
1.3. Fourier transforms in crystallography: theory, algorithms and applications

BY G. BRICOGNE

1.3.1. General introduction

Since the publication of Volume II of International Tables, most
aspects of the theory, computation and applications of Fourier
transforms have undergone considerable development, often to the
point of being hardly recognizable.

The mathematical analysis of the Fourier transformation has
been extensively reformulated within the framework of distribution
theory, following Schwartz’s work in the early 1950s.

The computation of Fourier transforms has been revolutionized
by the advent of digital computers and of the Cooley–Tukey
algorithm, and progress has been made at an ever-accelerating pace
in the design of new types of algorithms and in optimizing their
interplay with machine architecture.

These advances have transformed both theory and practice in
several fields which rely heavily on Fourier methods; much of
electrical engineering, for instance, has become digital signal
processing.

By contrast, crystallography has remained relatively unaffected
by these developments. From the conceptual point of view, old-
fashioned Fourier series are still adequate for the quantitative
description of X-ray diffraction, as this rarely entails consideration
of molecular transforms between reciprocal-lattice points. From the
practical point of view, three-dimensional Fourier transforms have
mostly been used as a tool for visualizing electron-density maps, so
that only moderate urgency was given to trying to achieve ultimate
efficiency in these relatively infrequent calculations.

Recent advances in phasing and refinement methods, however,
have placed renewed emphasis on concepts and techniques long
used in digital signal processing, e.g. flexible sampling, Shannon
interpolation, linear filtering, and interchange between convolution
and multiplication. These methods are iterative in nature, and thus
generate a strong incentive to design new crystallographic Fourier
transform algorithms making the fullest possible use of all available
symmetry to save both storage and computation.

As a result, need has arisen for a modern and coherent account of
Fourier transform methods in crystallography which would provide:

(i) a simple and foolproof means of switching between the three
different guises in which the Fourier transformation is encountered
(Fourier transforms, Fourier series and discrete Fourier transforms),
both formally and computationally;

(ii) an up-to-date presentation of the most important algorithms
for the efficient numerical calculation of discrete Fourier trans-
forms;

(iii) a systematic study of the incorporation of symmetry into the
calculation of crystallographic discrete Fourier transforms;

(iv) a survey of the main types of crystallographic computations
based on the Fourier transformation.

The rapid pace of progress in these fields implies that such an
account would be struck by quasi-immediate obsolescence if it were
written solely for the purpose of compiling a catalogue of results
and formulae ‘customized’ for crystallographic use. Instead, the
emphasis has been placed on a mode of presentation in which most
results and formulae are derived rather than listed. This does entail a
substantial mathematical overhead, but has the advantage of
preserving in its ‘native’ form the context within which these
results are obtained. It is this context, rather than any particular set
of results, which constitutes the most fertile source of new ideas and
new applications, and as such can have any hope at all of remaining
useful in the long run.

These conditions have led to the following choices:
(i) the mathematical theory of the Fourier transformation has

been cast in the language of Schwartz’s theory of distributions

which has long been adopted in several applied fields, in particular
electrical engineering, with considerable success; the extra work
involved handsomely pays for itself by allowing the three different
types of Fourier transformations to be treated together, and by
making all properties of the Fourier transform consequences of a
single property (the convolution theorem). This is particularly
useful in all questions related to the sampling theorem;

(ii) the various numerical algorithms have been presented as the
consequences of basic algebraic phenomena involving Abelian
groups, rings and finite fields; this degree of formalization greatly
helps the subsequent incorporation of symmetry;

(iii) the algebraic nature of space groups has been re-
emphasized so as to build up a framework which can accommodate
both the phenomena used to factor the discrete Fourier transform
and those which underlie the existence (and lead to the
classification) of space groups; this common ground is found in
the notion of module over a group ring (i.e. integral representation
theory), which is then applied to the formulation of a large number
of algorithms, many of which are new;

(iv) the survey of the main types of crystallographic computa-
tions has tried to highlight the roles played by various properties of
the Fourier transformation, and the ways in which a better
exploitation of these properties has been the driving force behind
the discovery of more powerful methods.

In keeping with this philosophy, the theory is presented first,
followed by the crystallographic applications. There are ‘forward
references’ from mathematical results to the applications which
later invoke them (thus giving ‘real-life’ examples rather than
artificial ones), and ‘backward references’ as usual. In this way, the
internal logic of the mathematical developments – the surest guide
to future innovations – can be preserved, whereas the alternative
solution of relegating these to appendices tends on the contrary to
obscure that logic by subordinating it to that of the applications.

It is hoped that this attempt at an overall presentation of the main
features of Fourier transforms and of their ubiquitous role in
crystallography will be found useful by scientists both within and
outside the field.

1.3.2. The mathematical theory of the Fourier
transformation

1.3.2.1. Introduction

The Fourier transformation and the practical applications to
which it gives rise occur in three different forms which, although
they display a similar range of phenomena, normally require
distinct formulations and different proof techniques:

(i) Fourier transforms, in which both function and transform
depend on continuous variables;

(ii) Fourier series, which relate a periodic function to a discrete
set of coefficients indexed by n-tuples of integers;

(iii) discrete Fourier transforms, which relate finite-dimensional
vectors by linear operations representable by matrices.

At the same time, the most useful property of the Fourier
transformation – the exchange between multiplication and
convolution – is mathematically the most elusive and the one
which requires the greatest caution in order to avoid writing down
meaningless expressions.

It is the unique merit of Schwartz’s theory of distributions
(Schwartz, 1966) that it affords complete control over all the
troublesome phenomena which had previously forced mathemati-
cians to settle for a piecemeal, fragmented theory of the Fourier
transformation. By its ability to handle rigorously highly ‘singular’
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objects (especially �-functions, their derivatives, their tensor
products, their products with smooth functions, their translates
and lattices of these translates), distribution theory can deal with all
the major properties of the Fourier transformation as particular
instances of a single basic result (the exchange between multi-
plication and convolution), and can at the same time accommodate
the three previously distinct types of Fourier theories within a
unique framework. This brings great simplification to matters of
central importance in crystallography, such as the relations between

(a) periodization, and sampling or decimation;
(b) Shannon interpolation, and masking by an indicator function;
(c) section, and projection;
(d) differentiation, and multiplication by a monomial;
(e) translation, and phase shift.

All these properties become subsumed under the same theorem.
This striking synthesis comes at a slight price, which is the

relative complexity of the notion of distribution. It is first necessary
to establish the notion of topological vector space and to gain
sufficient control (or, at least, understanding) over convergence
behaviour in certain of these spaces. The key notion of metrizability
cannot be circumvented, as it underlies most of the constructs and
many of the proof techniques used in distribution theory. Most of
Section 1.3.2.2 builds up to the fundamental result at the end of
Section 1.3.2.2.6.2, which is basic to the definition of a distribution
in Section 1.3.2.3.4 and to all subsequent developments.

The reader mostly interested in applications will probably want
to reach this section by starting with his or her favourite topic in
Section 1.3.4, and following the backward references to the relevant
properties of the Fourier transformation, then to the proof of these
properties, and finally to the definitions of the objects involved.
Hopefully, he or she will then feel inclined to follow the forward
references and thus explore the subject from the abstract to the
practical. The books by Dieudonné (1969) and Lang (1965) are
particularly recommended as general references for all aspects of
analysis and algebra.

1.3.2.2. Preliminary notions and notation

Throughout this text, � will denote the set of real numbers, � the
set of rational (signed) integers and � the set of natural (unsigned)
integers. The symbol �n will denote the Cartesian product of n
copies of �:

�n � �� � � �� � �n times, n � 1�,
so that an element x of �n is an n-tuple of real numbers:

x � �x1, � � � , xn��
Similar meanings will be attached to �n and �n.

The symbol � will denote the set of complex numbers. If z � �,
its modulus will be denoted by �z�, its conjugate by �z (not z�), and its
real and imaginary parts by �� �z� and �� �z�:

�� �z� � 1
2�z	 �z�, �� �z� � 1

2i
�z
 �z��

If X is a finite set, then �X �will denote the number of its elements.
If mapping f sends an element x of set X to the element f �x� of set Y,
the notation

f � x �
� f �x�
will be used; the plain arrow� will be reserved for denoting limits,
as in

lim
��
 1	 x

p

� �p

� ex�

If X is any set and S is a subset of X, the indicator function �s of S
is the real-valued function on X defined by

�S�x� � 1 if x � S

� 0 if x �� S�

1.3.2.2.1. Metric and topological notions in �n

The set �n can be endowed with the structure of a vector space of
dimension n over �, and can be made into a Euclidean space by
treating its standard basis as an orthonormal basis and defining the
Euclidean norm:

�x� � �n
i�1

x2
i

� �1�2

�

By misuse of notation, x will sometimes also designate the
column vector of coordinates of x � �n; if these coordinates are
referred to an orthonormal basis of �n, then

�x� � �xT x�1�2,

where xT denotes the transpose of x.
The distance between two points x and y defined by d�x, y� �

�x
 y� allows the topological structure of � to be transferred to
�n, making it a metric space. The basic notions in a metric space are
those of neighbourhoods, of open and closed sets, of limit, of
continuity, and of convergence (see Section 1.3.2.2.6.1).

A subset S of �n is bounded if sup �x
 y� � 
 as x and y run
through S; it is closed if it contains the limits of all convergent
sequences with elements in S. A subset K of �n which is both
bounded and closed has the property of being compact, i.e. that
whenever K has been covered by a family of open sets, a finite
subfamily can be found which suffices to cover K. Compactness is a
very useful topological property for the purpose of proof, since it
allows one to reduce the task of examining infinitely many local
situations to that of examining only finitely many of them.

1.3.2.2.2. Functions over �n

Let � be a complex-valued function over �n. The support of �,
denoted Supp �, is the smallest closed subset of �n outside which �
vanishes identically. If Supp � is compact, � is said to have
compact support.

If t � �n, the translate of � by t, denoted �t�, is defined by

��t���x� � ��x
 t��
Its support is the geometric translate of that of �:

Supp �t� � �x	 t�x � Supp ���
If A is a non-singular linear transformation in �n, the image of �

by A, denoted A��, is defined by

�A����x� � ��A
1�x���
Its support is the geometric image of Supp � under A:

Supp A�� � �A�x��x � Supp ���
If S is a non-singular affine transformation in �n of the form

S�x� � A�x� 	 b

with A linear, the image of � by S is S�� � �b�A���, i.e.

�S����x� � ��A
1�x
 b���
Its support is the geometric image of Supp � under S:

Supp S�� � �S�x��x � Supp ���
It may be helpful to visualize the process of forming the image of

a function by a geometric operation as consisting of applying that
operation to the graph of that function, which is equivalent to
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applying the inverse transformation to the coordinates x. This use of
the inverse later affords the ‘left-representation property’ [see
Section 1.3.4.2.2.2(e)] when the geometric operations form a group,
which is of fundamental importance in the treatment of crystal-
lographic symmetry (Sections 1.3.4.2.2.4, 1.3.4.2.2.5).

1.3.2.2.3. Multi-index notation

When dealing with functions in n variables and their derivatives,
considerable abbreviation of notation can be obtained through the
use of multi-indices.

