hence g00 belongs to G0. This

shows that conjugating G by either the reflection m or the

translation n both result in the same group G0. This can also be

concluded directly from the space-group diagrams in Fig.

1.3.4.2. Reflecting in the plane z = 0 turns the diagram on the

left into the diagram on the right, but the same effect is

obtained when the left diagram is shifted by 1
2 along either a

or b.

The groups G and G0 thus belong to the same crystallographic

space-group type because G is transformed to G0 by a shift of

the origin by 1
2 b, which is clearly an orientation-preserving

coordinate transformation.

Enantiomorphism

The 219 affine space-group types in dimension 3 result in 230

crystallographic space-group types. Since an affine type either

forms a single space-group type (in the case where the group

obtained by an orientation-reversing coordinate transformation

can also be obtained by an orientation-preserving transforma-

tion) or splits into two space-group types, this means that

there are 11 affine space-group types such that an orientation-

reversing coordinate transformation cannot be compensated by

an orientation-preserving transformation.

Groups that differ only by their handedness are closely related

to each other and share many properties. One addresses this

phenomenon by the concept of enantiomorphism.

Example

Let G be a space group of type P41 (76) generated by a fourfold

right-handed screw rotation ð4þ001; ð0; 0; 1=4ÞÞ and the transla-

tions of a primitive tetragonal lattice. Then transforming the

coordinate system by a reflection in the plane z = 0 results in a

space group G0 with fourfold left-handed screw rotation

ð4�001; ð0; 0; 1=4ÞÞ ¼ ð4þ001; ð0; 0;�1=4ÞÞ�1. The groups G and G0

are isomorphic because they are conjugate by an affine

mapping, but G0 belongs to a different space-group type,

namely P43 (78), because G does not contain a fourfold left-

handed screw rotation with translation part 1
4 c.

Definition

Two space groups G and G0 are said to form an enantiomorphic

pair if they are conjugate under an affine mapping, but not

under an orientation-preserving affine mapping.

If G is the group of isometries of some crystal pattern, then its

enantiomorphic counterpart G0 is the group of isometries of the

mirror image of this crystal pattern.

The splitting of affine space-group types of three-dimensional

space groups into pairs of crystallographic space-group types

gives rise to the following 11 enantiomorphic pairs of

space-group types: P41=P43 (76/78), P4122=P4322 (91/95),

P41212=P43212 (92/96), P31=P32 (144/145), P3112=P3212 (151/

153), P3121=P3221 (152/154), P61=P65 (169/173), P62=P64

(170/172), P6122=P6522 (178/179), P6222=P6422 (180/181),

P4332=P4132 (212/213). These groups are easily recognized by

their Hermann–Mauguin symbols, because they are the primitive

groups for which the Hermann–Mauguin symbol contains one of

the screw rotations 31, 32, 41, 43, 61, 62, 64 or 65. The groups with

fourfold screw rotations and body-centred lattices do not give

rise to enantiomorphic pairs, because in these groups the orien-

tation reversal can be compensated by an origin shift, as illu-

strated in the example above for the group of type I41.

Example

A well known example of a crystal that occurs in forms whose

symmetry is described by enantiomorphic pairs of space

groups is quartz. For low-temperature �-quartz there exists a

left-handed and a right-handed form with space groups P3121

(152) and P3221 (154), respectively. The two individuals of

opposite chirality occur together in the so-called Brazil twin of

quartz. At higher temperatures, a phase transition leads to the

higher-symmetry �-quartz forms, with space groups P6422

(181) and P6222 (180), which still form an enantiomorphic pair.

1.3.4.2. Geometric crystal classes

We recall that the point group of a space group is the group of

linear parts occurring in the space group. Once a basis for the

underlying vector space is chosen, such a point group is a group

of 3 � 3 matrices. A point group is characterized by the relative

positions between the rotation and rotoinversion axes and the

reflection planes of the operations it contains, and in this sense a

point group is independent of the chosen basis. However, a

suitable choice of basis is useful to highlight the geometric

properties of a point group.

Example

A point group of type 3m is generated by a threefold rotation

and a reflection in a plane with normal vector perpendicular to

the rotation axis. Choosing a basis a; b; c such that c is along

the rotation axis, a is perpendicular to the reflection plane and

b is the image of a under the threefold rotation (i.e. b lies in the

plane perpendicular to the rotation axis and makes an angle of

120� with a), the matrices of the threefold rotation and the

reflection with respect to this basis are

0 �1 0

1 �1 0

0 0 1

0
@

1
A and

�1 1 0

0 1 0

0 0 1

0
@

1
A:

A different useful basis is obtained by choosing a vector a0 in

the reflection plane but neither along the rotation axis nor

perpendicular to it and taking b0 and c0 to be the images of a0

under the threefold rotation and its square. Then the matrices

of the threefold rotation and the reflection with respect to the

basis a0; b0; c0 are

Figure 1.3.4.2
Space-group diagram of I41 (left) and its reflection in the plane z = 0
(right).
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1.4. Space groups and their descriptions

B. Souvignier, H. Wondratschek, M. I. Aroyo, G. Chapuis and A. M. Glazer

1.4.1. Symbols of space groups

By H. Wondratschek

1.4.1.1. Introduction

Space groups describe the symmetries of crystal patterns; the

point group of the space group is the symmetry of the macro-

scopic crystal. Both kinds of symmetry are characterized by

symbols of which there are different kinds. In this section the

space-group numbers as well as the Schoenflies symbols and the

Hermann–Mauguin symbols of the space groups and point

groups will be dealt with and compared, because these are used

throughout this volume. They are rather different in their aims.

For the Fedorov symbols, mainly used in Russian crystallographic

literature, cf. Chapter 3.3. In that chapter the Hermann–Mauguin

symbols and their use are also discussed in detail. For computer-

adapted symbols of space groups implemented in crystal-

lographic software, such as Hall symbols (Hall, 1981a,b) or

explicit symbols (Shmueli, 1984), the reader is referred to

Chapter 1.4 of International Tables for Crystallography, Volume

B (2008).

For the definition of space groups and plane groups, cf.

Chapter 1.3. The plane groups characterize the symmetries of

two-dimensional periodic arrangements, realized in sections and

projections of crystal structures or by periodic wallpapers or

tilings of planes. They are described individually and in detail

in Chapter 2.2. Groups of one- and two-dimensional periodic

arrangements embedded in two-dimensional and three-

dimensional space are called subperiodic groups. They are listed

in Vol. E of International Tables for Crystallography (2010)

(referred to as IT E) with symbols similar to the Hermann–

Mauguin symbols of plane groups and space groups, and are

related to these groups as their subgroups. The space groups

sensu stricto are the symmetries of periodic arrangements in

three-dimensional space, e.g. of normal crystals, see also Chapter

1.3. They are described individually and in detail in the space-

group tables of Chapter 2.3. In the following, if not specified

separately, both space groups and plane groups are covered by

the term space group.

The description of each space group in the tables of Chapter

2.3 starts with two headlines in which the different symbols of the

space group are listed. All these names are explained in this

section with the exception of the data for Patterson symmetry (cf.

Chapter 1.6 and Section 2.1.3.5 for explanations of Patterson

symmetry).

1.4.1.2. Space-group numbers

The space-group numbers were introduced in International

Tables for X-ray Crystallography (1952) [referred to as IT (1952)]

for plane groups (Nos. 1–17) and space groups (Nos. 1–230). They

provide a short way of specifying the type of a space group

uniquely, albeit without reference to its symmetries. They are

particularly convenient for use with computers and have been in

use since their introduction.

There are no numbers for the point groups.

1.4.1.3. Schoenflies symbols

The Schoenflies symbols were introduced by Schoenflies (1891,

1923). They describe the point-group type, also known as the

geometric crystal class or (for short) crystal class (cf. Section

1.3.4.2), of the space group geometrically. The different space-

group types within the same crystal class are denoted by a

superscript index appended to the point-group symbol.

1.4.1.3.1. Schoenflies symbols of the crystal classes

Schoenflies derived the point groups as groups of crystal-

lographic symmetry operations, but described these crystal-

lographic point groups geometrically by their representation

through axes of rotation or rotoreflection and reflection planes

(also called mirror planes), i.e. by geometric elements; for

geometric elements of symmetry elements, cf. Section 1.2.3, de

Wolff et al. (1989, 1992) and Flack et al. (2000). Rotation axes

dominate the description and planes of reflection are added when

necessary. Rotoreflection axes are also indicated when necessary.

The orientation of a reflection plane, whether horizontal, vertical

or diagonal, refers to the plane itself, not to its normal.

A coordinate basis may be chosen by the user: the basis vectors

start at the origin which is placed in front of the user. The basis

vector c points vertically upwards, the basis vectors a and b lie

Figure 1.4.1.1
Symmetry-element diagrams of some point groups [adapted from
Vainshtein (1994)]. The point groups are specified by their Schoenflies
and Hermann–Mauguin symbols. (a) C2 = 2, (b) S4 ¼

�4, (c) D3 = 32,
(d) C4h = 4/m, (e) D6h = 6/m 2/m 2/m, ( f ) C3v = 3m, (g) D3d ¼

�3 2=m, (h)
T = 23. [The cubic frame in part (h) has no crystallographic meaning: it
has been included to aid visualization of the orientation of the symmetry
elements.]
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hexagonal cell (jahexj ¼ jbhexj; chex ? ahex, bhex; � = 120�) with a

volume three times larger than that of the primitive rhombo-

hedral cell. The second presentation is given with a primitive

rhombohedral cell with arh ¼ brh ¼ crh and �rh ¼ �rh ¼ �rh. The

relation between the two types of cell is illustrated in Fig. 1.5.3.3

for the space group R3m (160). In the hexagonal cell, the coor-

dinates of the special position with site symmetry 3m are 0, 0, z,

whereas in the rhombohedral cell the same special position has

coordinates x; x; x. If we refer to the transformations of the

primitive rhombohedral cell cited in Table 1.5.1.1, we observe two

different centrings with three possible orientations R1, R2 and R3

which are related by 
120� to each other. The two

kinds of centrings, called obverse and reverse, are

illustrated in Fig. 1.5.1.6. A rotation of 180� around the

rhombohedral axis relates the obverse and reverse

descriptions of the rhombohedral lattice. The obverse

triple R cells have lattice points at 0, 0, 0; 2
3 ;

1
3 ;

1
3;

1
3 ;

2
3 ;

2
3,

whereas the reverse R cells have lattice points at

0, 0, 0; 1
3 ;

2
3 ;

1
3;

2
3 ;

1
3 ;

2
3. The triple hexagonal cell R1 of the

obverse setting (i.e. ahex ¼ arh � brh, bhex ¼ brh � crh,

chex ¼ arh þ brh þ brhÞ has been used in the description

of the rhombohedral space groups in this volume (cf.

