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1.1. RECIPROCAL SPACE IN CRYSTALLOGRAPHY

1.1.4. Tensor-algebraic formulation

The present section summarizes the tensor-algebraic properties of
mutually reciprocal sets of basis vectors, which are of importance in
the various aspects of crystallography. This is not intended to be a
systematic treatment of tensor algebra; for more thorough
expositions of the subject the reader is referred to relevant
crystallographic texts (e.g. Patterson, 1967; Sands, 1982), and
other texts in the physical and mathematical literature that deal with
tensor algebra and analysis.

Let us first recall that symbolic vector and matrix notations, in
which basis vectors and coordinates do not appear explicitly, are
often helpful in qualitative considerations. If, however, an
expression has to be evaluated, the various quantities appearing in
it must be presented in component form. One of the best ways to
achieve a concise presentation of geometrical expressions in
component form, while retaining much of their ‘transparent’
symbolic character, is their tensor-algebraic formulation.

1.1.4.1. Conventions

We shall adhere to the following conventions:
(1) Notation for direct and reciprocal basis vectors:

a=a;,b=a,c=a;
a*=a' b* =a’ ¢ =a’

Subscripted quantities are associated in tensor algebra with
covariant, and superscripted with contravariant transformation
properties. Thus the basis vectors of the direct lattice are
represented as covariant quantities and those of the reciprocal
lattice as contravariant ones.

(i1)) Summation convention: if an index appears twice in an
expression, once as subscript and once as superscript, a summation
over this index is thereby implied and the summation sign is
omitted. For example,

SO S xTyx/ will be written x'Tjjx/
i

since both i and j conform to the convention. Such repeating indices
are often called dummy indices. The implied summation over
repeating indices is also often used even when the indices are at the
same level and the coordinate system is Cartesian; there is no
distinction between contravariant and covariant quantities in
Cartesian frames of reference (see Chapter 3.3).

(iii) Components (coordinates) of vectors referred to the
covariant basis are written as contravariant quantities, and vice
versa. For example,

r=xa+yb+zc= x'a; +x’a, + X’a; = x'a;

h = ha* + kb* + Ic* = hja' + pa® + hza’ = ha'’.

1.1.4.2. Transformations

A familiar concept but a fundamental one in tensor algebra is the
transformation of coordinates. For example, suppose that an atomic
position vector is referred to two unit-cell settings as follows:

r = x‘a (1.1.4.1)
and
r = x"*a). (1.1.42)

Let us multiply both sides of (1.1.4.1) and (1.1.4.2), on the right, by
the vectors @™, m = 1, 2, or 3, i.e. by the reciprocal vectors to the
basis aja,as;. We obtain from (1.1.4.1)

Lag -a" = e = 2",
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where 6} is the Kronecker symbol which equals 1 when k = m and
equals zero if k # m, and by comparison with (1.1.4.2) we have

X" = x*T, (1.1.4.3)

where T}" = a; -a" is an element of the required transformation
matrix. Of course, the same transformation could have been written
as

X =Tk, (1.1.4.4)
where T} = a™ - aj.

A tensor is a quantity that transforms as the product of
coordinates, and the rank of a tensor is the number of
transformations involved (Patterson, 1967; Sands, 1982). E.g. the
product of two coordinates, as in the above example, transforms
from the a’ basis to the a basis as

n __ pmon JIp lq.
X =TTy xPx e, (1.1.4.5)
the same transformation law applies to the components of a
contravariant tensor of rank two, the components of which are
referred to the primed basis and are to be transformed to the
unprimed one:

o= TI’,"T(;‘Q’”". (1.1.4.6)
1.1.4.3. Scalar products

The expression for the scalar product of two vectors, say u and v,
depends on the bases to which the vectors are referred. If we admit
only the covariant and contravariant bases defined above, we have
four possible types of expression:

(1) u=u'a,v=1a

u-v=uvi(a - a)=uvlg, (1.1.4.7)
() u=wa',v=ya'

u-v=uy(a-a’) = upg’, (1.1.4.8)
() u = u'a;,v = va'

u-v=uva-al) = uvé) =u'v, (1.1.4.9)
(IV)u = wa,v=rv'a;

u-v=uy/(a -a) = u,-vjéj’: =uy'. (1.1.4.10)

(i) The sets of scalar products g; = a; -a; (1.1.4.7) and g/ =
a'-a’ (1.1.4.8) are known as the metric tensors of the covariant
(direct) and contravariant (reciprocal) bases, respectively; the
corresponding matrices are presented in conventional notation in
equations (1.1.3.11) and (1.1.3.13). Numerous applications of these
tensors to the computation of distances and angles in crystals are
given in Chapter 3.1.