A multi-index p � �n is an n-tuple of natural integers:
p � �p1, � � � , pn�. The length of p is defined as

�p� ��n
i�1

pi,

and the following abbreviations will be used:

�i� xp � xp1
1 � � � xpn

n

�ii� Dif � 	f
	xi

� 	i f

�iii� Dpf � Dp1
1 � � �Dpn

n f � 	�p�f
	xp1

1 � � � 	xpn
n

�iv� q � p if and only if qi � pi for all i � 1, � � � , n

�v� p
 q � �p1 
 q1, � � � , pn 
 qn�
�vi� p� � p1�� � � �� pn�

�vii� p

q

� �
� p1

q1

� �
� � � �� pn

qn

� �
�

Leibniz’s formula for the repeated differentiation of products
then assumes the concise form

Dp�fg� �
�
q�p

p
q

� �
Dp
qfDqg,

while the Taylor expansion of f to order m about x � a reads

f �x� �
�
�p��m

1
p�
�Dpf �a���x
 a�p 	 o��x
 a�m��

In certain sections the notation �f will be used for the gradient
vector of f, and the notation ���T�f for the Hessian matrix of its
mixed second-order partial derivatives:

� �

	

	x1

��
�

	

	xn

�
�������

�
						


, �f �

	f
	x1

��
�

	f
	xn

�
�������

�
						


,

���T�f �

	2f

	x2
1

� � �
	2f

	x1	xn

��
� � �

� ��
�

	2f
	xn	x1

� � �
	2f
	x2

n

�
��������

�
							

�

1.3.2.2.4. Integration, Lp spaces

The Riemann integral used in elementary calculus suffers from
the drawback that vector spaces of Riemann-integrable functions
over �n are not complete for the topology of convergence in the

mean: a Cauchy sequence of integrable functions may converge to a
non-integrable function.

To obtain the property of completeness, which is fundamental in
functional analysis, it was necessary to extend the notion of integral.
This was accomplished by Lebesgue [see Berberian (1962),
Dieudonné (1970), or Chapter 1 of Dym & McKean (1972) and
the references therein, or Chapter 9 of Sprecher (1970)], and
entailed identifying functions which differed only on a subset of
zero measure in �n (such functions are said to be equal ‘almost
everywhere’). The vector spaces Lp��n� consisting of function
classes f modulo this identification for which

�f�p �
�
�n

� f �x��p dnx

� 
1�p

� 


are then complete for the topology induced by the norm ���p: the
limit of every Cauchy sequence of functions in Lp is itself a function
in Lp (Riesz–Fischer theorem).

The space L1��n� consists of those function classes f such that

� f �1 �
�
�n
� f �x�� dnx � 


which are called summable or absolutely integrable. The convolu-
tion product:

� f � g��x� � �
�n

f �y�g�x
 y� dny

� �
�n

f �x
 y�g�y� dny � �g � f ��x�

is well defined; combined with the vector space structure of L1, it
makes L1 into a (commutative) convolution algebra. However, this
algebra has no unit element: there is no f � L1 such that f � g � g
for all g � L1; it has only approximate units, i.e. sequences �f
� such
that f
 � g tends to g in the L1 topology as 
 �
. This is one of the
starting points of distribution theory.

The space L2��n� of square-integrable functions can be endowed
with a scalar product

� f , g� � �
�n

f �x�g�x� dnx

which makes it into a Hilbert space. The Cauchy–Schwarz
inequality

�� f , g�� � �� f , f ��g, g��1�2

generalizes the fact that the absolute value of the cosine of an angle
is less than or equal to 1.

The space L
��n� is defined as the space of functions f such that

� f �
 � lim
p�
� f �p � lim

p�

�
�n

� f �x��p dnx

� 
1�p

� 
�

The quantity � f �
 is called the ‘essential sup norm’ of f, as it is the
smallest positive number which � f �x�� exceeds only on a subset of
zero measure in �n. A function f � L
 is called essentially
bounded.

1.3.2.2.5. Tensor products. Fubini’s theorem

Let f � L1��m�, g � L1��n�. Then the function

f � g � �x, y� �
� f �x�g�y�
is called the tensor product of f and g, and belongs to L1��m � �n�.
The finite linear combinations of functions of the form f � g span a
subspace of L1��m � �n� called the tensor product of L1��m� and
L1��n� and denoted L1��m� � L1��n�.
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The integration of a general function over �m � �n may be
accomplished in two steps according to Fubini’s theorem. Given
F � L1��m � �n�, the functions

F1 � x �
� �
�n

F�x, y� dny

F2 � y �
� �
�m

F�x, y� dmx

exist for almost all x � �m and almost all y � �n, respectively, are
integrable, and�

�m��n

F�x, y� dmx dny � �
�m

F1�x� dmx � �
�n

F2�y� dny�

Conversely, if any one of the integrals

�i� �
�m��n

�F�x, y�� dmx dny

�ii� �
�m

�
�n
�F�x, y�� dny

� 

dmx

�iii� �
�n

�
�m

�F�x, y�� dmx

� 

dny

is finite, then so are the other two, and the identity above holds. It is
then (and only then) permissible to change the order of integrations.

Fubini’s theorem is of fundamental importance in the study of
tensor products and convolutions of distributions.

1.3.2.2.6. Topology in function spaces

Geometric intuition, which often makes ‘obvious’ the topologi-
cal properties of the real line and of ordinary space, cannot be relied
upon in the study of function spaces: the latter are infinite-
dimensional, and several inequivalent notions of convergence
may exist. A careful analysis of topological concepts and of their
interrelationship is thus a necessary prerequisite to the study of
these spaces. The reader may consult Dieudonné (1969, 1970),
Friedman (1970), Trèves (1967) and Yosida (1965) for detailed
expositions.

1.3.2.2.6.1. General topology
Most topological notions are first encountered in the setting of

metric spaces. A metric space E is a set equipped with a distance
function d from E � E to the non-negative reals which satisfies:

�i� d�x, y� � d�y, x� �x, y � E (symmetry);

�ii� d�x, y� � 0 iff x � y (separation);

�iii� d�x, z� � d�x, y� 	 d�y, z� �x, y, z � E (triangular

inequality).

By means of d, the following notions can be defined: open balls,
neighbourhoods; open and closed sets, interior and closure;
convergence of sequences, continuity of mappings; Cauchy
sequences and completeness; compactness; connectedness. They
suffice for the investigation of a great number of questions in
analysis and geometry (see e.g. Dieudonné, 1969).

Many of these notions turn out to depend only on the properties
of the collection ��E� of open subsets of E: two distance functions
leading to the same ��E� lead to identical topological properties.
An axiomatic reformulation of topological notions is thus possible:
a topology in E is a collection ��E� of subsets of E which satisfy
suitable axioms and are deemed open irrespective of the way they
are obtained. From the practical standpoint, however, a topology
which can be obtained from a distance function (called a metrizable
topology) has the very useful property that the notions of closure,

limit and continuity may be defined by means of sequences. For non-
metrizable topologies, these notions are much more difficult to
handle, requiring the use of ‘filters’ instead of sequences.

In some spaces E, a topology may be most naturally defined by a
family of pseudo-distances �d����A, where each d� satisfies (i) and
(iii) but not (ii). Such spaces are called uniformizable. If for every
pair �x, y� � E � E there exists � � A such that d��x, y� �� 0, then
the separation property can be recovered. If furthermore a countable
subfamily of the d� suffices to define the topology of E, the latter
can be shown to be metrizable, so that limiting processes in E may
be studied by means of sequences.

1.3.2.2.6.2. Topological vector spaces
The function spaces E of interest in Fourier analysis have an

underlying vector space structure over the field � of complex
numbers. A topology on E is said to be compatible with a vector
space structure on E if vector addition [i.e. the map
�x, y� �
� x	 y] and scalar multiplication [i.e. the map
��, x� �
� �x] are both continuous; E is then called a topological
vector space. Such a topology may be defined by specifying a
‘fundamental system S of neighbourhoods of 0’, which can then be
translated by vector addition to construct neighbourhoods of other
points x �� 0.

A norm 
 on a vector space E is a non-negative real-valued
function on E � E such that

�i�� 
��x� � ���
�x� for all � � � and x � E;

�ii�� 
�x� � 0 if and only if x � 0;

�iii�� 
�x	 y� � 
�x� 	 
�y� for all x, y � E�

Subsets of E defined by conditions of the form 
�x� � r with r 
 0
form a fundamental system of neighbourhoods of 0. The
corresponding topology makes E a normed space. This topology
is metrizable, since it is equivalent to that derived from the
translation-invariant distance d�x, y� � 
�x
 y�. Normed spaces
which are complete, i.e. in which all Cauchy sequences converge,
are called Banach spaces; they constitute the natural setting for the
study of differential calculus.

A semi-norm � on a vector space E is a positive real-valued
function on E � E which satisfies (i�) and (iii�) but not (ii�). Given a
set � of semi-norms on E such that any pair (x, y) in E � E is
separated by at least one � � �, let B be the set of those subsets ��� r
of E defined by a condition of the form ��x� � r with � � � and
r 
 0; and let S be the set of finite intersections of elements of B.
Then there exists a unique topology on E for which S is a
fundamental system of neighbourhoods of 0. This topology is
uniformizable since it is equivalent to that derived from the family
of translation-invariant pseudo-distances �x, y� �
� ��x
 y�. It is
metrizable if and only if it can be constructed by the above
procedure with � a countable set of semi-norms. If furthermore E is
complete, E is called a Fréchet space.

If E is a topological vector space over �, its dual E� is the set of
all linear mappings from E to � (which are also called linear forms,
or linear functionals, over E). The subspace of E� consisting of all
linear forms which are continuous for the topology of E is called the
topological dual of E and is denoted E�. If the topology on E is
metrizable, then the continuity of a linear form T � E� at f � E can
be ascertained by means of sequences, i.e. by checking that the
sequence �T� fj�� of complex numbers converges to T� f � in �
whenever the sequence � fj� converges to f in E.

1.3.2.3. Elements of the theory of distributions

1.3.2.3.1. Origins

At the end of the 19th century, Heaviside proposed under the
name of ‘operational calculus’ a set of rules for solving a class of
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differential, partial differential and integral equations encountered
in electrical engineering (today’s ‘signal processing’). These rules
worked remarkably well but were devoid of mathematical
justification (see Whittaker, 1928). In 1926, Dirac introduced his
famous �-function [see Dirac (1958), pp. 58–61], which was found
to be related to Heaviside’s constructs. Other singular objects,
together with procedures to handle them, had already appeared in
several branches of analysis [Cauchy’s ‘principal values’; Hada-
mard’s ‘finite parts’ (Hadamard, 1932, 1952); Riesz’s regularization
methods for certain divergent integrals (Riesz, 1938, 1949)] as well
as in the theories of Fourier series and integrals (see e.g. Bochner,
1932, 1959). Their very definition often verged on violating the
rigorous rules governing limiting processes in analysis, so that
subsequent recourse to limiting processes could lead to erroneous
results; ad hoc precautions thus had to be observed to avoid
mistakes in handling these objects.

In 1945–1950, Laurent Schwartz proposed his theory of
distributions (see Schwartz, 1966), which provided a unified and
definitive treatment of all these questions, with a striking
combination of rigour and simplicity. Schwartz’s treatment of
Dirac’s �-function illustrates his approach in a most direct fashion.
Dirac’s original definition reads:

�i� ��x� � 0 for x �� 0,

�ii� �
�n��x� dnx � 1�

These two conditions are irreconcilable with Lebesgue’s theory of
integration: by (i), � vanishes almost everywhere, so that its integral
in (ii) must be 0, not 1.

A better definition consists in specifying that

�iii� �
�n��x���x� dnx � ��0�

for any function � sufficiently well behaved near x � 0. This is
related to the problem of finding a unit for convolution (Section
1.3.2.2.4). As will now be seen, this definition is still unsatisfactory.
Let the sequence � f
� in L1��n� be an approximate convolution
unit, e.g.

f
�x� � 


2�

� �1�2
exp�
1

2

2�x�2��

Then for any well behaved function � the integrals�
�n

f
�x���x� dnx

exist, and the sequence of their numerical values tends to ��0�. It is
tempting to combine this with (iii) to conclude that � is the limit of
the sequence � f
� as 
 �
. However,

lim f
�x� � 0 as 
 �

almost everywhere in �n and the crux of the problem is that

��0� � lim

�


�
�n

f
�x���x� dnx

�� �
�n

lim

�
 fv�x�
� �

��x� dnx � 0

because the sequence � f
� does not satisfy the hypotheses of
Lebesgue’s dominated convergence theorem.

Schwartz’s solution to this problem is deceptively simple: the
regular behaviour one is trying to capture is an attribute not of the
sequence of functions � f
�, but of the sequence of continuous linear
functionals

T
 � � �
�
�
�n

f
�x���x� dnx

which has as a limit the continuous functional

T � � �
� ��0��
It is the latter functional which constitutes the proper definition of �.
The previous paradoxes arose because one insisted on writing down
the simple linear operation T in terms of an integral.