Table 1.5.1.1 and Fig. 1.5.3.3).

The hexagonal lattice can be referred to a centred

rhombohedral cell, called the D cell (cf. Table 1.5.1.1).

The centring points of this cell are 0; 0; 0, 1
3 ;

1
3 ;

1
3 and

2
3 ;

2
3 ;

2
3. However, the D cell is rarely used in crystal-

lography.

1.5.3.2. Examples

1.5.3.2.1. Transformations between different settings
of P21 /c

In the space-group tables of this volume, the

monoclinic space group P21=c (14) is described in six

different settings: for each of the ‘unique axis b’ and

‘unique axis c’ settings there are three descriptions

specified by different cell choices (cf. Section 2.1.3.15).

The different settings are identified by the appropriate

full Hermann–Mauguin symbols. The basis transfor-

mations ðP; pÞ between the different settings are completely

specified by the linear part of the transformation, the 3 � 3

matrix P [cf. equation (1.5.1.4)], as all settings of P21=c refer to

the same origin, i.e. p ¼ o. The transformation matrices P

necessary for switching between the different descriptions of

P21=c can either be read off directly or constructed from the

transformation-matrix data listed in Table 1.5.1.1.

(A) Transformation from P121=c1 (unique axis b, cell choice 1)

to P1121=a (unique axis c, cell choice 1). The change of the

direction of the screw axis 21 indicates that the unique direction b

Figure 1.5.3.2
Two possible origin choices for the orthorhombic space group Pban (50). Origin choice 1 is on 222, whereas origin choice 2 is on 1.

Figure 1.5.3.3
General-position diagram of the space group R3m (160) showing the relation
between the hexagonal and rhombohedral axes in the obverse setting: arh =
1
3 ð2ahex þ bhex þ chexÞ, brh = 1

3 ð�ahex þ bhex þ chexÞ, crh = 1
3 ð�ahex �2bhex þ chexÞ.
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1.6. Methods of space-group determination

U. Shmueli, H. D. Flack and J. C. H. Spence

1.6.1. Overview

This chapter describes and discusses several methods of

symmetry determination of single-domain crystals. A detailed

presentation of symmetry determination from diffraction data is

given in Section 1.6.2.1, followed by a brief discussion of intensity

statistics, ideal as well as non-ideal, with an application of the

latter to real intensity data from a P1 crystal structure in Section

1.6.2.2. Several methods of retrieving symmetry information from

a solved crystal structure are then discussed (Section 1.6.2.3).

This is followed by a discussion of chemical and physical

restrictions on space-group symmetry (Section 1.6.2.4), including

some aids in symmetry determination, and by a brief section on

pitfalls in space-group determination (Section 1.6.2.5).

The following two sections deal with reflection conditions.

Section 1.6.3 presents the theoretical background of conditions

for possible general reflections and their corresponding deriva-

tion. A brief discussion of special reflection conditions is

included. Section 1.6.4 presents an extensive tabulation of

general reflection conditions and possible space groups.

Other methods of space-group determination are presented in

Section 1.6.5. Section 1.6.5.1 deals with an account of methods of

space-group determination based on resonant (also termed

‘anomalous’) scattering. Section 1.6.5.2 is a brief description of

approaches to space-group determination in macromolecular

crystallography. Section 1.6.5.3 deals with corresponding

approaches in powder-diffraction methods.

The chapter concludes with a description and illustration of

symmetry determination based on electron-diffraction methods

(Section 1.6.6), and principally focuses on convergent-beam

electron diffraction.

This chapter deals only with single crystals. A supplement

(Flack, 2015) deals with twinned crystals and those displaying a

specialized metric.

1.6.2. Symmetry determination from single-crystal studies

By U. Shmueli and H. D. Flack

1.6.2.1. Symmetry information from the diffraction pattern

The extraction of symmetry information from the diffraction

pattern takes place in three stages.

In the first stage, the unit-cell dimensions are determined and

analyzed in order to establish to which Bravais lattice the crystal

belongs. A conventional choice of lattice basis (coordinate

system) may then be chosen. The determination of the Bravais

lattice1 of the crystal is achieved by the process of cell reduction,

in which the lattice is first described by a basis leading to a

primitive unit cell, and then linear combinations of the unit-cell

vectors are taken to reduce the metric tensor (and the cell

dimensions) to a standard form. From the relationships amongst

the elements of the metric tensor, one obtains the Bravais lattice,

together with a conventional choice of the unit cell, with the aid

of standard tables. A detailed description of cell reduction is

given in Chapter 3.1 of this volume and in Part 9 of earlier

editions (e.g. Burzlaff et al., 2002). An alternative approach (Le

Page, 1982) seeks the Bravais lattice directly from the cell

dimensions by searching for all the twofold axes present. All

these operations are automated in software. Regardless of the

technique employed, at the end of the process one obtains an

indication of the Bravais lattice and a unit cell in a conventional

setting for the crystal system, primitive or centred as appropriate.

These are usually good indications which, however, must be

confirmed by an examination of the distribution of diffracted

intensities as outlined below.

In the second stage, it is the point-group symmetry of the

intensities of the Bragg reflections which is determined. We recall

that the average reduced intensity of a pair of Friedel opposites

(hkl and hkl) is given by

jFavðhÞj
2
¼ 1

2 ½jFðhÞj
2
þ jFðhÞj2�

¼
P
i;j

½ðfi þ f 0i Þðfj þ f 0j Þ þ f 00i f 00j � cos½2�hðri � rjÞ� � AðhÞ;

ð1:6:2:1Þ

where the atomic scattering factor of atom j, taking into account

resonant scattering, is given by

f j ¼ fj þ f 0j þ if 00j ;

the wavelength-dependent components f 0j and f 00j being the real

and imaginary parts, respectively, of the contribution of atom j to

the resonant scattering, h contains in the (row) matrix (1� 3) the

diffraction orders (hkl) and rj contains in the (column) matrix

(3 � 1) the coordinates ðxj; yj; zjÞ of atom j. The components of

the f j are assumed to contain implicitly the displacement para-

meters. Equation (1.6.2.1) can be found e.g. in Okaya & Pepinsky

(1955), Rossmann & Arnold (2001) and Flack & Shmueli (2007).

It follows from (1.6.2.1) that

jFavðhÞj
2
¼ jFavðhÞj

2 or AðhÞ ¼ AðhÞ;

regardless of the contribution of resonant scattering. Hence the

averaging introduces a centre of symmetry in the (averaged)

diffraction pattern.2 In fact, working with the average of Friedel

opposites, one may determine the Laue group of the diffraction

pattern by comparing the intensities of reflections which should

be symmetry equivalent under each of the Laue groups. These

are the 11 centrosymmetric point groups: 1, 2/m, mmm, 4/m,

4/mmm, 3, 3m, 6/m, 6/mmm, m3 and m3m. For example, the

reflections of which the intensities are to be compared for the

Laue group 3 are: hkl, kil, ihl, hkl, kil and ihl, where i ¼ �h� k.

An extensive listing of the indices of symmetry-related reflections

in all the point groups, including of course the Laue groups, is

1 The Bravais lattice symbol consists of two characters. The first is the first letter of
the name of a crystal family and the second is the centring mode of a conventional
unit cell. For details see Tables 3.1.2.1 and 3.1.2.2.

2 We must mention the well known Friedel’s law, which states that jFðhÞj2 = jFðhÞj2

and which is only a reasonable approximation for noncentrosymmetric crystals if
resonant scattering is negligibly small. This law holds well for centrosymmetric
crystals, independently of the resonant-scattering contribution.
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completely. Correspondingly, the seven subgroups of index 4

with the same translations as the original space group

P63=mcm are obtained via the 21 different chains of Fig.

1.7.1.1.

While all group–subgroup relations considered here are rela-

tions between individual space groups, they are valid for all space

groups of a space-group type, as the following example shows.

Example

A particular space group P121 has a subgroup P1 which is

obtained from P121 by retaining all translations but elim-

inating all rotations and combinations of rotations with

translations. For every space group of space-group type P121

such a subgroup P1 exists.

From this example it follows that the relationship exists, in an

extended sense, for the two space-group types involved. One can,

therefore, list these relationships by means of the symbols of the

space-group types.

A three-dimensional space group may have subgroups with no

translations (i.e. site-symmetry groups; cf. Section 1.4.5), or with

one- or two-dimensional lattices of translations (i.e. line groups,

frieze groups, rod groups, plane groups and layer groups), cf.

Volume E of International Tables for Crystallography, or with a

three-dimensional lattice of translations (space groups).

The number of subgroups of a space group is always infinite.

Not only the number of all subgroups but even the number of all

maximal subgroups of a given space group is infinite.

In this section, only those subgroups of a space group that are

also space groups will be considered. All maximal subgroups of

space groups are themselves space groups. To simplify the

discussion, let us suppose that we know all maximal subgroups of

a space group G. In this case, any subgroup H of G may be

obtained via a chain of maximal subgroupsH1;H2; . . . ;Hr�1;Hr

such that G ð¼ H0Þ>H1 >H2 > . . . >Hr�1 >Hr ð¼ HÞ, where

Hj is a maximal subgroup of Hj�1 of index ½ij�, with j ¼ 1; . . . ; r.

