
formula, and represent the components of the rotated vectors in
coordinate systems that might be of interest.

Let us decompose the vector r and the (target) vector r� into their
components which are parallel ��� and perpendicular ��� to the axis
of rotation:

r � r� � r� �1�1�4�22�
and

r� � r�� � r��� �1�1�4�23�
It can be seen from Fig. 1.1.4.1 that the parallel components of r and
r� are

r� � r�� � k�k � r� �1�1�4�24�
and thus

r� � r 	 k�k � r�� �1�1�4�25�
Only a suitable expression for r�� is missing. We can find this by
decomposing r�� into its components (i) parallel to r� and (ii)
parallel to k
 r�. We have, as in (1.1.4.24),

r�� �
r�
�r��

r�
�r�� � r��

� �
� k
 r�
�k
 r��

k
 r�
�k
 r�� � r��

� �
� �1�1�4�26�

We observe, using Fig. 1.1.4.1, that

�r��� � �r�� � �k
 r��
and

k
 r� � k
 r,

and, further,

r�� � r� � �r��2 cos �

and

r�� � �k
 r�� � k � �r�� 
 r�� � �r��2 sin �,

since the unit vector k is perpendicular to the plane containing the
vectors r� and r��. Equation (1.1.4.26) now reduces to

r�� � r� cos �� �k
 r� sin � �1�1�4�27�
and equations (1.1.4.23), (1.1.4.25) and (1.1.4.27) lead to the
required result

r� � k�k � r��1	 cos �� � r cos �� �k
 r� sin �� �1�1�4�28�
The above general expression can be written as a linear
transformation by referring the vectors to an appropriate basis or
bases. We choose here r � x jaj, r� � x�iai and assume that the
components of k are available in the direct and reciprocal bases.

If we make use of equations (1.1.4.9) and (1.1.4.21), (1.1.4.28)
can be written as

x�i � ki�k jx
j��1	 cos �� � �i

jx
j cos �� Vgimempjk

px j sin �,

�1�1�4�29�
or briefly

x�i � Ri
jx

j, �1�1�4�30�
where

Ri
j � kikj�1	 cos �� � �i

j cos �� Vgimempjk
p sin � �1�1�4�31�

is a matrix element of the rotation operator R which carries the
vector r into the vector r�. Of course, the representation (1.1.4.31) of
R depends on our choice of reference bases.

If all the vectors are referred to a Cartesian basis, that is three
orthogonal unit vectors, the direct and reciprocal metric tensors
reduce to a unit tensor, there is no difference between covariant and
contravariant quantities, and equation (1.1.4.31) reduces to

Rij � kikj�1	 cos �� � �ij cos �� eipjkp sin �, �1�1�4�32�
where all the indices have been taken as subscripts, but the
summation convention is still observed. The relative simplicity of
(1.1.4.32), as compared to (1.1.4.31), often justifies the transforma-
tion of all the vector quantities to a Cartesian basis. This is certainly
the case for any extensive calculation in which covariances of the
structural parameters are not considered.

1.1.5. Transformations

1.1.5.1. Transformations of coordinates

It happens rather frequently that a vector referred to a given basis
has to be re-expressed in terms of another basis, and it is then
required to find the relationship between the components
(coordinates) of the vector in the two bases. Such situations have
already been indicated in the previous section. The purpose of the
present section is to give a general method of finding such
relationships (transformations), and discuss some simplifications
brought about by the use of mutually reciprocal and Cartesian bases.
We do not assume anything about the bases, in the general
treatment, and hence the tensor formulation of Section 1.1.4 is
not appropriate at this stage.

Let

r ��3
j�1

uj�1�cj�1� �1�1�5�1�

and

r ��3
j�1

uj�2�cj�2� �1�1�5�2�

be the given and required representations of the vector r,
respectively. Upon the formation of scalar products of equations
(1.1.5.1) and (1.1.5.2) with the vectors of the second basis, and
employing again the summation convention, we obtain

uk�1��ck�1� � cl�2�
 � uk�2��ck�2� � cl�2�
, l � 1, 2, 3 �1�1�5�3�
or

uk�1�Gkl�12� � uk�2�Gkl�22�, l � 1, 2, 3, �1�1�5�4�
where Gkl�12� � ck�1� � cl�2� and Gkl�22� � ck�2� � cl�2�. Simi-
larly, if we choose the basis vectors cl�1�, l = 1, 2, 3, as the
multipliers of (1.1.5.1) and (1.1.5.2), we obtain

uk�1�Gkl�11� � uk�2�Gkl�21�, l � 1, 2, 3, �1�1�5�5�
where Gkl�11� � ck�1� � cl�1� and Gkl�21� � ck�2� � cl�1�. Rewrit-
ing (1.1.5.4) and (1.1.5.5) in symbolic matrix notation, we have

uT�1�G�12� � uT �2�G�22�, �1�1�5�6�
leading to

uT �1� � uT �2��G�22��G�12�
	1�
and

uT�2� � uT�1��G�12��G�22�
	1�, �1�1�5�7�
and

uT�1�G�11� � uT �2�G�21�, �1�1�5�8�
7
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leading to

uT �1� � uT�2��G�21��G�11�
	1�
and

uT �2� � uT �1��G�11��G�21�
	1�� �1�1�5�9�
Equations (1.1.5.7) and (1.1.5.9) are symbolic general expres-

sions for the transformation of the coordinates of r from one
representation to the other.