The essence of Schwartz’s theory of distributions is thus that,
rather than try to define and handle ‘generalized functions’ via
sequences such as � f
� [an approach adopted e.g. by Lighthill
(1958) and Erdélyi (1962)], one should instead look at them as
continuous linear functionals over spaces of well behaved
functions.

There are many books on distribution theory and its applications.
The reader may consult in particular Schwartz (1965, 1966),
Gel’fand & Shilov (1964), Bremermann (1965), Trèves (1967),
Challifour (1972), Friedlander (1982), and the relevant chapters of
Hörmander (1963) and Yosida (1965). Schwartz (1965) is
especially recommended as an introduction.

1.3.2.3.2. Rationale

The guiding principle which leads to requiring that the functions
� above (traditionally called ‘test functions’) should be well
behaved is that correspondingly ‘wilder’ behaviour can then be
accommodated in the limiting behaviour of the f
 while still keeping
the integrals

�
�n f
� dnx under control. Thus

(i) to minimize restrictions on the limiting behaviour of the f
 at
infinity, the �’s will be chosen to have compact support;

(ii) to minimize restrictions on the local behaviour of the f
 , the
�’s will be chosen infinitely differentiable.

To ensure further the continuity of functionals such as T
 with
respect to the test function � as the f
 go increasingly wild, very
strong control will have to be exercised in the way in which a
sequence ��j� of test functions will be said to converge towards a
limiting �: conditions will have to be imposed not only on the
values of the functions �j, but also on those of all their derivatives.
Hence, defining a strong enough topology on the space of test
functions � is an essential prerequisite to the development of a
satisfactory theory of distributions.

1.3.2.3.3. Test-function spaces

With this rationale in mind, the following function spaces will be
defined for any open subset � of �n (which may be the whole of
�n):

(a) ���� is the space of complex-valued functions over � which
are indefinitely differentiable;

(b) ���� is the subspace of ���� consisting of functions with
(unspecified) compact support contained in �n;

(c) �K��� is the subspace of ���� consisting of functions whose
(compact) support is contained within a fixed compact subset K of
�.

When � is unambiguously defined by the context, we will simply
write � ,�,�K .

It sometimes suffices to require the existence of continuous
derivatives only up to finite order m inclusive. The corresponding
spaces are then denoted ��m�,��m�,��m�K with the convention that if
m � 0, only continuity is required.

The topologies on these spaces constitute the most important
ingredients of distribution theory, and will be outlined in some
detail.

1.3.2.3.3.1. Topology on ����
It is defined by the family of semi-norms

� � ���� �
� �p� K��� � sup
x�K
�Dp��x��,

where p is a multi-index and K a compact subset of �. A
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fundamental system S of neighbourhoods of the origin in ���� is
given by subsets of ���� of the form

V�m, �, K� � �� � ������p� � m � �p, K��� � ��
for all natural integers m, positive real �, and compact subset K of �.
Since a countable family of compact subsets K suffices to cover �,
and since restricted values of � of the form � � 1�N lead to the same
topology, S is equivalent to a countable system of neighbourhoods
and hence ���� is metrizable.

Convergence in � may thus be defined by means of sequences. A
sequence ��
� in � will be said to converge to 0 if for any given
V �m, �, K� there exists 
0 such that �
 � V �m, �, K� whenever

 
 
0; in other words, if the �
 and all their derivatives Dp�


converge to 0 uniformly on any given compact K in �.

1.3.2.3.3.2. Topology on �k���
It is defined by the family of semi-norms

� � �K��� �
� �p��� � sup
x�K
�Dp��x��,

where K is now fixed. The fundamental system S of neighbourhoods
of the origin in �K is given by sets of the form

V �m, �� � �� � �K�����p� � m � �p��� � ���
It is equivalent to the countable subsystem of the V �m, 1�N�, hence
�K��� is metrizable.

Convergence in �K may thus be defined by means of sequences.
A sequence ��
� in �K will be said to converge to 0 if for any given
V �m, �� there exists 
0 such that �
 � V �m, �� whenever 
 
 
0; in
other words, if the �
 and all their derivatives Dp�
 converge to 0
uniformly in K.

1.3.2.3.3.3. Topology on ����
It is defined by the fundamental system of neighbourhoods of the

origin consisting of sets of the form

V ��m�, ����

� � � ������p� � m
 � sup
�x��


�Dp��x�� � �
 for all 


� �
,

where (m) is an increasing sequence �m
� of integers tending to	

and (�) is a decreasing sequence ��
� of positive reals tending to 0,
as 
 �
.

This topology is not metrizable, because the sets of sequences
(m) and (�) are essentially uncountable. It can, however, be shown
to be the inductive limit of the topology of the subspaces �K , in the
following sense: V is a neighbourhood of the origin in � if and only
if its intersection with �K is a neighbourhood of the origin in �K for
any given compact K in �.

A sequence ��
� in � will thus be said to converge to 0 in � if all
the �
 belong to some �K (with K a compact subset of �
independent of 
) and if ��
� converges to 0 in �K .

As a result, a complex-valued functional T on � will be said to be
continuous for the topology of � if and only if, for any given
compact K in �, its restriction to �K is continuous for the topology
of �K , i.e. maps convergent sequences in �K to convergent
sequences in �.

This property of �, i.e. having a non-metrizable topology which
is the inductive limit of metrizable topologies in its subspaces �K ,
conditions the whole structure of distribution theory and dictates
that of many of its proofs.

1.3.2.3.3.4. Topologies on � �m�,��m�k ,��m�
These are defined similarly, but only involve conditions on

derivatives up to order m.

1.3.2.3.4. Definition of distributions

A distribution T on � is a linear form over ����, i.e. a map

T � � �
� �T ,��
which associates linearly a complex number �T ,�� to any
� � ����, and which is continuous for the topology of that
space. In the terminology of Section 1.3.2.2.6.2, T is an element of
�����, the topological dual of ����.

Continuity over � is equivalent to continuity over �K for all
compact K contained in �, and hence to the condition that for any
sequence ��
� in � such that

(i) Supp �
 is contained in some compact K independent of 
,
(ii) the sequences ��Dp�
 �� converge uniformly to 0 on K for all

multi-indices p;
then the sequence of complex numbers �T ,�
� converges to 0 in �.

If the continuity of a distribution T requires (ii) for �p� � m only,
T may be defined over ��m� and thus T � ���m�; T is said to be a
distribution of finite order m. In particular, for m � 0,��0� is the
space of continuous functions with compact support, and a
distribution T � ���0� is a (Radon) measure as used in the theory
of integration. Thus measures are particular cases of distributions.

Generally speaking, the larger a space of test functions, the
smaller its topological dual:

m � n � ��m� � ��n� � ���n� � ���m��

This clearly results from the observation that if the �’s are allowed
to be less regular, then less wildness can be accommodated in T if
the continuity of the map � �
� �T ,�� with respect to � is to be
preserved.

1.3.2.3.5. First examples of distributions

(i) The linear map � �
� ��,�� � ��0� is a measure (i.e. a
zeroth-order distribution) called Dirac’s measure or (improperly)
Dirac’s ‘�-function’.

(ii) The linear map � �
� ���a�,�� � ��a� is called Dirac’s
measure at point a � �n.

(iii) The linear map � �
� �
1�pDp��a� is a distribution of
order m � �p� 
 0, and hence is not a measure.

(iv) The linear map � �
��

0�
�
��
� is a distribution of

infinite order on �: the order of differentiation is bounded for each
� (because � has compact support) but is not as � varies.

(v) If �p
� is a sequence of multi-indices p
 � �p1
 , � � � , pn
�
such that �p
 � � 
 as 
 �
, then the linear map
� �
��

0�Dp
���p
� is a distribution of infinite order on �n.

1.3.2.3.6. Distributions associated to locally integrable
functions

Let f be a complex-valued function over � such that�
K � f �x�� dnx exists for any given compact K in �; f is then called

locally integrable.
The linear mapping from ���� to � defined by

� �
� �
�

f �x���x� dnx

may then be shown to be continuous over ����. It thus defines a
distribution Tf � �����:

�Tf ,�� � �
�

f �x���x� dnx�

As the continuity of Tf only requires that � � ��0����, Tf is actually
a Radon measure.
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It can be shown that two locally integrable functions f and g
define the same distribution, i.e.

�Tf ,�� � �TK ,�� for all � � �,

if and only if they are equal almost everywhere. The classes of
locally integrable functions modulo this equivalence form a vector
space denoted L1

loc���; each element of L1
loc��� may therefore be

identified with the distribution Tf defined by any one of its
representatives f.

1.3.2.3.7. Support of a distribution

A distribution T � ����� is said to vanish on an open subset � of
� if it vanishes on all functions in ����, i.e. if �T ,�� � 0 whenever
� � ����.

The support of a distribution T, denoted Supp T, is then defined as
the complement of the set-theoretic union of those open subsets �
on which T vanishes; or equivalently as the smallest closed subset of
� outside which T vanishes.

When T � Tf for f � L1
loc���, then Supp T � Supp f , so that the

two notions coincide. Clearly, if Supp T and Supp � are disjoint
subsets of �, then �T ,�� � 0.

It can be shown that any distribution T � �� with compact
support may be extended from � to � while remaining continuous,
so that T � � �; and that conversely, if S � � �, then its restriction T to
� is a distribution with compact support. Thus, the topological dual
� � of � consists of those distributions in �� which have compact
support. This is intuitively clear since, if the condition of having
compact support is fulfilled by T, it needs no longer be required of
�, which may then roam through � rather than �.

1.3.2.3.8. Convergence of distributions

A sequence �Tj� of distributions will be said to converge in �� to
a distribution T as j �
 if, for any given � � �, the sequence of
complex numbers ��Tj,��� converges in � to the complex number
�T ,��.

A series
�


j�0Tj of distributions will be said to converge in ��
and to have distribution S as its sum if the sequence of partial sums
Sk �

�k
j�0 converges to S.

These definitions of convergence in �� assume that the limits T
and S are known in advance, and are distributions. This raises the
question of the completeness of ��: if a sequence �Tj� in �� is such
that the sequence ��Tj,��� has a limit in � for all � � �, does the
map

� �
� lim
j�


�Tj,��

define a distribution T � ��? In other words, does the limiting
process preserve continuity with respect to �? It is a remarkable
theorem that, because of the strong topology on �, this is actually
the case. An analogous statement holds for series. This notion of
convergence does not coincide with any of the classical notions
used for ordinary functions: for example, the sequence ��
� with
�
�x� � cos 
x converges to 0 in �����, but fails to do so by any of
the standard criteria.

An example of convergent sequences of distributions is provided
by sequences which converge to �. If � f
� is a sequence of locally
summable functions on �n such that

(i)
�
�x�� b f
�x� dnx � 1 as 
 �
 for all b 
 0;

(ii)
�

a��x��1�a� f
�x�� dnx � 0 as 
 �
 for all 0 � a � 1;
(iii) there exists d 
 0 and M 
 0 such that

�
�x�� d � f
�x�� dnx �

M for all 
;
then the sequence �Tf
 � of distributions converges to � in ����n�.

1.3.2.3.9. Operations on distributions

As a general rule, the definitions are chosen so that the operations
coincide with those on functions whenever a distribution is
associated to a function.

Most definitions consist in transferring to a distribution T an
operation which is well defined on � � � by ‘transposing’ it in the
duality product �T ,��; this procedure will map T to a new
distribution provided the original operation maps � continuously
into itself.

1.3.2.3.9.1. Differentiation

(a) Definition and elementary properties
If T is a distribution on �n, its partial derivative 	iT with respect

to xi is defined by

�	iT ,�� � 
�T , 	i��
for all � � �. This does define a distribution, because the partial

differentiations � �
� 	i� are continuous for the topology of �.
Suppose that T � Tf with f a locally integrable function such that

	i f exists and is almost everywhere continuous. Then integration
by parts along the xi axis gives�
�n

	i f �xl, � � � , xi, � � � , xn���xl, � � � , xi, � � � , xn� dxi

� � f ���xl, � � � , 	
, � � � , xn� 
 � f ���xl, � � � , 

, � � � , xn�

 �

�n

f �xl, � � � , xi, � � � , xn�	i��xl, � � � , xi, � � � , xn� dxi;

the integrated term vanishes, since � has compact support, showing
that 	iTf � T	i f .