There may be many such chains between G and H. On the other

hand, all subgroups of G of a given index [i] are obtained if all

chains are constructed for which ½i1� � ½i2� � . . .� ½ir� ¼ ½i� holds.

The index [i] of a subgroup has a geometric significance. It

determines the ‘dilution’ of symmetry operations ofH compared

with those of G. The number of symmetry operations of H is 1/i

times the number of symmetry operations of G; since space

groups are infinite groups, this is to be understood in the same

way as ‘the number of even numbers is one half of the number of

all integer numbers’.

The infinite number of subgroups only occurs for a certain kind

of subgroup and can be reduced as described below. It is thus

useful to consider the different kinds of subgroups of a space

group in the way introduced by Hermann (1929):

(1) By reducing the order of the point group, i.e. by eliminating

all symmetry operations of some kind. The example

P1211�!P1 mentioned above is of this type;

(2) By loss of translations, i.e. by ‘thinning out’ the lattice of

translations. For the space group P121 mentioned above this

may happen in different ways:

(a) by suppressing all translations of the kind ð2uþ 1Þa + vb

+ wc, where u, v and w are integers. The new basis is

normally written a0 ¼ 2a, b0 ¼ b, c0 ¼ c and, hence, half

of the twofold axes have been eliminated; or

(b) by a0 ¼ a, b0 ¼ 2b, c0 ¼ c, i.e. by thinning out the trans-

lations parallel to the twofold axes; or

(c) again by b0 ¼ 2b but replacing the twofold rotation axes

by twofold screw axes.

(3) By combination of (1) and (2), e.g. by reducing the order

of the point group and by thinning out the lattice of trans-

lations.

Subgroups of the first kind, (1), are called translationengleiche

(or t-) subgroups because the set T of all (pure) translations is

retained. In case (2), the point group P and thus the crystal class

of the space group is unchanged. These subgroups are called

klassengleiche or k-subgroups. In the general case (3), both the

translation subgroup T of G and the point group P are reduced;

the subgroup has lost translations and belongs to a crystal class of

lower order: these are general subgroups.

Obviously, the general subgroups are more difficult to survey

than kinds (1) and (2). Fortunately, a theorem of Hermann (1929)

states that ifH is a proper subgroup of G, then there always exists

an intermediate group M such that G>M>H, where M is a

t-subgroup of G andH is a k-subgroup ofM. IfH<G is maximal,

then eitherM¼ G andH is a k-subgroup of G orM¼ H andH

is a t-subgroup of G. It follows that a maximal subgroup of a space

group G is either a t-subgroup or a k-subgroup of G. According to

this theorem, general subgroups can never occur among the

maximal subgroups. They can, however, be derived by a stepwise

process of linking maximal t-subgroups and maximal k-subgroups

by the chains discussed above.

1.7.1.1. Translationengleiche (or t-) subgroups of space groups

The ‘point group’ P of a given space group G is a finite group,

cf. Chapter 1.3. Hence, the number of subgroups and conse-

quently the number of maximal subgroups of P is finite. There

exist, therefore, only a finite number of maximal t-subgroups of G.

The possible t-subgroups were first listed in Internationale

Tabellen zur Bestimmung von Kristallstrukturen, Band 1 (1935);

corrections have been reported by Ascher et al. (1969). All

maximal t-subgroups are listed individually for each space group

G in IT A1 with the index, the (unconventional) Hermann–

Mauguin symbol referred to the coordinate system of G, the

space-group number and conventional Hermann–Mauguin

symbol, their general position and the transformation to the

conventional coordinate system of H. This may involve a

change of basis and an origin shift from the coordinate system

of G.

Figure 1.7.1.1
Space group P63=mcm with t-subgroups of index 2 and 4. All 21 possible
subgroup chains are displayed by lines.
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decimal value indicates that the coordinate is not fixed by

symmetry). Simultaneously, the site symmetry of the metal atom

is reduced from 4/mmm to 4mm and the z coordinate becomes

independent. In fact, the W atom is shifted from z = 0 to z = 0.066,

i.e. it is not situated in the centre of the octahedron of the

surrounding O atoms. This shift is the cause of the symmetry

reduction. There is no splitting of the Wyckoff positions in this

step of symmetry reduction, but a decrease of the site symmetries

of all atoms.

When cooled, at 1170 K HT-WO3 is transformed to �-WO3.

This involves mutual rotations of the coordination octahedra

along c and requires another step of symmetry reduction. Again,

the Wyckoff positions do not split in this step of symmetry

reduction, but the site symmetries of all atoms are further

decreased.

Upon further cooling, WO3 undergoes several other phase

transitions that involve additional distortions and, in each case,

an additional symmetry reduction to another subgroup (not

shown in Fig. 1.7.2.2). For more details see Müller (2013), Section

11.6, and references therein.

1.7.2.4. Domain structures

In the case of phase transitions and of topotactic reactions3

that involve a symmetry reduction, the kind of group–subgroup

relation determines how many kinds of domains and what

domain states can be formed. If the lower-symmetry product

results from a translationengleiche group–subgroup relation,

twinned crystals are to be expected. A klassengleiche group–

subgroup relation will cause antiphase domains. The number of

different kinds of twin or antiphase domains corresponds to the

index of the symmetry reduction. For example, the phase tran-

sition from HT-WO3 to �-WO3 involves a klassengleiche group–

subgroup relation of index 2 (k2 in Fig. 1.7.2.2); no twins will be

formed, but two kinds of antiphase domains can be expected.

1.7.2.5. Presentation of the relations between the Wyckoff
positions among group–subgroup-related space groups

Group–subgroup relations as outlined in the preceding

sections can only be correct if all atomic positions of the hetto-

types result directly from those of the aristotype.

Every group–subgroup relation between space groups entails

specific relations between their Wyckoff positions. If the index of

symmetry reduction is 2, a Wyckoff position either splits into two

symmetry-independent positions that keep the site symmetry, or

there is no splitting and the site symmetry is reduced. If the index

is 3 or higher, a Wyckoff position either splits, or its site symmetry

is reduced, or both happen. Given the relative settings and origin

choices of a space group and its subgroup, there exist unique

relations between their Wyckoff positions. Laws governing these

relations are considered in Chapter 1.5 of the second edition of

IT A1.

Volume A1, Part 3, Relations between the Wyckoff positions,

contains tables for all space groups. For every one of them, all

maximal subgroups are listed, including the corresponding

coordinate transformations. For all Wyckoff positions of a space

group the relations to the Wyckoff positions of the subgroups are

given. This includes the infinitely many maximal isomorphic

subgroups, for which general formulae are given. Isomorphic

subgroups are a special kind of klassengleiche subgroup that

belong to the same or the enantiomorphic space-group type, i.e.

group and subgroup have the same or the enantiomorphic space-

group symbol; the unit cell of the subgroup is increased by some

integral factor, which is p, p2 or p3 (p = prime number) in the case

of maximal isomorphic subgroups.

1.7.3. Relationships between space groups and subperiodic
groups

By D. B. Litvin and V. Kopský

The present volume in the series International Tables for Crys-

tallography (Volume A: Space-Group Symmetry) treats one-,

two- and three-dimensional space groups. Volume E in the series,

Subperiodic Groups (2010), treats two- and three-dimensional

subperiodic groups: frieze groups (groups in two-dimensional

space with translations in a one-dimensional subspace), rod

groups (groups in three-dimensional space with translations in a

one-dimensional subspace) and layer groups (groups in three-

dimensional space with translations in a two-dimensional

subspace). In the same way in which three-dimensional space

groups are used to classify the atomic structure of three-

dimensional crystals, the subperiodic groups are used to classify

the atomic structure of other crystalline structures, such as liquid

crystals, domain interfaces, twins and thin films.

Figure 1.7.2.2
Group–subgroup relations (Bärnighausen tree) from the ReO3 type to
two polymorphic forms of WO3. The superscript (2) after the space-
group symbols states the origin choice. + and � in the images of high-
temperature WO3 and �-WO3 indicate the direction of the z shifts of the
W atoms from the octahedron centres. Structural data for WO3 are taken
from Locherer et al. (1999).

3 A topotactic reaction is a chemical reaction in the solid state where the
orientation of the product crystal is determined by the orientation of the educt
crystal.
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4 − 1

8 ,− 1
8 ,

1
4

1
8 ,− 1

8 ,
1
4

Symmetry operations
For (0,0,0)+ set
(1) 1 (2) 2(0,0, 1

2 )
1
4 ,0,z (3) 2(0, 1

2 ,0) 0,y, 1
4 (4) 2( 1

2 ,0,0) x, 1
4 ,0

(5) 3+ x,x,x (6) 3+ x̄+ 1
2 ,x, x̄ (7) 3+ x+ 1

2 , x̄− 1
2 , x̄ (8) 3+ x̄, x̄+ 1

2 ,x
(9) 3− x,x,x (10) 3−(− 1

3 ,
1
3 ,

1
3 ) x+ 1

6 , x̄+
1
6 , x̄ (11) 3−( 1

3 ,
1
3 ,− 1

3 ) x̄+ 1
3 , x̄+

1
6 ,x (12) 3−( 1

3 ,− 1
3 ,

1
3 ) x̄− 1

6 ,x+
1
3 , x̄

(13) 2( 1
2 ,

1
2 ,0) x,x− 1

4 ,
1
8 (14) 2 x, x̄+ 3

4 ,
3
8 (15) 4−(0,0, 3

4 )
1
4 ,0,z (16) 4+(0,0, 1

4 ) − 1
4 ,

1
2 ,z

(17) 4−( 3
4 ,0,0) x, 1

4 ,0 (18) 2(0, 1
2 ,

1
2 )

1
8 ,y+

1
4 ,y (19) 2 3

8 ,y+
3
4 ,ȳ (20) 4+( 1

4 ,0,0) x,− 1
4 ,

1
2

(21) 4+(0, 1
4 ,0)

