InternationalReciprocal spaceTables for Crystallography Volume B Edited by U. Shmueli © International Union of Crystallography 2006 |
International Tables for Crystallography (2006). Vol. B. ch. 1.2, p. 18
## Section 1.2.8.2. Two-centre orbital products |

Fourier transform of the electron density as described by (1.2.8.1) requires explicit expressions for the two-centre orbital product scattering. Such expressions are described in the literature for both Gaussian (Stewart, 1969*b*) and Slater-type (Bentley & Stewart, 1973; Avery & Ørmen, 1979) atomic orbitals. The expressions can also be used for Hartree–Fock atomic functions, as expansions in terms of Gaussian- (Stewart, 1969*b*, 1970; Stewart & Hehre, 1970; Hehre *et al.*, 1970) and Slater-type (Clementi & Roetti, 1974) functions are available for many atoms.

### References

Avery, J. & Ørmen, P.-J. (1979).*Generalized scattering factors and generalized Fourier transforms. Acta Cryst.*A

**35**, 849–851.Google Scholar

Bentley, J. & Stewart, R. F. (1973).

*Two-centre calculations for X-ray scattering. J. Comput. Phys.*

**11**, 127–145.Google Scholar

Clementi, E. & Roetti, C. (1974).

*Roothaan–Hartree–Fock atomic wavefunctions. At. Data Nucl. Data Tables*,

**14**, 177–478.Google Scholar

Hehre, W. J., Ditchfield, R., Stewart, R. F. & Pople, J. A. (1970).

*Self-consistent molecular orbital methods. IV. Use of Gaussian expansions of Slater-type orbitals. Extension to second-row molecules. J. Chem. Phys.*

**52**, 2769–2773.Google Scholar

Stewart, R. F. (1969

*b*).

*Small Gaussian expansions of atomic orbitals. J. Chem. Phys.*

**50**, 2485–2495.Google Scholar

Stewart, R. F. (1970).

*Small Gaussian expansions of Slater-type orbitals. J. Chem. Phys.*

**52**, 431–438.Google Scholar

Stewart, R. F. & Hehre, W. J. (1970).

*Small Gaussian expansions of atomic orbitals: second-row atoms. J. Chem. Phys.*

**52**, 5243–5247.Google Scholar