The test functions � � � are infinitely differentiable. Therefore,
transpositions like that used to define 	iT may be repeated, so that
any distribution is infinitely differentiable. For instance,

�	2
ijT ,�� � 
�	jT , 	i�� � �T , 	2

ij��,
�DpT ,�� � �
1��p��T , Dp��,

�	T ,�� � �T ,	��,
where 	 is the Laplacian operator. The derivatives of Dirac’s �
distribution are

�Dp�,�� � �
1��p���, Dp�� � �
1��p�Dp��0��
It is remarkable that differentiation is a continuous operation for

the topology on ��: if a sequence �Tj� of distributions converges to
distribution T, then the sequence �DpTj� of derivatives converges to
DpT for any multi-index p, since as j �

�DpTj,�� � �
1��p��Tj, Dp�� � �
1��p��T , Dp�� � �DpT ,���

An analogous statement holds for series: any convergent series of
distributions may be differentiated termwise to all orders. This
illustrates how ‘robust’ the constructs of distribution theory are in
comparison with those of ordinary function theory, where similar
statements are notoriously untrue.

(b) Differentiation under the duality bracket
Limiting processes and differentiation may also be carried out

under the duality bracket �, � as under the integral sign with ordinary
functions. Let the function � � ��x,�� depend on a parameter � �

 and a vector x � �n in such a way that all functions

�� � x �
� ��x,��
be in ���n� for all � � 
. Let T � ����n� be a distribution, let

I��� � �T ,���
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and let �0 � 
 be given parameter value. Suppose that, as � runs
through a small enough neighbourhood of �0,

(i) all the �� have their supports in a fixed compact subset K of
�n;

(ii) all the derivatives Dp�� have a partial derivative with
respect to � which is continuous with respect to x and �.

Under these hypotheses, I��� is differentiable (in the usual sense)
with respect to � near �0, and its derivative may be obtained by
‘differentiation under the �, � sign’:

dI
d�
� �T , 	�����

(c) Effect of discontinuities
When a function f or its derivatives are no longer continuous, the

derivatives DpTf of the associated distribution Tf may no longer
coincide with the distributions associated to the functions Dpf .

In dimension 1, the simplest example is Heaviside’s unit step
function Y �Y�x� � 0 for x � 0, Y�x� � 1 for x � 0�:

��TY ��,�� � 
��TY �,��� � 

�	

0
���x� dx � ��0� � ��,���

Hence �TY �� � �, a result long used ‘heuristically’ by electrical
engineers [see also Dirac (1958)].

Let f be infinitely differentiable for x � 0 and x 
 0 but have
discontinuous derivatives f �m� at x � 0 [ f �0� being f itself] with
jumps �m � f �m��0	� 
 f �m��0
�. Consider the functions:

g0 � f 
 �0Y

g1 � g�0 
 �1Y












gk � g�k
1 
 �kY �

The gk are continuous, their derivatives g�k are continuous almost
everywhere [which implies that �Tgk �� � Tg�k

and g�k � f �k	1� almost
everywhere]. This yields immediately:

�Tf �� � Tf � 	 �0�

�Tf ��� � Tf �� 	 �0�
� 	 �1�




















�Tf ��m� � Tf �m� 	 �0�

�m
1� 	 � � �	 �m
1��




















Thus the ‘distributional derivatives’ �Tf ��m� differ from the usual
functional derivatives Tf �m� by singular terms associated with
discontinuities.

In dimension n, let f be infinitely differentiable everywhere
except on a smooth hypersurface S, across which its partial
derivatives show discontinuities. Let �0 and �
 denote the
discontinuities of f and its normal derivative 	
� across S (both
�0 and �
 are functions of position on S), and let ��S� and 	
��S� be
defined by

���S�,�� �
�
S
� dn
1S

�	
��S�,�� � 

�
S
	
� dn
1S�

Integration by parts shows that

	iTf � T	i f 	 �0 cos �i��S�,

where �i is the angle between the xi axis and the normal to S along
which the jump �0 occurs, and that the Laplacian of Tf is given by

	�Tf � � T	f 	 �
��S� 	 	
��0��S���
The latter result is a statement of Green’s theorem in terms of
distributions. It will be used in Section 1.3.4.4.3.5 to calculate the
Fourier transform of the indicator function of a molecular envelope.

1.3.2.3.9.2. Integration of distributions in dimension 1
The reverse operation from differentiation, namely calculating

the ‘indefinite integral’ of a distribution S, consists in finding a
distribution T such that T � � S.

For all � � � such that � � �� with � � �, we must have

�T ,�� � 
�S,���
This condition defines T in a ‘hyperplane’ � of �, whose equation

�1,�� � �1,��� � 0

reflects the fact that � has compact support.
To specify T in the whole of �, it suffices to specify the value of

�T ,�0� where �0 � � is such that �1,�0� � 1: then any � � � may
be written uniquely as

� � ��0 	 ��

with

� � �1,��, � � �
 ��0, ��x� � �x
0
��t� dt,

and T is defined by

�T ,�� � ��T ,�0� 
 �S,���
The freedom in the choice of �0 means that T is defined up to an
additive constant.

1.3.2.3.9.3. Multiplication of distributions by functions
The product �T of a distribution T on �n by a function � over �n

will be defined by transposition:

��T ,�� � �T ,��� for all � � ��

In order that �T be a distribution, the mapping � �
� �� must send
���n� continuously into itself; hence the multipliers � must be
infinitely differentiable. The product of two general distributions
cannot be defined. The need for a careful treatment of multipliers of
distributions will become clear when it is later shown (Section
1.3.2.5.8) that the Fourier transformation turns convolutions into
multiplications and vice versa.

If T is a distribution of order m, then � needs only have
continuous derivatives up to order m. For instance, � is a distribution
of order zero, and �� � ��0�� is a distribution provided � is
continuous; this relation is of fundamental importance in the theory
of sampling and of the properties of the Fourier transformation
related to sampling (Sections 1.3.2.6.4, 1.3.2.6.6). More generally,
Dp� is a distribution of order �p�, and the following formula holds
for all � � ��m� with m � �p�:

��Dp�� �
�
q�p

�
1��p
q� p
q

� �
�Dp
q���0�Dq��

The derivative of a product is easily shown to be

	i��T� � �	i��T 	 ��	iT�
and generally for any multi-index p

Dp��T� �
�
q�p

p
q

� �
�Dp
q���0�DqT �
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1.3.2.3.9.4. Division of distributions by functions
Given a distribution S on �n and an infinitely differentiable

multiplier function �, the division problem consists in finding a
distribution T such that �T � S.

If � never vanishes, T � S�� is the unique answer. If n � 1, and
if � has only isolated zeros of finite order, it can be reduced to a
collection of cases where the multiplier is xm, for which the general
solution can be shown to be of the form

T � U 	 �m
1

i�0
ci�

�i�,

where U is a particular solution of the division problem xmU � S
and the ci are arbitrary constants.

In dimension n 
 1, the problem is much more difficult, but is of
fundamental importance in the theory of linear partial differential
equations, since the Fourier transformation turns the problem of
solving these into a division problem for distributions [see
Hörmander (1963)].

1.3.2.3.9.5. Transformation of coordinates
Let � be a smooth non-singular change of variables in �n, i.e. an

infinitely differentiable mapping from an open subset � of �n to ��
in �n, whose Jacobian

J��� � det
	��x�
	x

� �

vanishes nowhere in �. By the implicit function theorem, the
inverse mapping �
1 from �� to � is well defined.

If f is a locally summable function on �, then the function ��f
defined by

���f ��x� � f ��
1�x��
is a locally summable function on ��, and for any � � ����� we
may write:�

��
���f ��x���x� dnx � �

��
f ��
1�x����x� dnx

� �
��

f �y�����y���J���� dny by x � ��y��

In terms of the associated distributions

�T��f ,�� � �Tf , �J������
1�����
This operation can be extended to an arbitrary distribution T by

defining its image ��T under coordinate transformation � through

���T ,�� � �T , �J������
1����,
which is well defined provided that � is proper, i.e. that �
1�K� is
compact whenever K is compact.

For instance, if � � x �
� x	 a is a translation by a vector a in
�n, then �J���� � 1; �� is denoted by �a, and the translate �aT of a
distribution T is defined by

��aT ,�� � �T , �
a���
Let A � x �
� Ax be a linear transformation defined by a non-

singular matrix A. Then J�A� � det A, and

�A�T ,�� � �det A��T , �A
1�����
This formula will be shown later (Sections 1.3.2.6.5, 1.3.4.2.1.1) to
be the basis for the definition of the reciprocal lattice.

In particular, if A � 
I, where I is the identity matrix, A is an
inversion through a centre of symmetry at the origin, and denoting
A�� by �� we have:

��T ,�� � �T , ����

T is called an even distribution if �T � T , an odd distribution if
�T � 
T .

If A � �I with � 
 0, A is called a dilation and

�A�T ,�� � �n�T , �A
1�����
Writing symbolically � as ��x� and A�� as ��x���, we have:

��x��� � �n��x��
If n � 1 and f is a function with isolated simple zeros xj, then in the
same symbolic notation

�� f �x�� �
�

j

1
� f ��xj�� ��xj�,

where each �j � 1�� f ��xj�� is analogous to a ‘Lorentz factor’ at zero
xj.

1.3.2.3.9.6. Tensor product of distributions
The purpose of this construction is to extend Fubini’s theorem to

distributions. Following Section 1.3.2.2.5, we may define the tensor
product L1

loc��m� � L1
loc��n� as the vector space of finite linear

combinations of functions of the form

f � g � �x, y� �
� f �x�g�y�,
where x � �m, y � �n, f � L1

loc��m� and g � L1
loc��n�.

Let Sx and Ty denote the distributions associated to f and g,
respectively, the subscripts x and y acting as mnemonics for �m and
�n. It follows from Fubini’s theorem (Section 1.3.2.2.5) that
f � g � L1

loc��m � �n�, and hence defines a distribution over
�m � �n; the rearrangement of integral signs gives

�Sx � Ty,�x� y� � �Sx, �Ty,�x� y�� � �Ty, �Sx,�x� y��
for all �x� y � ���m � �n�. In particular, if ��x, y� � u�x�v�y�with
u � ���m�, v � ���n�, then

�S � T , u� v� � �S, u��T , v��
This construction can be extended to general distributions S �

����m� and T � ����n�. Given any test function � � ���m � �n�,
let �x denote the map y �
� ��x, y�; let �y denote the map
x �
� ��x, y�; and define the two functions ��x� � �T ,�x� and
��y� � �S,�y�. Then, by the lemma on differentiation under the �, �
sign of Section 1.3.2.3.9.1, � � ���m�,� � ���n�, and there exists
a unique distribution S � T such that

�S � T ,�� � �S, �� � �T ,���
S � T is called the tensor product of S and T.

With the mnemonic introduced above, this definition reads
identically to that given above for distributions associated to locally
integrable functions:

�Sx � Ty,�x� y� � �Sx, �Ty,�x� y�� � �Ty, �Sx,�x� y���
The tensor product of distributions is associative:

�R � S� � T � R � �S � T��
Derivatives may be calculated by

Dp
xDq

y�Sx � Ty� � �Dp
xSx� � �Dq

yTy��
The support of a tensor product is the Cartesian product of the
supports of the two factors.