1
2 ,y,− 1

4 (22) 2( 1
2 ,0,

1
2 ) x− 1

4 ,
1
8 ,x (23) 4−(0, 3

4 ,0) 0,y, 1
4 (24) 2 x̄+ 3

4 ,
3
8 ,x

(25) 1̄ 0,0,0 (26) a x,y, 1
4 (27) c x, 1

4 ,z (28) b 1
4 ,y,z

(29) 3̄+ x,x,x; 0,0,0 (30) 3̄+ x̄− 1
2 ,x+1, x̄; 0, 1

2 ,
1
2 (31) 3̄+ x+ 1

2 , x̄+
1
2 , x̄; 1

2 ,
1
2 ,0 (32) 3̄+ x̄+1, x̄+ 1

2 ,x; 1
2 ,0,

1
2

(33) 3̄− x,x,x; 0,0,0 (34) 3̄− x+ 1
2 , x̄− 1

2 , x̄; 0,0, 1
2 (35) 3̄− x̄, x̄+ 1

2 ,x; 0, 1
2 ,0 (36) 3̄− x̄+ 1

2 ,x, x̄; 1
2 ,0,0

(37) d(− 1
4 ,

1
4 ,

3
4 ) x+ 1

2 , x̄,z (38) d( 1
4 ,

1
4 ,

1
4 ) x,x,z (39) 4̄− 0, 3

4 ,z; 0, 3
4 ,

1
8 (40) 4̄+ 1

2 ,− 1
4 ,z; 1

2 ,− 1
4 ,

3
8

(41) 4̄− x,0, 3
4 ; 1

8 ,0,
3
4 (42) d( 3

4 ,− 1
4 ,

1
4 ) x,y+ 1

2 ,ȳ (43) d( 1
4 ,

1
4 ,

1
4 ) x,y,y (44) 4̄+ x, 1

2 ,− 1
4 ; 3

8 ,
1
2 ,− 1

4

(45) 4̄+ − 1
4 ,y,

1
2 ; − 1

4 ,
3
8 ,

1
2 (46) d( 1

4 ,
3
4 ,− 1

4 ) x̄+ 1
2 ,y,x (47) 4̄− 3

4 ,y,0; 3
4 ,

1
8 ,0 (48) d( 1

4 ,
1
4 ,

1
4 ) x,y,x

For ( 1
2 ,

1
2 ,

1
2 )+ set

(1) t( 1
2 ,

1
2 ,

1
2 ) (2) 2 0, 1

4 ,z (3) 2 1
4 ,y,0 (4) 2 x,0, 1

4

(5) 3+( 1
2 ,

1
2 ,

1
2 ) x,x,x (6) 3+( 1

6 ,− 1
6 ,

1
6 ) x̄− 1

6 ,x+
1
3 , x̄ (7) 3+(− 1

6 ,
1
6 ,

1
6 ) x+ 1

6 , x̄+
1
6 , x̄ (8) 3+( 1

6 ,
1
6 ,− 1

6 ) x̄+ 1
3 , x̄+

1
6 ,x

(9) 3−( 1
2 ,

1
2 ,

1
2 ) x,x,x (10) 3−( 1

6 ,− 1
6 ,− 1

6 ) x+ 1
6 , x̄+

1
6 , x̄ (11) 3−(− 1

6 ,− 1
6 ,

1
6 ) x̄+ 1

3 , x̄+
1
6 ,x (12) 3−(− 1

6 ,
1
6 ,− 1

6 ) x̄− 1
6 ,x+

1
3 , x̄

(13) 2( 1
2 ,

1
2 ,0) x,x+ 1

4 ,
3
8 (14) 2 x, x̄+ 1

4 ,
1
8 (15) 4−(0,0, 1

4 )
3
4 ,0,z (16) 4+(0,0, 3

4 )
1
4 ,

1
2 ,z

(17) 4−( 1
4 ,0,0) x, 3

4 ,0 (18) 2(0, 1
2 ,

1
2 )

3
8 ,y− 1

4 ,y (19) 2 1
8 ,y+

1
4 ,ȳ (20) 4+( 3

4 ,0,0) x, 1
4 ,

1
2

(21) 4+(0, 3
4 ,0)

1
2 ,y,

1
4 (22) 2( 1

2 ,0,
1
2 ) x+ 1

4 ,
3
8 ,x (23) 4−(0, 1

4 ,0) 0,y, 3
4 (24) 2 x̄+ 1

4 ,
1
8 ,x

(25) 1̄ 1
4 ,

1
4 ,

1
4 (26) b x,y,0 (27) a x,0,z (28) c 0,y,z

(29) 3̄+ x,x,x; 1
4 ,

1
4 ,

1
4 (30) 3̄+ x̄− 1

2 ,x, x̄; − 1
4 ,− 1

4 ,
1
4 (31) 3̄+ x− 1

2 , x̄+
1
2 , x̄; − 1

4 ,
1
4 ,− 1

4 (32) 3̄+ x̄, x̄− 1
2 ,x; 1

4 ,− 1
4 ,− 1

4

(33) 3̄− x,x,x; 1
4 ,

1
4 ,

1
4 (34) 3̄− x+ 1

2 , x̄− 1
2 , x̄; 1

4 ,− 1
4 ,

1
4 (35) 3̄− x̄, x̄+ 1

2 ,x; − 1
4 ,

1
4 ,

1
4 (36) 3̄− x̄+ 1

2 ,x, x̄; 1
4 ,

1
4 ,− 1

4

(37) d( 1
4 ,− 1

4 ,
1
4 ) x+ 1

2 , x̄,z (38) d( 3
4 ,

3
4 ,

3
4 ) x,x,z (39) 4̄− 0, 1

4 ,z; 0, 1
4 ,

3
8 (40) 4̄+ 1

2 ,
1
4 ,z; 1

2 ,
1
4 ,

1
8

(41) 4̄− x,0, 1
4 ; 3

8 ,0,
1
4 (42) d( 1

4 ,
1
4 ,− 1

4 ) x,y+ 1
2 ,ȳ (43) d( 3

4 ,
3
4 ,

3
4 ) x,y,y (44) 4̄+ x, 1

2 ,
1
4 ; 1

8 ,
1
2 ,

1
4

(45) 4̄+ 1
4 ,y,

1
2 ; 1

4 ,
1
8 ,

1
2 (46) d(− 1

4 ,
1
4 ,

1
4 ) x̄+ 1

2 ,y,x (47) 4̄− 1
4 ,y,0; 1

4 ,
3
8 ,0 (48) d( 3

4 ,
3
4 ,

3
4 ) x,y,x
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Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t( 1
2 ,

1
2 ,

1
2 ); (2); (3); (5); (13); (25)

Positions
Multiplicity,
Wyckoff letter,
Site symmetry

Coordinates

(0,0,0)+ ( 1
2 ,

1
2 ,

1
2 )+

Reflection conditions

h,k, l permutable
General:

