Symbols for crystallographic items used in this volume

Direct space: points and vectors

\mathbb{E}^n	n-dimensional Euclidean point space	
\mathbb{V}^n	<i>n</i> -dimensional vector space	
$\mathbb{R}, \mathbb{Q}, \mathbb{Z}$	the field of real numbers, the field of	
	rational numbers, the rin	g of integers
L	lattice in \mathbb{V}^3	
L	line in \mathbb{E}^3	
a , b , c ; or a _i	basis vectors of the lattice	
a, b, c;	lengths of basis vectors,)
or a , b , c	lengths of cell edges	lattice
α , β , γ ; or α_j	lengths of basis vectors, lengths of cell edges interaxial angles \angle (b , c),	parameters
\boldsymbol{G}, g_{ik}	(c , a), ک(a , b) fundamental matrix (metri	c tensor)
	and its coefficients	,
V	cell volume	
X, Y, Z, P	points	
r, d, x, v, u	vectors, position vectors	
$r, \mathbf{r} $	norm, length of a vector	
$\mathbf{x} = x\mathbf{a} + y\mathbf{b} + z\mathbf{c}$	vector with coefficients x ,	v, z
$x, y, z;$ or x_i	point coordinates expresse	d in units
	of a, b, c; coefficients of	a vector
(x) (x_1)		
$\boldsymbol{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \equiv \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$	column of point coordinate	es or
$\begin{pmatrix} y \\ z \end{pmatrix} \begin{pmatrix} x_2 \\ x_2 \end{pmatrix}$	vector coefficients	
t	translation vector	
t_1, t_2, t_3 ; or t_i	coefficients of translation v	vector t
$t = \begin{pmatrix} t_1 \\ t \end{pmatrix}$	column of coefficients of th	ranslation
$\boldsymbol{t} = \begin{pmatrix} t_1 \\ t_2 \\ t \end{pmatrix}$	column of coefficients of the vector t	ranslation
$\boldsymbol{t} = \begin{pmatrix} t_1 \\ t_2 \\ t_3 \end{pmatrix}$	vector t	ranslation
0	vector t origin	
0 0	vector t origin zero vector (all coefficients	s zero)
0 0 0	vector t origin zero vector (all coefficients (3×1) column of zero coefficients	s zero)
0 0	vector t origin zero vector (all coefficients (3×1) column of zero coo new basis vectors after a	s zero) efficients
0 0 0	vector t origin zero vector (all coefficients (3×1) column of zero coo new basis vectors after a transformation of the coo	s zero) efficients ordinate
0 0 a', b', c'; or a' _i	vector t origin zero vector (all coefficients (3×1) column of zero coo new basis vectors after a transformation of the coo system (basis transforma	s zero) efficients ordinate tion)
O o a', b', c'; or a' _i r'; or x'; x', y', z';	vector t origin zero vector (all coefficients (3×1) column of zero coo new basis vectors after a transformation of the coo system (basis transforma vector and point coordinat	s zero) efficients ordinate tion) es after a
0 0 a', b', c'; or a' _i	vector t origin zero vector (all coefficients (3 × 1) column of zero coo new basis vectors after a transformation of the coo system (basis transforma vector and point coordinat transformation of the coo	s zero) efficients ordinate tion) es after a ordinate
O = O = O = O = O = O = O = O = O = O =	vector t origin zero vector (all coefficients (3×1) column of zero coo new basis vectors after a transformation of the coo system (basis transformat vector and point coordinat transformation of the coo system (basis transformat	s zero) efficients ordinate tion) es after a ordinate tion)
O = O = O = O = O = O = O = O = O = O =	vector t origin zero vector (all coefficients (3×1) column of zero coo new basis vectors after a transformation of the coo system (basis transformat vector and point coordinate transformation of the coo system (basis transformat column of coordinates after	s zero) efficients ordinate tion) es after a ordinate tion) er a
O = O = O = O = O = O = O = O = O = O =	vector t origin zero vector (all coefficients (3 × 1) column of zero coo new basis vectors after a transformation of the coo system (basis transforma vector and point coordinat transformation of the coo system (basis transforma column of coordinates after transformation of the coo	s zero) efficients ordinate tion) es after a ordinate tion) er a ordinate
O o a', b', c'; or a' _i r'; or x'; x', y', z';	vector t origin zero vector (all coefficients (3×1) column of zero coo new basis vectors after a transformation of the coo system (basis transformat vector and point coordinate transformation of the coo system (basis transformat column of coordinates after	s zero) efficients ordinate tion) es after a ordinate tion) er a ordinate
O = O = O = O = O = O = O = O = O = O =	vector t origin zero vector (all coefficients (3 × 1) column of zero coo new basis vectors after a transformation of the coo system (basis transforma vector and point coordinat transformation of the coo system (basis transforma column of coordinates after transformation of the coo	s zero) efficients ordinate tion) es after a ordinate tion) er a ordinate tion)
O = O = O = O = O = O = O = O = O = O =	vector \mathbf{t} origin zero vector (all coefficients (3×1) column of zero coo new basis vectors after a transformation of the coo system (basis transformat vector and point coordinate transformation of the coo system (basis transformat column of coordinates after transformation of the coo system (basis transformation image of a point X after the	s zero) efficients ordinate tion) es after a ordinate tion) er a ordinate tion)