(ii) Equations (1.1.4.7) to (1.1.4.10) furnish the relationships
between the covariant and contravariant components of the same
vector. Thus, comparing (1.1.4.7) and (1.1.4.9), we have

vi =vig;. (1.1.4.11)

Similarly, using (1.1.4.8) and (1.1.4.10) we obtain the inverse
relationship

v =gl (1.1.4.12)
The corresponding relationships between covariant and contra-
variant bases can now be obtained if we refer a vector, say v, to each
of the bases

V= viai = vkak,

and make use of (1.1.4.11) and (1.1.4.12). Thus, e.g.,
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1. GENERAL RELATIONSHIPS AND TECHNIQUES

i ik k
via; = (g™ )a; = vea'.
Hence

at = g'a (1.1.4.13)

and, similarly,
a, = gua'. (1.1.4.14)

(iii) The tensors g;; and g are symmetric, by definition.

(iv) It follows from (1.1.4.11) and (1.1.4.12) or (1.1.4.13) and
(1.1.4.14) that the matrices of the direct and reciprocal metric
tensors are mutually inverse, i.e.

-1
13 gl g2 g8

811 812
gn gn gn| =8 2 &, (1.1.4.15)
81 8% &3 gl g g8

and their determinants are mutually reciprocal.

1.1.4.4. Examples

There are numerous applications of tensor notation in crystal-
lographic calculations, and many of them appear in the various
chapters of this volume. We shall therefore present only a few
examples. '

(i) The (squared) magnitude of the diffraction vector h = h;a’ is
given by
4in 0 "
—a = hig’
This concise relationship is a starting point in a derivation of unit-
cell parameters from experimental data.

(i) The structure factor, including explicitly anisotropic
displacement tensors, can be written in symbolic matrix notation as

n|* = (1.1.4.16)

N
F(h) = Zl oy exp(—h" B k) exp(2mihr ), (1.1.4.17)
j=

where B ;) is the matrix of the anisotropic displacement tensor of
the jth atom. In tensor notation, with the quantities referred to their
natural bases, the structure factor can be written as

N . .
F(lhohs) = Y fijy exp(—hii 5)) exp(mihix ), (1.1.4.18)
j=1

and similarly concise expressions can be written for the derivatives
of the structure factor with respect to the positional and
displacement parameters. The summation convention applies only
to indices denoting components of vectors and tensors; the atom
subscript j in (1.1.4.18) clearly does not qualify, and to indicate this
it has been surrounded by parentheses.

(iii) Geometrical calculations, such as those described in the
chapters of Part 3, may be carried out in any convenient basis but
there are often some definite advantages to computations that are
referred to the natural, non-Cartesian bases (see Chapter 3.1).
Usually, the output positional parameters from structure refinement
are available as contravariant components of the atomic position
vectors. If we transform them by (1.1.4.11) to their covariant form,
and store these covariant components of the atomic position vectors,
the computation of scalar products using equations (1.1.4.9) or
(1.1.4.10) is almost as efficient as it would be if the coordinates
were referred to a Cartesian system. For example, the right-hand
side of the vector identity (1.1.3.5), which is employed in the
computation of dihedral angles, can be written as

(A;C")(ByD") — (A;D")(Bi.C").

Fig. 1.1.4.1. Derivation of the general expression for the rotation operator.
The figure illustrates schematically the decompositions and other simple
geometrical considerations required for the derivation outlined in
equations (1.1.4.22)—(1.1.4.28).

This is a typical application of reciprocal space to ordinary direct-
space computations.

(iv) We wish to derive a tensor formulation of the vector product,
along similar lines to those of Chapter 3.1. As with the scalar
product, there are several such formulations and we choose that
which has both vectors, say u and v, and the resulting product,
u x v, referred to a covariant basis. We have

uxv=ua; xva

= u'v/(a; x a)). (1.1.4.19)
If we make use of the relationships (1.1.3.3) between the direct and

reciprocal basis vectors, it can be verified that

a; x a; = Veya', (1.1.4.20)

where V is the volume of the unit cell and the antisymmetric tensor
exij equals +1, — 1, or 0 according as kij is an even permutation of
123, an odd permutation of 123 or any two of the indices kij have the
same value, respectively. We thus have

uxv= Vekijuivjak

= Vgkeyu'via, (1.1.4.21)
since by (1.1.4.13), a“ = gka,.

(v) The rotation operator. The general formulation of an
expression for the rotation operator is of interest in crystal structure
determination by Patterson techniques (see Chapter 2.3) and in
molecular modelling (see Chapter 3.3), and another well known
crystallographic application of this device is the derivation of the
translation, libration and screw-motion tensors by the method of
Schomaker & Trueblood (1968), discussed in Part 8 of Volume C
(IT C, 1999) and in Chapter 1.2 of this volume. A digression on an
elementary derivation of the above seems to be worthwhile.

Suppose we wish to rotate the vector r, about an axis coinciding
with the unit vector k, through the angle 6 and in the positive sense,
i.e. an observer looking in the direction of +k will see r rotating in
the clockwise sense. The vectors r, k and the rotated (target) vector
r’ are referred to an origin on the axis of rotation (see Fig. 1.1.4.1).
Our purpose is to express ' in terms of r, k and 6 by a general vector
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