1.3.2.3.9.7. Convolution of distributions
The convolution f � g of two functions f and g on �n is defined by

� f � g��x� � �
�n

f �y�g�x
 y� dny � �
�n

f �x
 y�g�y� dny
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whenever the integral exists. This is the case when f and g are both
in L1��n�; then f � g is also in L1��n�. Let S, T and W denote the
distributions associated to f, g and f � g, respectively: a change of
variable immediately shows that for any � � ���n�,

�W ,�� � �
�n��n

f �x�g�y���x	 y� dnx dny�

Introducing the map � from �n � �n to �n defined by
��x, y� � x	 y, the latter expression may be written:

�Sx � Ty,� � ��
(where � denotes the composition of mappings) or by a slight abuse
of notation:

�W ,�� � �Sx � Ty,��x	 y���
A difficulty arises in extending this definition to general

distributions S and T because the mapping � is not proper: if K is
compact in �n, then �
1�K� is a cylinder with base K and generator
the ‘second bisector’ x	 y � 0 in �n � �n. However, �S � T ,� �
�� is defined whenever the intersection between Supp �S � T� �
�Supp S� � �Supp T� and �
1�Supp �� is compact.

We may therefore define the convolution S � T of two
distributions S and T on �n by

�S � T ,�� � �S � T ,� � �� � �Sx � Ty,��x	 y��
whenever the following support condition is fulfilled:

‘the set ��x, y��x � A, y � B, x	 y � K� is compact in �n � �n for all K
compact in �n’.

The latter condition is met, in particular, if S or T has compact
support. The support of S � T is easily seen to be contained in the
closure of the vector sum

A	 B � �x	 y�x � A, y � B��
Convolution by a fixed distribution S is a continuous operation

for the topology on ��: it maps convergent sequences �Tj� to
convergent sequences �S � Tj�. Convolution is commutative:
S � T � T � S.

The convolution of p distributions T1, � � � , Tp with supports
A1, � � � , Ap can be defined by

�T1 � � � � � Tp,�� � ��T1�x1
� � � �� �Tp�xp

,��x1 	 � � �	 xp��
whenever the following generalized support condition:

‘the set ��x1, � � � , xp��x1 � A1, � � � , xp � Ap, x1 	 � � �	 xp � K� is com-
pact in ��n�p for all K compact in �n’

is satisfied. It is then associative. Interesting examples of
associativity failure, which can be traced back to violations of the
support condition, may be found in Bracewell (1986, pp. 436–437).

It follows from previous definitions that, for all distributions
T � ��, the following identities hold:

(i) � � T � T : � is the unit convolution;
(ii) ��a� � T � �aT : translation is a convolution with the

corresponding translate of �;
(iii) �Dp�� � T � DpT : differentiation is a convolution with the

corresponding derivative of �;
(iv) translates or derivatives of a convolution may be obtained

by translating or differentiating any one of the factors: convolution
‘commutes’ with translation and differentiation, a property used in
Section 1.3.4.4.7.7 to speed up least-squares model refinement for
macromolecules.

The latter property is frequently used for the purpose of
regularization: if T is a distribution, � an infinitely differentiable
function, and at least one of the two has compact support, then T � �
is an infinitely differentiable ordinary function. Since sequences

��
� of such functions � can be constructed which have compact
support and converge to �, it follows that any distribution T can be
obtained as the limit of infinitely differentiable functions T � �
 . In
topological jargon: ���n� is ‘everywhere dense’ in ����n�. A
standard function in � which is often used for such proofs is defined
as follows: put

��x� � 1
A

exp 
 1
1
 x2

� �
for �x� � 1,

� 0 for �x� � 1,

with

A �
�	1


1

exp 
 1
1
 x2

� �
dx

(so that � is in � and is normalized), and put

���x� � 1
�
�

x
�

� �
in dimension 1,

���x� �
�n

j�1

���xj� in dimension n�

Another related result, also proved by convolution, is the
structure theorem: the restriction of a distribution T � ����n� to
a bounded open set � in �n is a derivative of finite order of a
continuous function.

Properties (i) to (iv) are the basis of the symbolic or operational
calculus (see Carslaw & Jaeger, 1948; Van der Pol & Bremmer,
1955; Churchill, 1958; Erdélyi, 1962; Moore, 1971) for solving
integro-differential equations with constant coefficients by turning
them into convolution equations, then using factorization methods
for convolution algebras (Schwartz, 1965).

1.3.2.4. Fourier transforms of functions

1.3.2.4.1. Introduction

Given a complex-valued function f on �n subject to suitable
regularity conditions, its Fourier transform 	 � f � and Fourier
cotransform �	 � f � are defined as follows:

	 � f ���� � �
�n

f �x� exp�
2�i� � x� dnx

�	 � f ���� � �
�n

f �x� exp�	2�i� � x� dnx,

where � � x ��n
i�1�ixi is the ordinary scalar product. The

terminology and sign conventions given above are the standard
ones in mathematics; those used in crystallography are slightly
different (see Section 1.3.4.2.1.1). These transforms enjoy a number
of remarkable properties, whose natural settings entail different
regularity assumptions on f : for instance, properties relating to
convolution are best treated in L1��n�, while Parseval’s theorem
requires the Hilbert space structure of L2��n�. After a brief review
of these classical properties, the Fourier transformation will be
examined in a space 
 ��n� particularly well suited to accommodat-
ing the full range of its properties, which will later serve as a space
of test functions to extend the Fourier transformation to
distributions.

There exists an abundant literature on the ‘Fourier integral’. The
books by Carslaw (1930), Wiener (1933), Titchmarsh (1948),
Katznelson (1968), Sneddon (1951, 1972), and Dym & McKean
(1972) are particularly recommended.
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1.3.2.4.2. Fourier transforms in L1

1.3.2.4.2.1. Linearity
Both transformations 	 and �	 are obviously linear maps from L1

to L
 when these spaces are viewed as vector spaces over the field
� of complex numbers.

1.3.2.4.2.2. Effect of affine coordinate transformations
	 and �	 turn translations into phase shifts:

	 ��a f ���� � exp�
2�i� � a�	 � f ����
�	 ��a f ���� � exp�	2�i� � a� �	 � f �����

Under a general linear change of variable x �
� Ax with non-
singular matrix A, the transform of A�f is

	 �A�f ���� � �
�n

f �A
1x� exp�
2�i� � x� dnx

� �
�n

f �y� exp�
2�i�AT�� � y��det A� dny

by x � Ay

� �det A�	 � f ��AT��
i.e.

	 �A�f � � �det A���A
1�T ��	 � f �
and similarly for �	 . The matrix �A
1�T is called the contragredient
of matrix A.

Under an affine change of coordinates x �
� S�x� � Ax	 b with
non-singular matrix A, the transform of S�f is given by

	 �S�f ��� � � 	 ��b�A�f �����
� exp�
2�i� � b�	 �A�f ����
� exp�
2�i� � b��det A�	 � f ��AT� �

with a similar result for �	 , replacing 
i by +i.

1.3.2.4.2.3. Conjugate symmetry
The kernels of the Fourier transformations 	 and �	 satisfy the

following identities:

exp� 2�i� � x� � exp � 2�i� � �
x�� � exp � 2�i�
�� � x��
As a result the transformations 	 and �	 themselves have the
following ‘conjugate symmetry’ properties [where the notation
�f �x� � f �
x� of Section 1.3.2.2.2 will be used]:

	 � f ���� � 	 ��f ��
�� � �
	 ��f ��� �

	 � f ���� � 	 ���f �����
Therefore,

(i) f real ! f � �f ! 	 � f � � �	 � f � ! 	 � f ���� � 	 � f ��
� � �
	 � f � is said to possess Hermitian symmetry;

(ii) f centrosymmetric ! f � �f ! 	 � f � � 	 ��f �;
(iii) f real centrosymmetric ! f � �f � �f ! 	 � f � � 	 � f � �
�	 � f � ! 	 � f � real centrosymmetric.
Conjugate symmetry is the basis of Friedel’s law (Section

1.3.4.2.1.4) in crystallography.

1.3.2.4.2.4. Tensor product property
Another elementary property of 	 is its naturality with respect to

tensor products. Let u � L1��m� and v � L1��n�, and let
	 x,	 y,	 x� y denote the Fourier transformations in
L1��m�, L1��n� and L1��m � �n�, respectively. Then

	 x� y�u� v� � 	 x�u� � 	 y�v��
Furthermore, if f � L1��m � �n�, then 	 y� f � � L1��m� as a
function of x and 	 x� f � � L1��n� as a function of y, and

	 x� y� f � � 	 x�	 y� f �� � 	 y�	 x� f ���
This is easily proved by using Fubini’s theorem and the fact that
�� ,�� � �x, y� � � � x	 � � y, where x, � � �m, y,� � �n. This
property may be written:

	 x� y � 	 x � 	 y�

1.3.2.4.2.5. Convolution property
If f and g are summable, their convolution f � g exists and is

summable, and

	 � f � g���� � �
�n

�
�n

f �y�g�x
 y� dny

� �
exp�
2�i� � x� dnx�

With x � y	 z, so that

exp�
2�i� � x� � exp�
2�i� � y� exp�
2�i� � z�,
and with Fubini’s theorem, rearrangement of the double integral
gives:

	 � f � g� � 	 � f � � 	 �g�
and similarly

�	 � f � g� � �	 � f � � �	 �g��
Thus the Fourier transform and cotransform turn convolution into
multiplication.

1.3.2.4.2.6. Reciprocity property
In general, 	 � f � and �	 � f � are not summable, and hence cannot

be further transformed; however, as they are essentially bounded,
their products with the Gaussians Gt��� � exp�
2�2���2t� are
summable for all t 
 0, and it can be shown that

f � lim
t�0

�	 �Gt	 � f �� � lim
t�0

	 �Gt
�	 � f ��,

where the limit is taken in the topology of the L1 norm ���1. Thus 	
and �	 are (in a sense) mutually inverse, which justifies the common
practice of calling �	 the ‘inverse Fourier transformation’.

1.3.2.4.2.7. Riemann–Lebesgue lemma
If f � L1��n�, i.e. is summable, then 	 � f � and �	 � f � exist and

are continuous and essentially bounded:

�	 � f ��
 � � �	 � f ��
 � � f �1�

In fact one has the much stronger property, whose statement
constitutes the Riemann–Lebesgue lemma, that 	 � f ���� and
�	 � f ���� both tend to zero as ��� � 
.

1.3.2.4.2.8. Differentiation
Let us now suppose that n � 1 and that f � L1��� is

differentiable with f � � L1���. Integration by parts yields

	 � f ����� � �	





f ��x� exp�
2�i� � x� dx

� � f �x� exp�
2�i� � x��	



	 2�i�

�	





f �x� exp�
2�i� � x� dx�

Since f � is summable, f has a limit when x �  
, and this limit
must be 0 since f is summable. Therefore
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	 � f ����� � �2�i��	 � f ����
with the bound

�2��	 � f ��
 � � f ��1

so that �	 � f ����� decreases faster than 1���� � 
.
This result can be easily extended to several dimensions and to

any multi-index m: if f is summable and has continuous summable
partial derivatives up to order �m�, then

	 �Dmf ���� � �2�i��m	 � f ����
and

��2���m	 � f ��
 � �Dmf �1�

Similar results hold for �	 , with 2�i� replaced by 
2�i� . Thus,
the more differentiable f is, with summable derivatives, the faster
	 � f � and �	 � f � decrease at infinity.

The property of turning differentiation into multiplication by a
monomial has many important applications in crystallography, for
instance differential syntheses (Sections 1.3.4.2.1.9, 1.3.4.4.7.2,
1.3.4.4.7.5) and moment-generating functions [Section
1.3.4.5.2.1(c)].

1.3.2.4.2.9. Decrease at infinity
Conversely, assume that f is summable on �n and that f decreases

fast enough at infinity for xmf also to be summable, for some multi-
index m. Then the integral defining 	 � f � may be subjected to the
differential operator Dm, still yielding a convergent integral:
therefore Dm	 � f � exists, and

Dm�	 � f ����� � 	 ��
2�ix�mf ����
with the bound

�Dm�	 � f ���
 � ��2�x�mf �1�

Similar results hold for �	 , with 
2�ix replaced by 2�ix. Thus,
the faster f decreases at infinity, the more 	 � f � and �	 � f � are
differentiable, with bounded derivatives. This property is the
converse of that described in Section 1.3.2.4.2.8, and their
combination is fundamental in the definition of the function space

 in Section 1.3.2.4.4.1, of tempered distributions in Section
1.3.2.5, and in the extension of the Fourier transformation to them.