96 h 1 (1) x,y,z (2) x̄+ 1
2 , ȳ,z+

1
2 (3) x̄,y+ 1

2 , z̄+
1
2 (4) x+ 1

2 , ȳ+
1
2 , z̄

(5) z,x,y (6) z+ 1
2 , x̄+

1
2 , ȳ (7) z̄+ 1

2 , x̄,y+
1
2 (8) z̄,x+ 1

2 , ȳ+
1
2

(9) y,z,x (10) ȳ,z+ 1
2 , x̄+

1
2 (11) y+ 1

2 , z̄+
1
2 , x̄ (12) ȳ+ 1

2 , z̄,x+
1
2

(13) y+ 3
4 ,x+

1
4 , z̄+

1
4 (14) ȳ+ 3

4 , x̄+
3
4 , z̄+

3
4 (15) y+ 1

4 , x̄+
1
4 ,z+

3
4 (16) ȳ+ 1

4 ,x+
3
4 ,z+

1
4

(17) x+ 3
4 ,z+

1
4 , ȳ+

1
4 (18) x̄+ 1

4 ,z+
3
4 ,y+

1
4 (19) x̄+ 3

4 , z̄+
3
4 , ȳ+

3
4 (20) x+ 1

4 , z̄+
1
4 ,y+

3
4

(21) z+ 3
4 ,y+

1
4 , x̄+

1
4 (22) z+ 1

4 , ȳ+
1
4 ,x+

3
4 (23) z̄+ 1

4 ,y+
3
4 ,x+

1
4 (24) z̄+ 3

4 , ȳ+
3
4 , x̄+

3
4

(25) x̄, ȳ, z̄ (26) x+ 1
2 ,y, z̄+

1
2 (27) x, ȳ+ 1

2 ,z+
1
2 (28) x̄+ 1

2 ,y+
1
2 ,z

(29) z̄, x̄, ȳ (30) z̄+ 1
2 ,x+

1
2 ,y (31) z+ 1

2 ,x, ȳ+
1
2 (32) z, x̄+ 1

2 ,y+
1
2

(33) ȳ, z̄, x̄ (34) y, z̄+ 1
2 ,x+

1
2 (35) ȳ+ 1

2 ,z+
1
2 ,x (36) y+ 1

2 ,z, x̄+
1
2

(37) ȳ+ 1
4 , x̄+

3
4 ,z+

3
4 (38) y+ 1

4 ,x+
1
4 ,z+

1
4 (39) ȳ+ 3

4 ,x+
3
4 , z̄+

1
4 (40) y+ 3

4 , x̄+
1
4 , z̄+

3
4

(41) x̄+ 1
4 , z̄+

3
4 ,y+

3
4 (42) x+ 3

4 , z̄+
1
4 , ȳ+

3
4 (43) x+ 1

4 ,z+
1
4 ,y+

1
4 (44) x̄+ 3

4 ,z+
3
4 , ȳ+

1
4

(45) z̄+ 1
4 , ȳ+

3
4 ,x+

3
4 (46) z̄+ 3

4 ,y+
3
4 , x̄+

1
4 (47) z+ 3

4 , ȳ+
1
4 , x̄+

3
4 (48) z+ 1

4 ,y+
1
4 ,x+

1
4

hkl: h+ k+ l = 2n
0kl: k, l = 2n
hhl: 2h+ l = 4n
h00: h = 4n

Special: as above, plus

48 g . . 2 1
8 ,y, ȳ+

1
4

3
8 , ȳ, ȳ+

3
4

7
8 ,y+

1
2 ,y+

1
4

5
8 , ȳ+

1
2 ,y+

3
4

ȳ+ 1
4 ,

1
8 ,y ȳ+ 3

4 ,
3
8 , ȳ y+ 1

4 ,
7
8 ,y+

1
2 y+ 3

4 ,
5
8 , ȳ+

1
2

y, ȳ+ 1
4 ,

1
8 ȳ, ȳ+ 3

4 ,
3
8 y+ 1

2 ,y+
1
4 ,

7
8 ȳ+ 1

2 ,y+
3
4 ,

5
8

7
8 , ȳ,y+

3
4

5
8 ,y,y+

1
4

1
8 , ȳ+

1
2 , ȳ+

3
4

3
8 ,y+

1
2 , ȳ+

1
4

y+ 3
4 ,

7
8 , ȳ y+ 1

4 ,
5
8 ,y ȳ+ 3

4 ,
1
8 , ȳ+

1
2 ȳ+ 1

4 ,
3
8 ,y+

1
2

ȳ,y+ 3
4 ,

7
8 y,y+ 1

4 ,
5
8 ȳ+ 1

2 , ȳ+
3
4 ,

1
8 y+ 1

2 , ȳ+
1
4 ,

3
8

hkl: h = 2n+1
or h = 4n

48 f 2 . . x,0, 1
4 x̄+ 1

2 ,0,
3
4

1
4 ,x,0

3
4 , x̄+

1
2 ,0 0, 1

4 ,x 0, 3
4 , x̄+

1
2

3
4 ,x+

1
4 ,0

3
4 , x̄+

3
4 ,

1
2 x+ 3

4 ,
1
2 ,

1
4 x̄+ 1

4 ,0,
1
4 0, 1

4 , x̄+
1
4

1
2 ,

1
4 ,x+

3
4

x̄,0, 3
4 x+ 1

2 ,0,
1
4

3
4 , x̄,0

1
4 ,x+

1
2 ,0 0, 3

4 , x̄ 0, 1
4 ,x+

1
2

1
4 , x̄+

3
4 ,0

1
4 ,x+

1
4 ,

1
2 x̄+ 1

4 ,
1
2 ,

3
4 x+ 3

4 ,0,
3
4 0, 3

4 ,x+
3
4

1
2 ,

3
4 , x̄+

1
4

hkl: 2h+ l = 4n

32 e . 3 . x,x,x x̄+ 1
2 , x̄,x+

1
2 x̄,x+ 1

2 , x̄+
1
2 x+ 1

2 , x̄+
1
2 , x̄

x+ 3
4 ,x+

1
4 , x̄+

1
4 x̄+ 3

4 , x̄+
3
4 , x̄+

3
4 x+ 1

4 , x̄+
1
4 ,x+

3
4 x̄+ 1

4 ,x+
3
4 ,x+

1
4

x̄, x̄, x̄ x+ 1
2 ,x, x̄+

1
2 x, x̄+ 1

2 ,x+
1
2 x̄+ 1

2 ,x+
1
2 ,x

x̄+ 1
4 , x̄+

3
4 ,x+

3
4 x+ 1

4 ,x+
1
4 ,x+

1
4 x̄+ 3

4 ,x+
3
4 , x̄+

1
4 x+ 3

4 , x̄+
1
4 , x̄+

3
4

hkl: h = 2n+1
or h+ k+ l = 4n

24 d 4̄ . . 3
8 ,0,

1
4

1
8 ,0,

3
4

1
4 ,

3
8 ,0

3
4 ,

1
8 ,0 0, 1

4 ,
3
8 0, 3

4 ,
1
8

3
4 ,

5
8 ,0

3
4 ,

3
8 ,

1
2

1
8 ,

1
2 ,

1
4

7
8 ,0,

1
4 0, 1

4 ,
7
8

1
2 ,

1
4 ,

1
8

24 c 2 . 22 1
8 ,0,

1
4

3
8 ,0,

3
4

1
4 ,

1
8 ,0

3
4 ,

3
8 ,0 0, 1

4 ,
1
8 0, 3

4 ,
3
8

7
8 ,0,

3
4

5
8 ,0,

1
4

3
4 ,

7
8 ,0

1
4 ,

5
8 ,0 0, 3

4 ,
7
8 0, 1

4 ,
5
8

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

hkl: h,k = 2n, h+ k+ l = 4n
or h,k = 2n+1, l = 4n+2
or h = 8n, k = 8n+4 and

h+ k+ l = 4n+2

16 b . 3 2 1
8 ,

1
8 ,

1
8

3
8 ,

7
8 ,

5
8

7
8 ,

5
8 ,

3
8

5
8 ,

3
8 ,

7
8

7
8 ,

7
8 ,

7
8

5
8 ,

1
8 ,

3
8

1
8 ,

3
8 ,

5
8

3
8 ,

5
8 ,

1
8 hkl: h,k = 2n+1, l = 4n+2

or h,k, l = 4n

16 a . 3̄ . 0,0,0 1
2 ,0,

1
2 0, 1

2 ,
1
2

1
2 ,

1
2 ,0

3
4 ,

1
4 ,

1
4

3
4 ,

3
4 ,

3
4

1
4 ,

1
4 ,

3
4

1
4 ,

3
4 ,

1
4 hkl: h,k = 2n, h+ k+ l = 4n
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Symmetry of special projections
Along [001] p4mm
a′ = 1

2 a b′ = 1
2 b

Origin at 1
4 ,0,z

Along [111] p6mm
a′ = 1

3 (2a−b− c) b′ = 1
3 (−a+2b− c)

Origin at x,x,x

Along [110] c2mm
a′ = 1

2 (−a+b) b′ = 1
2 c

Origin at x,x+ 1
4 ,

1
8

695



707

3.1. CRYSTAL LATTICES

In some cases, different Selling patterns are given for one

‘Symmetrische Sorte’. This procedure avoids a final reduction step

(cf. Patterson & Love, 1957) and simplifies the computational

treatment significantly. The number of ‘Symmetrische Sorten’,

and thus the number of transformations which have to be

applied, is smaller than the number of lattice characters

according to Niggli. Note that the introduction of reduced bases

using shortest lattice vectors causes complications in more than

three dimensions (cf. Schwarzenberger, 1980).

3.1.2.4. Example of Delaunay reduction and standardization of
the basis

Let the basis B = (b1, b2, b3) given by the scalar products

g11 g22 g33

g23 g31 g12

� �
¼

6 8 8

4 2 3

� �

or by b1 = 2.449 (
ffiffiffi
6
p

), b2 = b3 = 2.828 (
ffiffiffi
8
p

) (in arbitrary units), �23

= 60� (cos �23 = 1
2), �13 = 73.22� (cos�13 ¼

ffiffiffi
3
p
=6), �12 = 64.34�

(cos �12 ¼
ffiffiffi
3
p
=4).

The aim is to find a standardized basis of shortest lattice

vectors using Delaunay reduction. This example, given by B.

Gruber (cf. Burzlaff & Zimmermann, 1985), shows the standar-

dization problems remaining after the reduction.

The general reduction step can be described using Selling four

flats. The corners are designated by the vectors a, b, c, d =�a� b

� c. The edges are marked by the scalar products among these

vectors. If positive scalar products can be found, choose the

largest: a � b (indicated as ab in Fig. 3.1.2.2a). The reduction

transformation is: aD = a, bD = �b, cD = c + b, dD = d + b (see Fig.

3.1.2.2a). In this example, this results in the Selling four flat

shown in Fig. 3.1.2.2(b). The next step, shown in Fig. 3.1.2.2(c),

uses the (maximal) positive scalar product for further reduction.

Finally, using b2 + b3 + b4 = �b1 we get the result shown in Fig.

3.1.2.2(d).

The complete procedure can be expressed in a table, as shown

in Table 3.1.2.4. Each pair of lines contains the starting basis and

Delaunay–
Voronoi
type

Metric
conditions

Selling
tetrahedron

Projections
along
symmetry
directions Dirichlet domain in the unit cell

Transformation
to the
conventional
cell

M5 V3 b2 ¼ r2 � q2
�1 0 1

�1 1 0

�2 0 0

0
@

1
Am(AC)I

2

m

v

A: b2 ¼ f 2 � a2 C: b2 ¼ f 2 � c2 I: b2 ¼ c2 � a2
1 0 �1

1 �1 0

0 �1 �1

0
@

1
A

M6 V4 — 1 0 0

0 1 0

0 0 1

0
@

1
AmP

2

m

s

T1 V1 — 1 0 0

0 1 0

0 0 1

0
@

1
AaP

1

T2 V2 a � b ¼ 0 1 0 0

0 1 0

0 0 1

0
@

1
AaP

1

T3 V3 a � b ¼ 0 1 0 0

0 1 0

0 0 1

0
@

1
AaP ðaþ bþ cÞ � c

1 = 0

Table 3.1.2.3 (continued)
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3.2. POINT GROUPS AND CRYSTAL CLASSES

Table 3.2.3.2
The 32 three-dimensional crystallographic point groups

The point groups are listed in blocks according to crystal system and are specified by their short and (if different) full Hermann–Mauguin symbols and their Schoenflies
symbols. For each point group, the stereographic projections show (on the left) the general position and (on the right) the symmetry elements.
The list of Wyckoff positions includes:

Columns 1 to 4: multiplicity, Wyckoff letter, oriented site-symmetry symbol, coordinate triplets;
Under the stereographic projections: face forms (in roman type) and point forms (in italics); if there is more than one entry, subsequent entries refer to limiting
(noncharacteristic) forms;
Last column: Miller indices of equivalent faces [for trigonal and hexagonal groups, Bravais–Miller indices (hkil) are used if referred to hexagonal axes].