O = O = O = O = O = O = O = O = O = O =	vector t origin zero vector (all coefficients (3 × 1) column of zero coo new basis vectors after a transformation of the coo system (basis transforma vector and point coordinat transformation of the coo system (basis transforma column of coordinates after transformation of the coo system (basis transforma image of a point <i>X</i> after th a symmetry operation	s zero) efficients ordinate tion) es after a ordinate tion) er a ordinate tion) ne action of
O o o a', b', c'; or a'_i $\mathbf{r}'; \text{ or } \mathbf{x}'; x', y', z';$ or x'_i $\mathbf{x}' = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ \tilde{X} $\tilde{x}, \tilde{y}, \tilde{z}; \text{ or } \tilde{x}_i$	vector \mathbf{t} origin zero vector (all coefficients (3×1) column of zero coo new basis vectors after a transformation of the coo system (basis transformat vector and point coordinate transformation of the coo system (basis transformat column of coordinates after transformation of the coo system (basis transformation image of a point X after the	s zero) efficients ordinate tion) es after a ordinate tion) er a ordinate tion) ne action of
O o o a', b', c'; or a'_i $\mathbf{r}'; \text{ or } \mathbf{x}'; x', y', z';$ or x'_i $\mathbf{x}' = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ \tilde{X} $\tilde{x}, \tilde{y}, \tilde{z}; \text{ or } \tilde{x}_i$	vector t origin zero vector (all coefficients (3 × 1) column of zero coo new basis vectors after a transformation of the coo system (basis transforma vector and point coordinat transformation of the coo system (basis transforma column of coordinates after transformation of the coo system (basis transforma image of a point <i>X</i> after th a symmetry operation	s zero) efficients ordinate tion) es after a ordinate tion) er a ordinate tion) ne action of pint \tilde{X}
O o o a', b', c'; or a'_i $\mathbf{r}'; \text{ or } \mathbf{x}'; x', y', z';$ or x'_i $\mathbf{x}' = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ \tilde{X} $\tilde{x}, \tilde{y}, \tilde{z}; \text{ or } \tilde{x}_i$	vector t origin zero vector (all coefficients (3 × 1) column of zero coo new basis vectors after a transformation of the coo system (basis transformat vector and point coordinate transformation of the coo system (basis transformat column of coordinates after transformation of the coo system (basis transformat image of a point <i>X</i> after th a symmetry operation coordinates of an image point	s zero) efficients ordinate tion) es after a ordinate tion) er a ordinate tion) ne action of pint \tilde{X}
O o o a', b', c'; or a'_i $\mathbf{r}'; \text{ or } \mathbf{x}'; x', y', z';$ or x'_i $\mathbf{x}' = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ \tilde{X} \tilde{x} , $\tilde{y}, \tilde{z}; \text{ or } \tilde{x}_i$ $\tilde{\mathbf{x}} = \begin{pmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \end{pmatrix}$	vector t origin zero vector (all coefficients (3×1) column of zero coo new basis vectors after a transformation of the coo system (basis transformat vector and point coordinate transformation of the coo system (basis transformat column of coordinates after transformation of the coo system (basis transformat image of a point X after th a symmetry operation coordinates of an image point \tilde{X}	s zero) efficients ordinate tion) es after a ordinate tion) er a ordinate tion) ne action of pint \tilde{X} en image
O o o a', b', c'; or a'_i $\mathbf{r}'; \text{ or } \mathbf{x}'; x', y', z';$ or x'_i $\mathbf{x}' = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ \tilde{X} $\tilde{x}, \tilde{y}, \tilde{z}; \text{ or } \tilde{x}_i$	vector t origin zero vector (all coefficients (3×1) column of zero co new basis vectors after a transformation of the co- system (basis transforma vector and point coordinate transformation of the co- system (basis transforma column of coordinates after transformation of the co- system (basis transforma image of a point X after th a symmetry operation coordinates of an image point \tilde{X} $(3 + 1) \times 1$ 'augmented' co	s zero) efficients ordinate tion) es after a ordinate tion) er a ordinate tion) ne action of pint \tilde{X} en image
O O O O O O O O	vector t origin zero vector (all coefficients (3×1) column of zero coo new basis vectors after a transformation of the coo system (basis transformat vector and point coordinate transformation of the coo system (basis transformat column of coordinates after transformation of the coo system (basis transformat image of a point X after th a symmetry operation coordinates of an image point \tilde{X}	s zero) efficients ordinate tion) es after a ordinate tion) er a ordinate tion) ne action of pint \tilde{X} en image