1.3.2.4.2.10. The Paley–Wiener theorem
An extreme case of the last instance occurs when f has compact

support: then 	 � f � and �	 � f � are so regular that they may be
analytically continued from �n to �n where they are entire
functions, i.e. have no singularities at finite distance (Paley &
Wiener, 1934). This is easily seen for 	 � f �: giving vector � � �n a
vector � � �n of imaginary parts leads to

	 � f ��� 	 i�� � �
�n

f �x� exp�
2�i�� 	 i�� � x� dnx

� 	 �exp�2�� � x�f ����,
where the latter transform always exists since exp�2�� � x�f is
summable with respect to x for all values of �. This analytic
continuation forms the basis of the saddlepoint method in
probability theory [Section 1.3.4.5.2.1( f )] and leads to the use of
maximum-entropy distributions in the statistical theory of direct
phase determination [Section 1.3.4.5.2.2(e)].

By Liouville’s theorem, an entire function in �n cannot vanish
identically on the complement of a compact subset of �n without
vanishing everywhere: therefore 	 � f � cannot have compact
support if f has, and hence ���n� is not stable by Fourier
transformation.

1.3.2.4.3. Fourier transforms in L2

Let f belong to L2��n�, i.e. be such that

� f �2 �
�
�n

� f �x��2 dnx

� 
1�2

� 
�

1.3.2.4.3.1. Invariance of L2

	 � f � and �	 � f � exist and are functions in L2, i.e. 	 L2 � L2,
�	 L2 � L2.

1.3.2.4.3.2. Reciprocity
	 � �	 � f �� � f and �	 �	 � f �� � f , equality being taken as ‘almost

everywhere’ equality. This again leads to calling �	 the ‘inverse
Fourier transformation’ rather than the Fourier cotransformation.

1.3.2.4.3.3. Isometry
	 and �	 preserve the L2 norm:

�	 � f ��2 � � �	 � f ��2 � � f �2 (Parseval’s/Plancherel’s theorem)�

This property, which may be written in terms of the inner product
(,) in L2��n� as

�	 � f �,	 �g�� � � �	 � f �, �	 �g�� � � f , g�,
implies that 	 and �	 are unitary transformations of L2��n� into
itself, i.e. infinite-dimensional ‘rotations’.

1.3.2.4.3.4. Eigenspace decomposition of L2

Some light can be shed on the geometric structure of these
rotations by the following simple considerations. Note that

	 2� f ��x� � �
�n
	 � f ���� exp�
2�ix � �� dn�

� �	 �	 � f ���
x� � f �
x�
so that 	 4 (and similarly �	 4) is the identity map. Any eigenvalue of
	 or �	 is therefore a fourth root of unity, i.e.  1 or  i, and L2��n�
splits into an orthogonal direct sum

H0 �H1 �H2 �H3,

where 	 (respectively �	 ) acts in each subspace Hk�k � 0, 1, 2, 3�
by multiplication by �
i�k . Orthonormal bases for these subspaces
can be constructed from Hermite functions (cf. Section 1.3.2.4.4.2)
This method was used by Wiener (1933, pp. 51–71).

1.3.2.4.3.5. The convolution theorem and the isometry
property

In L2, the convolution theorem (when applicable) and the
Parseval/Plancherel theorem are not independent. Suppose that f,
g, f � g and f � g are all in L2 (without questioning whether these
properties are independent). Then f � g may be written in terms of
the inner product in L2 as follows:

� f � g��x� � �
�n

f �x
 y�g�y� dny � �
�n

��f �y
 x�g�y� dny,

i.e.

� f � g��x� � ��x
��f , g��

Invoking the isometry property, we may rewrite the right-hand
side as
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�	 ��x
��f �,	 �g�� � �exp�
2�ix � � �	 � f �� ,	 �g�� �

� �
�n
�	 � f � � 	 �g���x�

� exp�	2�ix � �� dn�

� �	 �	 � f � � 	 �g��,
so that the initial identity yields the convolution theorem.

To obtain the converse implication, note that

� f , g� � �
�n

f �y�g�y� dny � � ��f � g��0�

� �	 �	 � ��f � � 	 �g���0�
� �

�n

	 � f ����	 �g���� dn� � �	 � f �,	 �g��,

where conjugate symmetry (Section 1.3.2.4.2.2) has been used.
These relations have an important application in the calculation

by Fourier transform methods of the derivatives used in the
refinement of macromolecular structures (Section 1.3.4.4.7).

1.3.2.4.4. Fourier transforms in 


1.3.2.4.4.1. Definition and properties of 

The duality established in Sections 1.3.2.4.2.8 and 1.3.2.4.2.9

between the local differentiability of a function and the rate of
decrease at infinity of its Fourier transform prompts one to consider
the space 
 ��n� of functions f on �n which are infinitely
differentiable and all of whose derivatives are rapidly decreasing,
so that for all multi-indices k and p

�xkDpf ��x� � 0 as �x� � 
�

The product of f � 
 by any polynomial over �n is still in 
 (
 is
an algebra over the ring of polynomials). Furthermore, 
 is
invariant under translations and differentiation.

If f � 
 , then its transforms 	 � f � and �	 � f � are
(i) infinitely differentiable because f is rapidly decreasing;
(ii) rapidly decreasing because f is infinitely differentiable;

hence 	 � f � and �	 � f � are in 
 : 
 is invariant under 	 and �	 .
Since L1 � 
 and L2 � 
 , all properties of 	 and �	 already

encountered above are enjoyed by functions of 
 , with all
restrictions on differentiability and/or integrability lifted. For
instance, given two functions f and g in 
 , then both fg and f � g
are in 
 (which was not the case with L1 nor with L2) so that the
reciprocity theorem inherited from L2

	 � �	 � f �� � f and �	 �	 � f �� � f

allows one to state the reverse of the convolution theorem first
established in L1:

	 � fg� � 	 � f � � 	 �g�
�	 � fg� � �	 � f � � �	 �g��

1.3.2.4.4.2. Gaussian functions and Hermite functions
Gaussian functions are particularly important elements of 
 . In

dimension 1, a well known contour integration (Schwartz, 1965, p.
184) yields

	 �exp�
�x2����� � �	 �exp�
�x2����� � exp�
��2�,
which shows that the ‘standard Gaussian’ exp�
�x2� is invariant
under 	 and �	 . By a tensor product construction, it follows that the
same is true of the standard Gaussian

G�x� � exp�
��x�2�

in dimension n:

	 �G��� � � �	 �G���� � G����
In other words, G is an eigenfunction of 	 and �	 for eigenvalue 1
(Section 1.3.2.4.3.4).

A complete system of eigenfunctions may be constructed as
follows. In dimension 1, consider the family of functions

Hm � DmG2

G
�m � 0�,

where D denotes the differentiation operator. The first two members
of the family

H0 � G, H1 � 2DG,

are such that 	 �H0� � H0, as shown above, and

DG�x� � 
2�xG�x� � i�2�ix�G�x� � i	 �DG��x�,
hence

	 �H1� � �
i�H1�

We may thus take as an induction hypothesis that

	 �Hm� � �
i�mHm�

The identity

D
DmG2

G

� �
� Dm	1G2

G

 DG

G
DmG2

G

may be written

Hm	1�x� � �DHm��x� 
 2�xHm�x�,
and the two differentiation theorems give:

	 �DHm���� � �2�i��	 �Hm����
	 �
2�xHm���� � 
iD�	 �Hm������

Combination of this with the induction hypothesis yields

	 �Hm	1���� � �
i�m	1��DHm���� 
 2��Hm����
� �
i�m	1Hm	1���,

thus proving that Hm is an eigenfunction of 	 for eigenvalue �
i�m
for all m � 0. The same proof holds for �	 , with eigenvalue im. If
these eigenfunctions are normalized as

� m�x� � �
1�m21�4�����
m�

"
2m�m�2

Hm�x�,

then it can be shown that the collection of Hermite functions
�� m�x��m�0 constitutes an orthonormal basis of L2��� such that
� m is an eigenfunction of 	 (respectively �	 ) for eigenvalue �
i�m
(respectively im).

In dimension n, the same construction can be extended by tensor
product to yield the multivariate Hermite functions

� m�x� � � m1�x1� �� m2�x2� � � � ��� mn�xn�
(where m � 0 is a multi-index). These constitute an orthonormal
basis of L2��n�, with � m an eigenfunction of 	 (respectively �	 )
for eigenvalue �
i��m� (respectively i�m�). Thus the subspaces Hk
of Section 1.3.2.4.3.4 are spanned by those � m with
�m� � k mod 4 �k � 0, 1, 2, 3�.

General multivariate Gaussians are usually encountered in the
non-standard form

GA�x� � exp�
1
2x

T � Ax�,
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where A is a symmetric positive-definite matrix. Diagonalizing A as
E�ET with EET the identity matrix, and putting A1�2 � E�1�2ET ,
we may write

GA�x� � G
A
2�

� �1�2

x

� �

i.e.

GA � ��2�A
1�1�2��G;

hence (by Section 1.3.2.4.2.3)

	 �GA� � �det �2�A
1��1�2 A
2�

� �1�2
� ��

G,

i.e.

	 �GA��� � � �det �2�A
1��1�2G��2�A
1�1�2� �,
i.e. finally

	 �GA� � �det �2�A
1��1�2G4�2A
1 �

This result is widely used in crystallography, e.g. to calculate
form factors for anisotropic atoms (Section 1.3.4.2.2.6) and to
obtain transforms of derivatives of Gaussian atomic densities
(Section 1.3.4.4.7.10).

1.3.2.4.4.3. Heisenberg’s inequality, Hardy’s theorem
The result just obtained, which also holds for �	 , shows that the

‘peakier’ GA, the ‘broader’ 	 �GA�. This is a general property of the
Fourier transformation, expressed in dimension 1 by the Heisenberg
inequality (Weyl, 1931):�

x2� f �x��2 dx

� � �
�2�	 � f �����2 d�

� �

� 1
16�2

�
� f �x��2 dx

� �2

,

where, by a beautiful theorem of Hardy (1933), equality can only be
attained for f Gaussian. Hardy’s theorem is even stronger: if both f
and 	 � f � behave at infinity as constant multiples of G, then each of
them is everywhere a constant multiple of G; if both f and 	 � f �
behave at infinity as constant multiples of G�monomial, then each
of them is a finite linear combination of Hermite functions. Hardy’s
theorem is invoked in Section 1.3.4.4.5 to derive the optimal
procedure for spreading atoms on a sampling grid in order to obtain
the most accurate structure factors.

The search for optimal compromises between the confinement of
f to a compact domain in x-space and of 	 � f � to a compact domain
in �-space leads to consideration of prolate spheroidal wavefunc-
tions (Pollack & Slepian, 1961; Landau & Pollack, 1961, 1962).

1.3.2.4.4.4. Symmetry property
A final formal property of the Fourier transform, best established

in 
 , is its symmetry: if f and g are in 
 , then by Fubini’s theorem

�	 � f �, g� � �
�n

�
�n

f �x� exp�
2�i� � x� dnx

� 

g��� dn�

� �
�n

f �x� �
�n

g��� exp�
2�i� � x� dn�

� 

dnx

� �f ,	 �g���

This possibility of ‘transposing’ 	 (and �	 ) from the left to the
right of the duality bracket will be used in Section 1.3.2.5.4 to
extend the Fourier transformation to distributions.

1.3.2.4.5. Various writings of Fourier transforms

Other ways of writing Fourier transforms in �n exist besides the
one used here. All have the form

	 h� �� f ���� � 1
hn

�
�n

f �x� exp�
i�� � x� dnx,

where h is real positive and � real non-zero, with the reciprocity
formula written:

f �x� � 1
kn

�
�n

	 h� �� f ��� � exp�	i�� � x� dnx

with k real positive. The consistency condition between h, k and � is

hk � 2�
��� �

The usual choices are:

�i� � �  2�, h � k � 1 �as here�;
�ii� � �  1, h � 1, k � 2� �in probability theory

and in solid-state physics�;
�iii� � �  1, h � k �

������
2�

"
�in much of classical analysis��

It should be noted that conventions (ii) and (iii) introduce
numerical factors of 2� in convolution and Parseval formulae, while
(ii) breaks the symmetry between 	 and �	 .