TRICLINIC SYSTEM

1 C1

1 a 1 x; y; z Pedion or monohedron (hkl)

Single point

Symmetry of special projections

Along any direction

1

�1 Ci

2 a 1 x; y; z �x; �y; �z Pinacoid or parallelohedron ðhklÞ ð �h �k�lÞ

Line segment through origin

1 o �1 0; 0; 0 Point in origin

Symmetry of special projections

Along any direction

2

MONOCLINIC SYSTEM

2 C2
unique axis b

2 b 1 x; y; z �x; y; �z Sphenoid or dihedron ðhklÞ ð �hk�lÞ

Line segment

Pinacoid or parallelohedron ðh0lÞ ð �h0�lÞ

Line segment through origin

1 a 2 0; y; 0 Pedion or monohedron ð010Þ or ð0�10Þ

Single point

Symmetry of special projections

Along [100] Along [010] Along [001]

m 2 m

2 C2
unique axis c

2 b 1 x; y; z �x; �y; z Sphenoid or dihedron ðhklÞ ð �h �klÞ

Line segment

Pinacoid or parallelohedron ðhk0Þ ð �h �k0Þ

Line segment through origin

1 a 2 0; 0; z Pedion or monohedron ð001Þ or ð00�1Þ

Single point

Symmetry of special projections

Along [100] Along [010] Along [001]

m m 2
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3. ADVANCED TOPICS ON SPACE-GROUP SYMMETRY

3.2.4. Molecular symmetry

By U. Müller

3.2.4.1. Introduction

In this section, by ‘molecule’ we mean a separate set of closely

bonded atoms; this definition includes molecular ions. The term

‘molecule’ as used here also includes molecular aggregates held

together by hydrogen bonds or other important molecular

interactions. We consider only the symmetry of isolated mole-

cules, i.e. we act as if the molecule had no surroundings or a

completely isotropic surrounding (even if it is a molecular ion

that in reality has nearby counter ions), and we do not consider

any vibrational distortions. Of course, in crystals the surroundings

are not isotropic; their anisotropy is reflected in the site symmetry

of the molecule. The site symmetry of the molecule in the crystal

may not be higher than the molecular symmetry, and, in most

cases, it is lower, i.e. it is a subgroup of the point group of the

isolated molecule. From experience we know that the actual

deviation of the molecular symmetry in crystals as compared to

the symmetry in an isotropic surrounding is usually unimportant;

generally, only conformation angles are affected significantly.

According to the statistical data for organic molecules (mole-

cules having C—C or C—H bonds), the point group 1 is the most

frequent (70.9%), followed by 1 (8.1%), 2 (7.5%), m (6.5%), 2/m

(2.1%) and mm2 (1.7%); all others are <1% (Pidcock et al.,

2003). In crystals, the site symmetry of organic molecules is 1 with

a frequency of 80.7%, followed by 1 (�11%). Centrosymmetric

molecules (1 and higher centrosymmetric point groups) almost

always crystallize in centrosymmetric space groups (99%) and lie

on centrosymmetric sites (1 and higher) with a frequency of 97%

(Pidcock et al., 2003; Müller, 1978).

Since all real molecules are objects of three-dimensional

space, we consider only three-dimensional symmetry groups.

This choice also applies to so-called ‘zero-’, ‘one-’ and ‘two-

dimensional’ molecules; these misleading terms are sometimes

used for, respectively, finite molecules, polymeric chain molecules

and polymeric layer molecules. For chemists who use these terms,

the ‘dimensionality’ mostly refers to the linkage by covalent

bonds; for physicists, ‘dimensionality’ may refer to some other

anisotropic property, e.g. conductivity.

3.2.4.2. Definitions

The set of all isometries that map a molecule onto itself is its

molecular symmetry. Its symmetry operations form a group which

is the point group PM of the molecule.

The group PM is finite if the molecule consists of a finite

number of atoms and is mapped onto itself by a finite number of

isometries. However, the group is infinite for linear molecules

like HCl and CO2, because of the infinite order of the molecular

axis. For the symmetry of polymeric molecules see below (Section

3.2.4.4).

All symmetry operations of a finite molecule leave its centre of

mass unchanged. If this point is chosen as the origin, all symmetry

operations can be represented by 3 � 3 matrices W i , referred to

some predefined coordinate system.

According to their equivalence, point groups are classified into

point-group types. Two point groups PM1 and PM2 belong to the

same point-group type if, after selection of appropriate coordi-

nate systems, the matrix groups of PM1 and PM2 coincide. Why

point groups and point-group types have to be distinguished is

shown in the following example of metaldehyde; however, for

most molecules the distinction is usually of only minor impor-

tance.

In Section 1.1.7 a general definition is given for an orbit under

the action of a group. Applied to molecules, we formulate this

definition in the following way:

The set of points symmetry-equivalent to a point X of a

molecule is the orbit of X under PM.

A point X in a molecule has a definite site symmetry SX (site-

symmetry group). It consists of all those symmetry operations of

the point group PM which leave the point fixed. The site-

symmetry group SX is always a subgroup of the point group of

the molecule: SX � PM.

A point X is on a general position if its site symmetry SX

consists of nothing more than the identity, SX ¼ I . Otherwise, if

SX > I , the point is on a special position.

The multiplicity of a point X in a molecule is equal to the

number of points which are symmetry-equivalent to this point, i.e.

the number of points in its orbit. If the point is on a general

position, its multiplicity is equal to the group order jPMj. If jSX j is

the order of the site symmetry of a point on a special position, the

multiplicity of X is jPMj=jSX j.

Two points X and Y of a molecule belong to the same Wyckoff

position if the site-symmetry groups SX and SY are conjugate

subgroups of PM, i.e. if SX and SY are symmetry-equivalent

under a symmetry operation of PM; expressed mathematically,

this is SY ¼ gSX g�1 with g 2 PM. The special case SX ¼ SY is

included.

Example

A molecule of metaldehyde [tetrameric acetaldehyde, 2,4,6,8-

tetramethyl-1,3,5,7-tetraoxacyclooctane, (H3CCHO)4] has the

point group PM ¼ 4mm (C4v) of order jPMj ¼ 8, consisting of

the symmetry operations 1, 4+, 2, 4�, m10, m01, m11 and m1�1.

The atoms C11 . . . C14, the four H atoms bonded to them (not

labelled in the figure and largely hidden), C21 . . . C24 and

H21 . . . H24 make up four sets of symmetry-equivalent atoms

and thus form four orbits. All these atoms are placed on the

mirror planes m10 and m01; their site-symmetry groups are

f1;m10g or f1;m01g. f1;m10g and f1;m01g are conjugate sub-

groups of 4mm because they are equivalent by a fourfold

rotation, i.e. f1;m01g ¼ 4þf1;m10g4
�. All of these atoms

belong to one Wyckoff position, labelled 4c in Table 3.2.3.2.

The symmetry-equivalent atoms O1 . . . O4 make up another

orbit which belongs to a different Wyckoff position, labelled

4b, with the conjugate site symmetries f1;m11g and f1;m1�1g.

Although the site symmetries of both 4b and 4c consist of the

identity and one reflection, they are not conjugate because

there is no symmetry operation of 4mm that relates them. The

subgroups f1;m10g and f1;m11g are different point groups of

the same point-group type.
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distance between any two symmetry-equivalent points

belonging to Pmma e cannot become shorter than the

minimum of 1
2 a, b and c.

A lattice complex refers either to Wyckoff positions exclu-

sively of the first or exclusively of the second kind. Most lattice

complexes are related to Wyckoff positions of the first kind.

There exist, however, 67 lattice complexes without point

configurations with infinitesimally short distances between

symmetry-related points [cf. Hauptgitter (Weissenberg, 1925)].

These lattice complexes were called Weissenberg complexes by

Fischer et al. (1973). The 36 invariant lattice complexes are trivial

examples of Weissenberg complexes. The other 31 Weissenberg

complexes with degrees of freedom (24 univariant, 6 bivariant, 1

trivariant) are compiled in Table 3.4.1.1. They have the following

common property: each Weissenberg complex contains at least

two invariant limiting complexes belonging to the same crystal

family (see also Section 3.4.3.1.3).

Example

The Weissenberg complex Pmma 2e 1
4 ; 0; z is a comprehensive

complex of Pmmm a and of Cmmm a. Within the characteristic

Wyckoff position, 1
4 ; 0; 0 refers to Pmmm a and 1

4 ; 0; 1
4 to

Cmmm a.

Apart from the seven invariant plane lattice complexes, there

exists only one further Weissenberg complex within the plane

groups, namely the univariant rectangular complex p2mg c.

3.4.2. The concept of characteristic and non-characteristic
orbits, comparison with the lattice-complex concept

3.4.2.1. Definitions

The generating space group of any crystallographic orbit may

be compared with the eigensymmetry of its point configuration. If

both groups coincide, the orbit is called a characteristic crystal-

lographic orbit, otherwise it is named a non-characteristic crys-

tallographic orbit (Wondratschek, 1976; Engel et al., 1984; see also

Section 1.1.7). If the eigensymmetry group contains additional

translations in comparison with those of the generating space

group, the term extraordinary orbit is used (cf. also Matsumoto &

Wondratschek, 1979). Each class of configuration-equivalent

orbits contains exactly one characteristic crystallographic orbit.

The set of all point configurations in E3 can be divided into 402

equivalence classes by means of their eigensymmetry: two point

configurations belong to the same symmetry type of point

configuration if and only if their characteristic crystallographic

orbits belong to the same type of Wyckoff set.

As each crystallographic orbit is uniquely related to a certain

point configuration, each equivalence relationship on the set of

all point configurations also implies an equivalence relationship

on the set of all crystallographic orbits: two crystallographic

orbits are assigned to the same orbit type (cf. also Engel et al.,

1984) if and only if the corresponding point configurations belong

to the same symmetry type.

In contrast to lattice complexes, neither symmetry types of

point configuration nor orbit types can be used to define

equivalence relations on Wyckoff positions, Wyckoff sets or types

of Wyckoff set. Two crystallographic orbits coming from the same

Wyckoff position belong to different orbit types, if – owing to

special coordinate values – they differ in the eigensymmetry of

their point configurations. Furthermore, two crystallographic

orbits with the same coordinate description, but stemming from

different space groups of the same type, may belong to different

orbit types because of a specialization of the metrical parameters.