Directions and planes

	1
[uvw]	indices of a lattice direction (zone axis)
$\langle uvw \rangle$	indices of a set of all symmetry-equivalent
	lattice directions
(hkl)	indices of a crystal face, or of a single net plane
	(Miller indices)
(hkil)	indices of a crystal face, or of a single net plane,
	for the hexagonal axes \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 , \mathbf{c} (Bravais–
	Miller indices)
$\{hkl\}$	indices of a set of all symmetry-equivalent
	crystal faces ('crystal form'), or net planes
{hkil}	indices of a set of all symmetry-equivalent
	crystal faces ('crystal form'), or net planes, for
	the hexagonal axes \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 , \mathbf{c}
hkl	indices of the Bragg reflection (Laue indices)
	from the set of parallel equidistant net planes
	(hkl)
d_{hkl}	interplanar distance, or spacing, of neighbouring
	net planes (<i>hkl</i>)

Reciprocal space

1 1	
L*	reciprocal lattice
a *, b *, c *; or a [*] _i	basis vectors of the reciprocal lattice
a*, b*, c*;	lengths of basis vectors of the reciprocal
or a * , b * , c *	lattice
$\alpha^*, \beta^*, \gamma^*; \text{ or } \alpha_i^*$	interaxial angles $\angle(\mathbf{b}^*, \mathbf{c}^*), \angle(\mathbf{c}^*, \mathbf{a}^*)$,
,	$\angle(\mathbf{a}^*, \mathbf{b}^*)$ of the reciprocal lattice
r *, or h	vector in reciprocal space, or vector
	of reciprocal lattice
<i>r</i> *, or r *	length of a vector in reciprocal space
<i>h</i> , <i>k</i> , <i>l</i> ; or <i>h</i> _{<i>i</i>}	coefficients of a reciprocal-lattice vector
$\boldsymbol{h} = (h, k, l)$	(1×3) row of coefficients of a reciprocal-
	lattice vector
V^*	cell volume of the reciprocal lattice
G^*, g^*_{ik}	fundamental matrix (metric tensor) of the
0.11	reciprocal lattice and its coefficients

Functions

$\rho(xyz)$	electron density at the point x, y, z
P(uvw)	Patterson function for a vector with
	coefficients u, v, w
F(hkl), or F	structure factor (of the unit cell)
	corresponding to the Bragg reflection hkl
F(hkl) , or $ F $	modulus of the structure factor $F(hkl)$
$\alpha(hkl)$, or α	phase angle of the structure factor $F(hkl)$