1.3.2.4.6. Tables of Fourier transforms

The books by Campbell & Foster (1948), Erdélyi (1954), and
Magnus et al. (1966) contain extensive tables listing pairs of
functions and their Fourier transforms. Bracewell (1986) lists those
pairs particularly relevant to electrical engineering applications.

1.3.2.5. Fourier transforms of tempered distributions

1.3.2.5.1. Introduction

It was found in Section 1.3.2.4.2 that the usual space of test
functions � is not invariant under 	 and �	 . By contrast, the space

 of infinitely differentiable rapidly decreasing functions is
invariant under 	 and �	 , and furthermore transposition formulae
such as

�	 � f �, g� � � f ,	 �g��
hold for all f , g � 
 . It is precisely this type of transposition which
was used successfully in Sections 1.3.2.3.9.1 and 1.3.2.3.9.3 to
define the derivatives of distributions and their products with
smooth functions.

This suggests using 
 instead of � as a space of test functions �,
and defining the Fourier transform 	 �T � of a distribution T by

�	 �T �,�� � �T ,	 ����
whenever T is capable of being extended from � to 
 while
remaining continuous. It is this latter proviso which will be
subsumed under the adjective ‘tempered’. As was the case with
the construction of ��, it is the definition of a sufficiently strong
topology (i.e. notion of convergence) in 
 which will play a key
role in transferring to the elements of its topological dual 
 � (called
tempered distributions) all the properties of the Fourier transforma-
tion.
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Besides the general references to distribution theory mentioned
in Section 1.3.2.3.1 the reader may consult the books by Zemanian
(1965, 1968). Lavoine (1963) contains tables of Fourier transforms
of distributions.

1.3.2.5.2. 
 as a test-function space

A notion of convergence has to be introduced in 
 ��n� in order
to be able to define and test the continuity of linear functionals on it.

A sequence ��j� of functions in 
 will be said to converge to 0 if,
for any given multi-indices k and p, the sequence �xkDp�j� tends to
0 uniformly on �n.

It can be shown that ���n� is dense in 
 ��n�. Translation is
continuous for this topology. For any linear differential operator
P�D� ��papDp and any polynomial Q�x� over �n, ��j� � 0
implies �Q�x� � P�D��j� � 0 in the topology of 
 . Therefore,
differentiation and multiplication by polynomials are continuous for
the topology on 
 .

The Fourier transformations 	 and �	 are also continuous for the
topology of 
 . Indeed, let ��j� converge to 0 for the topology on 
 .
Then, by Section 1.3.2.4.2,

��2�� �mDp�	 ��j���
 � �Dm��2�x�p�j��1�

The right-hand side tends to 0 as j �
 by definition of
convergence in 
 , hence ���mDp�	 ��j�� � 0 uniformly, so that
�	 ��j�� � 0 in 
 as j �
. The same proof applies to �	 .

1.3.2.5.3. Definition and examples of tempered
distributions

A distribution T � ����n� is said to be tempered if it can be
extended into a continuous linear functional on 
 .

If 
 ���n� is the topological dual of 
 ��n�, and if S � 
 ���n�,
then its restriction to � is a tempered distribution; conversely, if
T � �� is tempered, then its extension to 
 is unique (because � is
dense in 
 ), hence it defines an element S of 
 �. We may therefore
identify 
 � and the space of tempered distributions.

A distribution with compact support is tempered, i.e. 
 � � � �. By
transposition of the corresponding properties of 
 , it is readily
established that the derivative, translate or product by a polynomial
of a tempered distribution is still a tempered distribution.

These inclusion relations may be summarized as follows: since 

contains � but is contained in � , the reverse inclusions hold for the
topological duals, and hence 
 � contains � � but is contained in ��.

A locally summable function f on �n will be said to be of
polynomial growth if � f �x�� can be majorized by a polynomial in
�x� as �x� � 
. It is easily shown that such a function f defines a
tempered distribution Tf via

�Tf ,�� � �
�n

f �x���x� dnx�

In particular, polynomials over �n define tempered distributions,
and so do functions in 
 . The latter remark, together with the
transposition identity (Section 1.3.2.4.4), invites the extension of 	
and �	 from 
 to 
 �.

1.3.2.5.4. Fourier transforms of tempered distributions

The Fourier transform 	 �T � and cotransform �	 �T � of a tempered
distribution T are defined by

�	 �T �,�� � �T ,	 ����
� �	 �T �,�� � �T , �	 ����

for all test functions � � 
 . Both 	 �T � and �	 �T � are themselves
tempered distributions, since the maps � �
� 	 ��� and � �
� �	 ���

are both linear and continuous for the topology of 
 . In the same
way that x and � have been used consistently as arguments for � and
	 ���, respectively, the notation Tx and 	 �T �� will be used to
indicate which variables are involved.

When T is a distribution with compact support, its Fourier
transform may be written

	 �Tx�� � �Tx, exp�
2�i� � x��
since the function x �
� exp�
2�i� � x� is in � while Tx � � �. It
can be shown, as in Section 1.3.2.4.2, to be analytically continuable
into an entire function over �n.

1.3.2.5.5. Transposition of basic properties

The duality between differentiation and multiplication by a
monomial extends from 
 to 
 � by transposition:

	 �Dp
xTx�� � �2�i��p	 �Tx��

Dp
� �	 �Tx�� � � 	 ��
2�ix�pTx�� �

Analogous formulae hold for �	 , with i replaced by 
i.
The formulae expressing the duality between translation and

phase shift, e.g.

	 ��aTx�� � exp�
2�ia � ��	 �Tx��
���	 �Tx�� � � 	 �exp�2�i� � x�Tx�� ;

between a linear change of variable and its contragredient, e.g.

	 �A�T � � �det A���A
1�T ��	 �T �;
are obtained similarly by transposition from the corresponding
identities in 
 . They give a transposition formula for an affine
change of variables x �
� S�x� � Ax	 b with non-singular matrix
A:

	 �S�T � � exp�
2�i� � b�	 �A�T �
� exp�
2�i� � b��det A���A
1�T ��	 �T �,

with a similar result for �	 , replacing 
i by +i.
Conjugate symmetry is obtained similarly:

	 ��T � � �	 �T �,	 ���T � � 	 �T �,
with the same identities for �	 .

The tensor product property also transposes to tempered
distributions: if U � 
 ���m�, V � 
 ���n�,

	 �Ux � Vy� � 	 �U �� � 	 �V ��
�	 �Ux � Vy� � �	 �U �� � �	 �V �� �

1.3.2.5.6. Transforms of �-functions

Since � has compact support,

	 ��x�� � ��x, exp�
2�i� � x�� � 1� , i�e� 	 ��� � 1�

It is instructive to show that conversely 	 �1� � � without invoking
the reciprocity theorem. Since 	j1 � 0 for all j � 1, � � � , n, it
follows from Section 1.3.2.3.9.4 that 	 �1� � c�; the constant c can
be determined by using the invariance of the standard Gaussian G
established in Section 1.3.2.4.3:

�	 �1�x, Gx� � �1� , G� � � 1;

hence c � 1. Thus, 	 �1� � �.
The basic properties above then read (using multi-indices to

denote differentiation):
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	 ���m�x �� � �2�i��m, 	 �xm�� � �
2�i�
�m���m�� ;

	 ��a�� � exp�
2�ia � ��, 	 �exp�2�i� � x��� � �� ,

with analogous relations for �	 , i becoming 
i. Thus derivatives of
� are mapped to monomials (and vice versa), while translates of �
are mapped to ‘phase factors’ (and vice versa).

1.3.2.5.7. Reciprocity theorem

The previous results now allow a self-contained and rigorous
proof of the reciprocity theorem between 	 and �	 to be given,
whereas in traditional settings (i.e. in L1 and L2) the implicit
handling of � through a limiting process is always the sticking point.

Reciprocity is first established in 
 as follows:
�	 �	 �����x� � �

�n

	 ����� � exp�2�i� � x� dn�

� �
�n

	 ��
x���� � dn�

� �1,	 ��
x���
� �	 �1�, �
x��
� ��x�,��
� ��x�

and similarly

	 � �	 �����x� � ��x��
The reciprocity theorem is then proved in 
 � by transposition:

�	 �	 �T �� � 	 � �	 �T �� � T for all T � 
 ��

Thus the Fourier cotransformation �	 in 
 � may legitimately be
called the ‘inverse Fourier transformation’.

The method of Section 1.3.2.4.3 may then be used to show that 	
and �	 both have period 4 in 
 �.

1.3.2.5.8. Multiplication and convolution

Multiplier functions ��x� for tempered distributions must be
infinitely differentiable, as for ordinary distributions; furthermore,
they must grow sufficiently slowly as �x� � 
 to ensure that �� �

 for all � � 
 and that the map � �
� �� is continuous for the
topology of 
 . This leads to choosing for multipliers the subspace
�M consisting of functions � � � of polynomial growth. It can be
shown that if f is in �M , then the associated distribution Tf is in 
 �
(i.e. is a tempered distribution); and that conversely if T is in 
 �,� �
T is in �M for all � � �.

Corresponding restrictions must be imposed to define the space
� �C of those distributions T whose convolution S � T with a
tempered distribution S is still a tempered distribution: T must be
such that, for all � � 
 , ��x� � �Ty,��x	 y�� is in 
 ; and such
that the map � �
� � be continuous for the topology of 
 . This
implies that S is ‘rapidly decreasing’. It can be shown that if f is in

 , then the associated distribution Tf is in � �C; and that conversely if
T is in � �C ,� � T is in 
 for all � � �.

The two spaces �M and � �C are mapped into each other by the
Fourier transformation

	 ��M � � �	 ��M � � � �C
	 �� �C� � �	 �� �C� � �M

and the convolution theorem takes the form

	 ��S� � 	 ��� � 	 �S� S � 
 �,� � �M ,	 ��� � � �C;

	 �S � T � � 	 �S� � 	 �T � S � 
 �, T � � �C ,	 �T � � �M �

The same identities hold for �	 . Taken together with the reciprocity
theorem, these show that 	 and �	 establish mutually inverse
isomorphisms between �M and � �C , and exchange multiplication for
convolution in 
 �.

It may be noticed that most of the basic properties of 	 and �	
may be deduced from this theorem and from the properties of �.
Differentiation operators Dm and translation operators �a are
convolutions with Dm� and �a�; they are turned, respectively, into
multiplication by monomials � 2�i��m (the transforms of Dm�) or
by phase factors exp� 2�i� � �� (the transforms of �a�).

Another consequence of the convolution theorem is the duality
established by the Fourier transformation between sections and
projections of a function and its transform. For instance, in �3, the
projection of f �x, y, z� on the x, y plane along the z axis may be
written

��x � �y � 1z� � f ;

its Fourier transform is then

�1� � 1� � ��� � 	 � f �,
which is the section of 	 � f � by the plane � � 0, orthogonal to the z
axis used for projection. There are numerous applications of this
property in crystallography (Section 1.3.4.2.1.8) and in fibre
diffraction (Section 1.3.4.5.1.3).

1.3.2.5.9. L2 aspects, Sobolev spaces

The special properties of 	 in the space of square-integrable
functions L2��n�, such as Parseval’s identity, can be accommodated
within distribution theory: if u � L2��n�, then Tu is a tempered
distribution in 
 � (the map u �
� Tu being continuous) and it can be
shown that S � 	 �Tu� is of the form Sv, where u � 	 �u� is the
Fourier transform of u in L2��n�. By Plancherel’s theorem,
�u�2 � �v�2.