In the general case, therefore, we require the matrices of scalar
products of the basis vectors, G(12) and G(22) or G(11) and G(21) –
depending on whether the basis ck�2� or ck�1�, k = 1, 2, 3, was
chosen to multiply scalarly equations (1.1.5.1) and (1.1.5.2). Note,
however, the following simplifications.

(i) If the bases ck�1� and ck�2� are mutually reciprocal, each of
the matrices of mixed scalar products, G(12) and G(21), reduces to a
unit matrix. In this important special case, the transformation is
effected by the matrices of the metric tensors of the bases in
question. This can be readily seen from equations (1.1.5.7) and
(1.1.5.9), which then reduce to the relationships between the
covariant and contravariant components of the same vector [see
equations (1.1.4.11) and (1.1.4.12) above].

(ii) If one of the bases, say ck�2�, is Cartesian, its metric tensor is
by definition a unit tensor, and the transformations in (1.1.5.7)
reduce to

uT �1� � uT �2��G�12�
	1

and

uT �2� � uT �1�G�12�� �1�1�5�10�
The transformation matrix is now the mixed matrix of the scalar
products, whether or not the basis ck�1�, k = 1, 2, 3, is also Cartesian.
If, however, both bases are Cartesian, the transformation can also be
interpreted as a rigid rotation of the coordinate axes (see Chapter
3.3).

It should be noted that the above transformations do not involve
any shift of the origin. Transformations involving such shifts,
notably the symmetry transformations of the space group, are
treated rather extensively in Volume A of International Tables for
Crystallography (1995) [see e.g. Part 5 there (Arnold, 1983)].

1.1.5.2. Example

This example deals with the construction of a Cartesian system in
a crystal with given basis vectors of its direct lattice. We shall also
require that the Cartesian system bears a clear relationship to at least
one direction in each of the direct and reciprocal lattices of the
crystal; this may be useful in interpreting a physical property which
has been measured along a given lattice vector or which is
associated with a given lattice plane. For a better consistency of
notation, the Cartesian components will be denoted as contra-
variant.

The appropriate version of equations (1.1.5.1) and (1.1.5.2) is
now

r � xiai �1�1�5�11�
and

r � X kek , �1�1�5�12�
where the Cartesian basis vectors are: e1 � rL��rL�, e2 � r���r��
and e3 � e1 
 e2, and the vectors rL and r� are given by

rL � uiai and r� � hkak ,

where ui and hk , i, k = 1, 2, 3, are arbitrary integers. The vectors rL
and r� must be mutually perpendicular, rL � r� � uihi � 0. The

X 1�X � axis of the Cartesian system thus coincides with a direct-
lattice vector, and the X 2�Y� axis is parallel to a vector in the
reciprocal lattice.

Since the basis in (1.1.5.12) is a Cartesian one, the required
transformations are given by equations (1.1.5.10) as

xi � X k�T	1�i
k and X i � xkTi

k , �1�1�5�13�
where Ti

k � ak � ei, k, i = 1, 2, 3, form the matrix of the scalar
products. If we make use of the relationships between covariant and
contravariant basis vectors, and the tensor formulation of the vector
product, given in Section 1.1.4 above (see also Chapter 3.1), we
obtain

T1
k �

1
�rL� gkiu

i

T2
k �

1
�r�� hk �1�1�5�14�

T3
k �

V
�rL��r�� ekipuigplhl�

Note that the other convenient choice, e1 � r� and e2 � rL,
interchanges the first two columns of the matrix T in (1.1.5.14) and
leads to a change of the signs of the elements in the third column.
This can be done by writing ekpi instead of ekip, while leaving the
rest of T3

k unchanged.

1.1.6. Some analytical aspects of the reciprocal space

1.1.6.1. Continuous Fourier transform

Of great interest in crystallographic analyses are Fourier
transforms and these are closely associated with the dual bases
examined in this chapter. Thus, e.g., the inverse Fourier transform
of the electron-density function of the crystal

F�h� � �
cell

��r� exp�2�ih � r� d3r, �1�1�6�1�

where ��r� is the electron-density function at the point r and the
integration extends over the volume of a unit cell, is the
fundamental model of the contribution of the distribution of
crystalline matter to the intensity of the scattered radiation. For
the conventional Bragg scattering, the function given by (1.1.6.1),
and known as the structure factor, may assume nonzero values only
if h can be represented as a reciprocal-lattice vector. Chapter 1.2 is
devoted to a discussion of the structure factor of the Bragg
reflection, while Chapters 4.1, 4.2 and 4.3 discuss circumstances
under which the scattering need not be confined to the points of the
reciprocal lattice only, and may be represented by reciprocal-space
vectors with non-integral components.

1.1.6.2. Discrete Fourier transform

The electron density ��r� in (1.1.6.1) is one of the most common
examples of a function which has the periodicity of the crystal.
Thus, for an ideal (infinite) crystal the electron density ��r� can be
written as

��r� � ��r� ua� vb� wc�, �1�1�6�2�
and, as such, it can be represented by a three-dimensional Fourier
series of the form

��r� ��
g

C�g� exp�	2�ig � r�, �1�1�6�3�

where the periodicity requirement (1.1.6.2) enables one to represent
all the g vectors in (1.1.6.3) as vectors in the reciprocal lattice (see
also Section 1.1.2 above). If we insert the series (1.1.6.3) in the
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