Example

The eigensymmetry of orbits from Wyckoff position

P�43m 4e x; x; x with x ¼ 1
4 or x ¼ 3

4 is enhanced to Fm�3m 4a; b

and hence they belong to a different orbit type to those with

x 6¼ 1
4 ;

3
4.

Example

In general, an orbit belonging to the type of Wyckoff set

I4/m 2a, b corresponds to a point configuration with eigen-

symmetry I4/mmm 2a, b. If, however, the space group I4/m has

specialized metrical parameters, e.g. c/a = 1 or c/a = 21/2, then

the eigensymmetry of the point configuration is enhanced to

Im�3m 2a or Fm�3m 4a; b, respectively.

3.4.2.2. Comparison of the concepts of lattice complexes and orbit
types

It is the common intention of the lattice-complex and the orbit-

type concepts to subdivide the point configurations and crystal-

lographic orbits in E3 into subsets with certain common proper-

ties. With only a few exceptions, the two concepts result in

different subsets. As similar but not identical symmetry consid-

erations are used, each lattice complex is uniquely related to a

certain symmetry type of point configuration and to a certain

orbit type, and vice versa. Therefore, the two concepts result in

the same number of subsets: there exist 402 lattice complexes and

402 symmetry types of point configuration and orbit types. The

differences between the subsets are caused by the different

properties of the point configurations and crystallographic orbits

used for the classifications (cf. also Koch & Fischer, 1985).

The concept of orbit types is entirely based on the eigensym-

metry of the particular point configurations: a crystallographic

orbit is regarded as an isolated entity, i.e. detached from its

Wyckoff position and its type of Wyckoff set. On the contrary,

lattice complexes result from a hierarchy of classifications of

crystallographic orbits into Wyckoff positions, Wyckoff sets, types

of Wyckoff set and classes of configuration-equivalent types of

Table 3.4.1.1
Reference symbols of the 31 Weissenberg complexes with f � 1 degrees
of freedom in E3

Weissenberg
complex f

Weissenberg
complex f

P21/m e 2 I �42d d 1

P2/c e 1 P4/nmm c 1

C2/c e 1 I41/acd e 1

P212121 a 3 P32 a 2

Pmma e 1 P3212 a 1

Pbcm d 2 P3221 a 1

Pmmn a 1 P�3m1 d 1

Pnma c 2 P61 a 2

Cmcm c 1 P6122 a 1

Cmme g 1 P6122 b 1

Imma e 1 P213 a 1

P43 a 2 I213 a 1

P4322 a 1 I213 b 1

P4322 c 1 Ia�3 d 1

P43212 a 1 I �43d c 1

I4122 f 1
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Table 3.5.2.5
Euclidean and chirality-preserving Euclidean normalizers of the tetragonal, trigonal, hexagonal and cubic space groups
The symbols in parentheses following a space-group symbol refer to the location of the origin (‘origin choice’ in Chapter 2.3).

Space group G
Euclidean normalizer NEðGÞ and
chirality-preserving normalizer NEþðGÞ Additional generators of NEðGÞ and NEþðGÞ

Index of G
in NEðGÞ
or NEþðGÞNo.

Hermann–
Mauguin symbol Symbol Basis vectors Translations

Inversion
through a
centre at

Further
generators

75 P4 P14=mmm 1
2ða� bÞ; 1

2ðaþ bÞ; "c 1
2;

1
2; 0; 0; 0; t 0; 0; 0 y; x; z ð2 � 1Þ � 2 � 2

NEþðGÞ: P1422 1
2ða� bÞ; 1

2ðaþ bÞ; "c 1
2;

1
2; 0; 0; 0; t = y; x; �z ð2 � 1Þ � 2

76 P41 P1422 ½� N Eþ ðGÞ�
1
2ða� bÞ; 1

2ðaþ bÞ; "c 1
2;

1
2; 0; 0; 0; t = y; x; �z ð2 � 1Þ � 2

77 P42 P14=mmm 1
2ða� bÞ; 1

2ðaþ bÞ; "c 1
2;

1
2; 0; 0; 0; t 0; 0; 0 y; x; z ð2 � 1Þ � 2 � 2

NEþðGÞ: P1422 1
2ða� bÞ; 1

2ðaþ bÞ; "c 1
2;

1
2; 0; 0; 0; t = y; x; �z ð2 � 1Þ � 2

78 P43 P1422 ½� N Eþ ðGÞ�
1
2ða� bÞ; 1

2ðaþ bÞ; "c 1
2;

1
2; 0; 0; 0; t = y; x; �z ð2 � 1Þ � 2

79 I4 P14=mmm 1
2ða� bÞ; 1

2ðaþ bÞ; "c 0; 0; t 0; 0; 0 y; x; z 1 � 2 � 2

NEþðGÞ: P1422 1
2ða� bÞ; 1

2ðaþ bÞ; "c 0; 0; t = y; x; �z 1 � 2

80 I41 P14=nbm ð�42mÞ 1
2ða� bÞ; 1

2ðaþ bÞ; "c 0; 0; t 1
4; 0; 0 y; x; �z 1 � 2 � 2

NEþðGÞ: P1422 ð222Þ 1
2ða� bÞ; 1

2ðaþ bÞ; "c 0; 0; t = y; x; �z 1 � 2

81 P�4 P4=mmm 1
2ða� bÞ; 1

2ðaþ bÞ; 1
2c

1
2;

1
2; 0; 0; 0; 1

2 0; 0; 0 y; x; z 4 � 2 � 2

82 I �4 I4=mmm 1
2ða� bÞ; 1

2ðaþ bÞ; 1
2c

1
2; 0; 1

4 0; 0; 0 y; x; z 4 � 2 � 2

83 P4=m P4=mmm 1
2ða� bÞ; 1

2ðaþ bÞ; 1
2c

1
2;

1
2; 0; 0; 0; 1

2 y; x; z 4 � 1 � 2

84 P42=m P4=mmm 1
2ða� bÞ; 1

2ðaþ bÞ; 1
2c

1
2;

1
2; 0; 0; 0; 1

2 y; x; z 4 � 1 � 2

85 P4=n ð�4Þ P4=mmm 1
2ða� bÞ; 1

2ðaþ bÞ; 1
2c

1
2;

1
2; 0; 0; 0; 1

2 y; x; z 4 � 1 � 2

85 P4=n ð�1Þ P4=mmm ðmmmÞ 1
2ða� bÞ; 1

2ðaþ bÞ; 1
2c

1
2;

1
2; 0; 0; 0; 1

2 y; x; z 4 � 1 � 2

86 P42=n ð�4Þ P4=mmm 1
2ða� bÞ; 1

2ðaþ bÞ; 1
2c

1
2;

1
2; 0; 0; 0; 1

2 y; x; z 4 � 1 � 2

86 P42=n ð�1Þ P4=mmm ðmmmÞ 1
2ða� bÞ; 1

2ðaþ bÞ; 1
2c

1
2;

1
2; 0; 0; 0; 1

2 y; x; z 4 � 1 � 2

87 I4=m P4=mmm 1
2ða� bÞ; 1

2ðaþ bÞ; 1
2c 0; 0; 1

2 y; x; z 2 � 1 � 2

88 I41=a ð�4Þ P42=nnm ð�42mÞ 1
2ða� bÞ; 1

2ðaþ bÞ; 1
2c 0; 0; 1

2 y; x; �z 2 � 1 � 2

88 I41=a ð�1Þ P42=nnm ð2=mÞ 1
2ða� bÞ; 1

2ðaþ bÞ; 1
2c 0; 0; 1

2 yþ 1
4; xþ 1

4; zþ 1
4 2 � 1 � 2

89 P422 P4=mmm 1
2ða� bÞ; 1

2ðaþ bÞ; 1
2c

1
2;

1
2; 0; 0; 0; 1

2 0; 0; 0 4 � 2 � 1

NEþðGÞ: P422 1
2ða� bÞ; 1

2ðaþ bÞ; 1
2c

1
2;

1
2; 0; 0; 0; 1

2 = 4 � 1

90 P4212 P4=mmm 1
2ða� bÞ; 1

2ðaþ bÞ; 1
2c

1
2;

1
2; 0; 0; 0; 1

2 0; 0; 0 4 � 2 � 1

NEþðGÞ: P422 1
2ða� bÞ; 1

2ðaþ bÞ; 1
2c

1
2;

1
2; 0; 0; 0; 1

2 = 4 � 1

91 P4122 P4222 (222 at 4212) ½� N Eþ ðGÞ�
1
2ða� bÞ; 1

2ðaþ bÞ; 1
2c

1
2;

1
2; 0; 0; 0; 1

2 = 4 � 1

92 P41212 P4222 ½� N Eþ ðGÞ�
1
2ða� bÞ; 1

2ðaþ bÞ; 1
2c

1
2;

1
2; 0; 0; 0; 1

2 = 4 � 1

93 P4222 P4=mmm 1
2ða� bÞ; 1

2ðaþ bÞ; 1
2c

1
2;

1
2; 0; 0; 0; 1

2 0; 0; 0 4 � 2 � 1

NEþðGÞ: P422 1
2ða� bÞ; 1

2ðaþ bÞ; 1
2c

1
2;

1
2; 0; 0; 0; 1

2 = 4 � 1

94 P42212 P4=mmm 1
2ða� bÞ; 1

2ðaþ bÞ; 1
2c

1
2;

1
2; 0; 0; 0; 1

2 0; 0; 0 4 � 2 � 1

NEþðGÞ: P422 1
2ða� bÞ; 1

2ðaþ bÞ; 1
2c

1
2;

1
2; 0; 0; 0; 1

2 = 4 � 1

95 P4322 P4222 (222 at 4212) ½� N Eþ ðGÞ�
1
2ða� bÞ; 1

2ðaþ bÞ; 1
2c

1
2;

1
2; 0; 0; 0; 1

2 = 4 � 1

96 P43212 P4222 ½� N Eþ ðGÞ�
1
2ða� bÞ; 1

2ðaþ bÞ; 1
2c

1
2;