Mappings, symmetry operations and their matrix-column		
presentation		
A , B , W	(3×3) matrices describing the linear part of	
	a mapping	
A_{ik}, W_{ik}	matrix coefficients	
Ι	(3×3) unit matrix	
$\boldsymbol{A}^{\mathrm{T}}$	matrix A transposed	
det(A), tr(A)	determinant of matrix A , trace of matrix A	
$\boldsymbol{w} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}$	(3×1) column of coefficients w_i describing the translation part of a mapping	
Wg	intrinsic translation part of a symmetry operation	
w_l	location translation part of a symmetry operation	
A, I, W	mappings, symmetry operations	
t	translation symmetry operation	
(<i>W</i> , <i>w</i>)	matrix-column pair of a symmetry operation given by a (3×3) matrix W and a (3×1) column w	
$(\boldsymbol{I}, \boldsymbol{t})$	matrix-column pair of a translation	
(I , o)	matrix-column pair of the identity	
(P , p)	transformation of the coordinate system,	
	described by a (3×3) matrix P and a (3×1) column p	
(Q , q)	inverse transformation of (P, p) :	
(2, 1)	$(\boldsymbol{Q},\boldsymbol{q}) = (\boldsymbol{P},\boldsymbol{p})^{-1}$	
W	symmetry operation W, described by a	
	$(3+1) \times (3+1)$ 'augmented' matrix	
P	transformation of the coordinate system, described by a $(3 + 1) \times (3 + 1)$ 'augmented' matrix	
Q	inverse transformation of \mathbb{P} : $\mathbb{Q} = \mathbb{P}^{-1}$	
$\{\boldsymbol{R} \boldsymbol{v}\}$	Seitz symbol of a symmetry operation	

Groups	
\mathcal{G}	group, space group
\mathcal{H}, \mathcal{U}	subgroups
\mathcal{I}	trivial group, consisting of the unit
	element <i>e</i> only
$\mathcal{P},\mathcal{S},\mathcal{F},\mathcal{D},\mathcal{R}$	groups
$ \mathcal{G} $	order of the group \mathcal{G}
<i>i</i> , or [<i>i</i>]	index of a subgroup in a group
\mathcal{T} , or $\mathcal{T}_{\mathcal{G}}$	group of all translations of a space group, or of the space group \mathcal{G}
\mathcal{P} , or $\mathcal{P}_{\mathcal{G}}$	point group of a space group, or of the space group \mathcal{G}
\mathcal{M}	Hermann's group
\mathcal{A}	group of all affine mappings (affine group)
E	group of all isometries (motions)
C	(Euclidean group)
\mathcal{E}^+	group of chirality-preserving isometries
φ , ker(φ)	homomorphic mapping (homomorphism),
\mathbf{r}	kernel of homomorphism φ
\mathcal{G}/\mathcal{H}	factor group or quotient group of \mathcal{G} by \mathcal{H}
$\mathcal{N}_{\mathcal{G}}(\mathcal{H})$	normalizer of \mathcal{H} in \mathcal{G}
$\mathcal{N}_{\mathcal{E}}(\mathcal{G}), \text{ or } \mathcal{N}_{\mathcal{E}^+}(\mathcal{G})$	Euclidean or chirality-preserving Euclidean normalizer of the space group \mathcal{G}
$\mathcal{N}_{\mathcal{A}}(\mathcal{G})$	affine normalizer of \mathcal{G}
$\mathcal{G}(\omega)$	orbit of ω under the group \mathcal{G}
$\mathcal{S}_{\mathcal{G}}(\omega), \mathcal{S}_{\mathcal{H}}(\omega)$	stabilizer of ω in the group \mathcal{G} , or \mathcal{H}
$\mathcal{O} = \mathcal{G}(X)$	orbit of point X under the group \mathcal{G}
$\mathcal{S}_X = \mathcal{S}_{\mathcal{G}}(X)$	site-symmetry group of point X
E	eigensymmetry group of an orbit $\mathcal O$
a, b, g, h, m, t	group elements
е	unit element of a group
t	element of the translation group \mathcal{T}