1
2; 0; 0; 0; 1

2 = 4 � 1

97 I422 P4=mmm 1
2ða� bÞ; 1

2ðaþ bÞ; 1
2c 0; 0; 1

2 0; 0; 0 2 � 2 � 1

NEþðGÞ: P422 1
2ða� bÞ; 1

2ðaþ bÞ; 1
2c 0; 0; 1

2 = 2 � 1

98 I4122 P42=nnm ð�42mÞ 1
2ða� bÞ; 1

2ðaþ bÞ; 1
2c 0; 0; 1

2
1
4; 0; 1

8 2 � 2 � 1

NEþðGÞ: P4222 1
2ða� bÞ; 1

2ðaþ bÞ; 1
2c 0; 0; 1

2 = 2 � 1

99 P4mm P14=mmm 1
2ða� bÞ; 1

2ðaþ bÞ; "c 1
2;

1
2; 0; 0; 0; t 0; 0; 0 ð2 � 1Þ � 2 � 1

100 P4bm P14=mmm 1
2ða� bÞ; 1

2ðaþ bÞ; "c 1
2;

1
2; 0; 0; 0; t 0; 0; 0 ð2 � 1Þ � 2 � 1

101 P42cm P14=mmm 1
2ða� bÞ; 1

2ðaþ bÞ; "c 1
2;

1
2; 0; 0; 0; t 0; 0; 0 ð2 � 1Þ � 2 � 1

102 P42nm P14=mmm 1
2ða� bÞ; 1

2ðaþ bÞ; "c 1
2;

1
2; 0; 0; 0; t 0; 0; 0 ð2 � 1Þ � 2 � 1

103 P4cc P14=mmm 1
2ða� bÞ; 1

2ðaþ bÞ; "c 1
2;

1
2; 0; 0; 0; t 0; 0; 0 ð2 � 1Þ � 2 � 1

104 P4nc P14=mmm 1
2ða� bÞ; 1

2ðaþ bÞ; "c 1
2;

1
2; 0; 0; 0; t 0; 0; 0 ð2 � 1Þ � 2 � 1

105 P42mc P14=mmm 1
2ða� bÞ; 1

2ðaþ bÞ; "c 1
2;

1
2; 0; 0; 0; t 0; 0; 0 ð2 � 1Þ � 2 � 1

106 P42bc P14=mmm 1
2ða� bÞ; 1

2ðaþ bÞ; "c 1
2;

1
2; 0; 0; 0; t 0; 0; 0 ð2 � 1Þ � 2 � 1

107 I4mm P14=mmm 1
2ða� bÞ; 1

2ðaþ bÞ; "c 0; 0; t 0; 0; 0 1 � 2 � 1

108 I4cm P14=mmm 1
2ða� bÞ; 1

2ðaþ bÞ; "c 0; 0; t 0; 0; 0 1 � 2 � 1

109 I41md P14=nbm ð�42mÞ 1
2ða� bÞ; 1

2ðaþ bÞ; "c 0; 0; t 1
4; 0; 0 1 � 2 � 1

110 I41cd P14=nbm ð�42mÞ 1
2ða� bÞ; 1

2ðaþ bÞ; "c 0; 0; t 1
4; 0; 0 1 � 2 � 1

111 P�42m P4=mmm 1
2ða� bÞ; 1

2ðaþ bÞ; 1
2c

1
2;

1
2; 0; 0; 0; 1

2 0; 0; 0 4 � 2 � 1

112 P�42c P4=mmm 1
2ða� bÞ; 1

2ðaþ bÞ; 1
2c

1
2;

1
2; 0; 0; 0; 1

2 0; 0; 0 4 � 2 � 1

113 P�421m P4=mmm 1
2ða� bÞ; 1

2ðaþ bÞ; 1
2c

1
2;

1
2; 0; 0; 0; 1

2 0; 0; 0 4 � 2 � 1
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3.6. Magnetic subperiodic groups and magnetic space groups

D. B. Litvin

3.6.1. Introduction

The magnetic subperiodic groups in the title refer to general-

izations of the crystallographic subperiodic groups, i.e. frieze

groups (two-dimensional groups with one-dimensional transla-

tions), crystallographic rod groups (three-dimensional groups

with one-dimensional translations) and layer groups (three-

dimensional groups with two-dimensional translations). There

are seven frieze-group types, 75 rod-group types and 80 layer-

group types, see International Tables for Crystallography, Volume

E, Subperiodic Groups (2010; abbreviated as IT E). The magnetic

space groups refer to generalizations of the one-, two- and three-

dimensional crystallographic space groups, n-dimensional groups

with n-dimensional translations. There are two one-dimensional

space-group types, 17 two-dimensional space-group types and 230

three-dimensional space-group types, see Part 2 of the present

volume (IT A).

Generalizations of the crystallographic groups began with the

introduction of an operation of ‘change in colour’ and the ‘two-

colour’ (black and white, antisymmetry) crystallographic point

groups (Heesch, 1930; Shubnikov, 1945; Shubnikov et al., 1964).

Subperiodic groups and space groups were also extended into

two-colour groups. Two-colour subperiodic groups consist of 31

two-colour frieze-group types (Belov, 1956a,b), 394 two-colour

rod-group types (Shubnikov, 1959a,b; Neronova & Belov,

1961a,b; Galyarski & Zamorzaev, 1965a,b) and 528 two-colour

layer-group types (Neronova & Belov, 1961a,b; Palistrant &

Zamorzaev, 1964a,b). Of the two-colour space groups, there are

seven two-colour one-dimensional space-group types (Neronova

& Belov, 1961a,b), 80 two-colour two-dimensional space-group

types (Heesch, 1929; Cochran, 1952) and 1651 two-colour three-

dimensional space-group types (Zamorzaev, 1953, 1957a,b; Belov

et al., 1957). See also Zamorzaev (1976), Shubnikov & Koptsik

(1974), Koptsik (1966, 1967), and Zamorzaev & Palistrant (1980).

[Extensive listings of references on colour symmetry, magnetic

symmetry and related topics can be found in the books by

Shubnikov et al. (1964), Shubnikov & Koptsik (1974), and

Opechowski (1986).]

The so-called magnetic groups, groups to describe the sym-

metry of spin arrangements, were introduced by Landau &

Lifschitz (1951, 1957) by re-interpreting the operation of ‘change

in colour’ in two-colour crystallographic groups as ‘time inver-

sion’. This chapter introduces the structure, properties and

symbols of magnetic subperiodic groups and magnetic space

groups as given in the extensive tables by Litvin (2013), which are

an extension of the classic tables of properties of the two- and

three-dimensional subperiodic groups found in IT E and the

one-, two- and three-dimensional space groups found in the

present volume. A survey of magnetic group types is also

presented in Litvin (2013), listing the elements of one repre-

sentative group in each reduced superfamily of the two- and

three-dimensional magnetic subperiodic groups and one-, two-

and three-dimensional magnetic space groups. Two notations for

magnetic groups, the Opechowski–Guccione notation (OG

notation) (Guccione, 1963a,b; Opechowski & Guccione, 1965;

Opechowski, 1986) and the Belov–Neronova–Smirnova notation

(BNS notation) (Belov et al., 1957) are compared. The maximal

subgroups of index � 4 of the magnetic subperiodic groups and

magnetic space groups are also given.

3.6.2. Survey of magnetic subperiodic groups and magnetic
space groups

We review the concept of a reduced magnetic superfamily

(Opechowski, 1986) to provide a classification scheme for

magnetic groups. This is used to obtain the survey of the two- and

three-dimensional magnetic subperiodic group types and the

one-, two- and three-dimensional magnetic space groups given in

Litvin (2013). In that survey a specification of a single repre-

sentative group from each group type is provided.

3.6.2.1. Reduced magnetic superfamilies of magnetic groups

Let F denote a crystallographic group. The magnetic super-

family of F consists of the following set of groups:

(1) The group F .

(2) The group F10 � F � 10, the direct product of the group F

and the time-inversion group 10, the latter consisting of the

identity 1 and time inversion 10.

(3) All groups FðDÞ � D [ ðF � DÞ10 � F � 10, subdirect

products of the groups F and 10.D is a subgroup of index 2 of

F . Groups of this kind will also be denoted byM.

The third subset is divided into two subdivisions:

(3a) Groups MT, where D is an equi-translational (translatio-

nengleiche) subgroup of F .

(3b) Groups MR, where D is an equi-class (klassengleiche)

subgroup of F .1

Two magnetic groups F 1ðD1Þ and F 2ðD2Þ are called equivalent

if there exists an affine transformation that maps F 1 onto F 2 and

D1 onto D2 (Opechowski, 1986). If only non-equivalent groups

FðDÞ are included, then the above set of groups is referred to as

the reduced magnetic superfamily of F .

Example

We consider the crystallographic point group F ¼ 2x2y2z. The

magnetic superfamily of the group 2x2y2z consists of five

groups: F ¼ 2x2y2z, the group F10 ¼ 2x2y2z10, and the three

groups FðDÞ ¼ 2x2y2zð2xÞ, 2x2y2zð2yÞ and 2x2y2zð2zÞ. Since the

latter three groups are all equivalent, the reduced magnetic

superfamily of the group F ¼ 2x2y2z consists of only three

groups: 2x2y2z, 2x2y2z10, and one of the three groups 2x2y2zð2xÞ,

2x2y2zð2yÞ and 2x2y2zð2zÞ.

Example

In the reduced magnetic space group superfamily ofF ¼ Pnn2

there are five groups: F ¼ Pnn2, F10 ¼ Pnn210, and three

groups FðDÞ ¼ Pnn2ðPcÞ, Pnn2ðP2Þ and Pnn2ðFdd2Þ. The

1 Replacing time inversion 10 by an operation of ‘changing two colours’, the two-
colour groups corresponding to the types 1, 2, 3a and 3b magnetic groups are
known as type I, II, III and IV Shubnikov groups, respectively (Bradley &
Cracknell, 1972).