This embedding of L2 into 
 � can be used to derive the
convolution theorem for L2. If u and v are in L2��n�, then u � v
can be shown to be a bounded continuous function; thus u � v is not
in L2, but it is in 
 �, so that its Fourier transform is a distribution,
and

	 �u � v� � 	 �u� � 	 �v��
Spaces of tempered distributions related to L2��n� can be defined

as follows. For any real s, define the Sobolev space Hs��n� to
consist of all tempered distributions S � 
 ���n� such that

�1	 �� �2�s�2	 �S�� � L2��n��
These spaces play a fundamental role in the theory of partial

differential equations, and in the mathematical theory of tomo-
graphic reconstruction – a subject not unrelated to the crystal-
lographic phase problem (Natterer, 1986).

1.3.2.6. Periodic distributions and Fourier series

1.3.2.6.1. Terminology

Let �n be the subset of �n consisting of those points with
(signed) integer coordinates; it is an n-dimensional lattice, i.e. a free
Abelian group on n generators. A particularly simple set of n
generators is given by the standard basis of �n, and hence �n will be
called the standard lattice in �n. Any other ‘non-standard’ n-
dimensional lattice 
 in �n is the image of this standard lattice by a
general linear transformation.

If we identify any two points in �n whose coordinates are
congruent modulo �n, i.e. differ by a vector in �n, we obtain the
standard n-torus �n��n. The latter may be viewed as �����n, i.e. as
the Cartesian product of n circles. The same identification may be
carried out modulo a non-standard lattice 
, yielding a non-
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standard n-torus �n�
. The correspondence to crystallographic
terminology is that ‘standard’ coordinates over the standard 3-torus
�3��3 are called ‘fractional’ coordinates over the unit cell; while
Cartesian coordinates, e.g. in ångströms, constitute a set of non-
standard coordinates.

Finally, we will denote by I the unit cube �0, 1�n and by C� the
subset

C� � �x � �n�xj� � � for all j � 1, � � � , n��

1.3.2.6.2. �n-periodic distributions in �n

A distribution T � ����n� is called periodic with period lattice
�n (or �n-periodic) if �mT � T for all m � �n (in crystallography
the period lattice is the direct lattice).

Given a distribution with compact support T0 � � ���n�, then
T ��m��n�mT0 is a �n-periodic distribution. Note that we may
write T � r � T0, where r ��m��n��m� consists of Dirac �’s at all
nodes of the period lattice �n.

Conversely, any �n-periodic distribution T may be written as
r � T0 for some T0 � � �. To retrieve such a ‘motif’ T0 from T, a
function � will be constructed in such a way that � � � (hence has
compact support) and r � � � 1; then T0 � �T . Indicator functions
(Section 1.3.2.2) such as �1 or �C1�2

cannot be used directly, since
they are discontinuous; but regularized versions of them may be
constructed by convolution (see Section 1.3.2.3.9.7) as
�0 � �C�

� ��, with � and � such that �0�x� � 1 on C1�2 and
�0�x� � 0 outside C3�4. Then the function

� � �0�
m��n�m�0

has the desired property. The sum in the denominator contains at
most 2n non-zero terms at any given point x and acts as a smoothly
varying ‘multiplicity correction’.

1.3.2.6.3. Identification with distributions over �n��n

Throughout this section, ‘periodic’ will mean ‘�n-periodic’.
Let s � �, and let [s] denote the largest integer � s. For

x � �x1, � � � , xn� � �n, let �x be the unique vector ��x1, � � � ,�xn�
with �xj � xj 
 �xj�. If x, y � �n, then �x � �y if and only if
x
 y � �n. The image of the map x �
� �x is thus �n modulo �n,
or �n��n.

If f is a periodic function over �n, then �x � �y implies
f �x� � f �y�; we may thus define a function �f over �n��n by
putting �f ��x� � f �x� for any x � �n such that x
 �x � �n.
Conversely, if �f is a function over �n��n, then we may define a
function f over �n by putting f �x� � �f ��x�, and f will be periodic.
Periodic functions over �n may thus be identified with functions
over �n��n, and this identification preserves the notions of
convergence, local summability and differentiability.

Given �0 � ���n�, we may define

��x� � �
m��n

��m�
0��x�

since the sum only contains finitely many non-zero terms; � is
periodic, and �� � ���n��n�. Conversely, if �� � ���n��n� we
may define � � ���n� periodic by ��x� � ����x�, and �0 � ���n�
by putting �0 � �� with � constructed as above.

By transposition, a distribution �T � ����n��n� defines a unique
periodic distribution T � ����n� by �T ,�0� � ��T , ���; conversely,
T � ����n� periodic defines uniquely �T � ����n��n� by
��T , ��� � �T ,�0�.

We may therefore identify �n-periodic distributions over �n with
distributions over �n��n. We will, however, use mostly the former

presentation, as it is more closely related to the crystallographer’s
perception of periodicity (see Section 1.3.4.1).

1.3.2.6.4. Fourier transforms of periodic distributions

The content of this section is perhaps the central result in the
relation between Fourier theory and crystallography (Section
1.3.4.2.1.1).

Let T � r � T0 with r defined as in Section 1.3.2.6.2. Then
r � 
 �, T0 � � � hence T0 � � �C , so that T � 
 �: �n-periodic
distributions are tempered, hence have a Fourier transform. The
convolution theorem (Section 1.3.2.5.8) is applicable, giving:

	 �T � � 	 �r� � 	 �T0�
and similarly for �	 .

Since 	 ���m����� � exp�
2�i� �m�, formally

	 �r�� �
�

m��n
exp�
2�i� �m� � Q,

say.
It is readily shown that Q is tempered and periodic, so that

Q �����n����Q�, while the periodicity of r implies that

�exp�
2�i�j� 
 1��Q � 0, j � 1, � � � , n�

Since the first factors have single isolated zeros at �j � 0 in C3�4,
�Q � c� (see Section 1.3.2.3.9.4) and hence by periodicity Q � cr;
convoluting with �C1 shows that c � 1. Thus we have the
fundamental result:

	 �r� � r

so that

	 �T � � r � 	 �T0�;
i.e., according to Section 1.3.2.3.9.3,

	 �T �� �
�
���n

	 �T0���� � �����

The right-hand side is a weighted lattice distribution, whose
nodes � � �n are weighted by the sample values 	 �T0���� of the
transform of the motif T0 at those nodes. Since T0 � � �, the latter
values may be written

	 �T0���� � �T0
x , exp�
2�i� � x���

By the structure theorem for distributions with compact support
(Section 1.3.2.3.9.7), T0 is a derivative of finite order of a
continuous function; therefore, from Section 1.3.2.4.2.8 and Section
1.3.2.5.8, 	 �T0���� grows at most polynomially as ��� � 
 (see
also Section 1.3.2.6.10.3 about this property). Conversely, let W ��

���n w����� be a weighted lattice distribution such that the
weights w� grow at most polynomially as ��� � 
. Then W is a
tempered distribution, whose Fourier cotransform Tx ��

���n w� exp�	2�i� � x� is periodic. If T is now written as r �
T0 for some T0 � � �, then by the reciprocity theorem

w� � 	 �T0���� � �T0
x , exp�
2�i� � x���

Although the choice of T0 is not unique, and need not yield back the
same motif as may have been used to build T initially, different
choices of T0 will lead to the same coefficients w� because of the
periodicity of exp�
2�i� � x�.

The Fourier transformation thus establishes a duality between
periodic distributions and weighted lattice distributions. The pair of
relations
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�i� w� � �T0
x , exp�
2�i� � x��

�ii� Tx �
�
���n

w� exp�	2�i� � x�

are referred to as the Fourier analysis and the Fourier synthesis of
T, respectively (there is a discrepancy between this terminology and
the crystallographic one, see Section 1.3.4.2.1.1). In other words,
any periodic distribution T � 
 � may be represented by a Fourier
series (ii), whose coefficients are calculated by (i). The convergence
of (ii) towards T in 
 � will be investigated later (Section 1.3.2.6.10).

1.3.2.6.5. The case of non-standard period lattices

Let 
 denote the non-standard lattice consisting of all vectors of
the form

�
j�1mjaj, where the mj are rational integers and a1, � � � , an

are n linearly independent vectors in �n. Let R be the corresponding
lattice distribution: R ��x�
��x�.

Let A be the non-singular n� n matrix whose successive
columns are the coordinates of vectors a1, � � � , an in the standard
basis of �n; A will be called the period matrix of 
, and the
mapping x �
� Ax will be denoted by A. According to Section
1.3.2.3.9.5 we have

�R,�� � �
m��n

��Am� � �r, �A
1���� � �det A�
1�A�r,��

for any � � 
 , and hence R � �det A�
1A�r. By Fourier
transformation, according to Section 1.3.2.5.5,

	 �R� � �det A�
1	 �A�r� � ��A
1�T ��	 �r� � ��A
1�T ��r,

which we write:

	 �R� � �det A�
1R�

with

R� � �det A���A
1�T ��r�

R� is a lattice distribution:

R� � �
���n

���A
1�T�� �
�
��
�

����

associated with the reciprocal lattice 
� whose basis vectors
a�1, � � � , a�n are the columns of �A
1�T . Since the latter matrix is
equal to the adjoint matrix (i.e. the matrix of co-factors) of A
divided by det A, the components of the reciprocal basis vectors can
be written down explicitly (see Section 1.3.4.2.1.1 for the
crystallographic case n � 3).

A distribution T will be called 
-periodic if ��T � T for all
� � 
; as previously, T may be written R � T0 for some motif
distribution T0 with compact support. By Fourier transformation,

	 �T � � �det A�
1R� � 	 �T0�
� �det A�
1 �

��
�
	 �T0������� �

� �det A�
1 �
���n

	 �T0���A
1�T�����A
1�T��

so that 	 �T � is a weighted reciprocal-lattice distribution, the weight
attached to node � � 
� being �det A�
1 times the value 	 �T0��� �
of the Fourier transform of the motif T0.

This result may be further simplified if T and its motif T0 are
referred to the standard period lattice �n by defining t and t0 so that
T � A�t, T0 � A�t0, t � r � t0. Then

	 �T0��� � � �det A�	 �t0��AT��,
hence

	 �T0���A
1�T�� � �det A�	 �t0����,
so that

	 �T � � �
���n

	 �t0�������A
1�T��

in non-standard coordinates, while

	 �t� � �
���n

	 �t0��������

in standard coordinates.
The reciprocity theorem may then be written:

�iii� W� � �det A�
1�T0
x , exp�
2�i� � x��, � � ��

�iv� Tx �
�
��
�

W� exp�	2�i� � x�

in non-standard coordinates, or equivalently:

�v� w� � �t0
x, exp�
2�i� � x��, � � �n

�vi� tx �
�
���n

w� exp�	2�i� � x�

in standard coordinates. It gives an n-dimensional Fourier series
representation for any periodic distribution over �n. The con-
vergence of such series in 
 ���n� will be examined in Section
1.3.2.6.10.

1.3.2.6.6. Duality between periodization and sampling

Let T0 be a distribution with compact support (the ‘motif’). Its
Fourier transform �	 �T0� is analytic (Section 1.3.2.5.4) and may thus
be used as a multiplier.

We may rephrase the preceding results as follows:
(i) if T0 is ‘periodized by R’ to give R � T0, then �	 �T0� is

‘sampled by R�’ to give �det A�
1R� � �	 �T0�;
(ii) if �	 �T0� is ‘sampled by R�’ to give R� � �	 �T0�, then T0 is

‘periodized by R’ to give �det A�R � T0.
Thus the Fourier transformation establishes a duality between the

periodization of a distribution by a period lattice 
 and the sampling
of its transform at the nodes of lattice 
� reciprocal to 
. This is a
particular instance of the convolution theorem of Section 1.3.2.5.8.

At this point it is traditional to break the symmetry between 	
and �	 which distribution theory has enabled us to preserve even in
the presence of periodicity, and to perform two distinct identifica-
tions:

(i) a 
-periodic distribution T will be handled as a distribution �T
on �n�
, was done in Section 1.3.2.6.3;

(ii) a weighted lattice distribution W �����n W����A
1�T�� will
be identified with the collection �W��� � �n� of its n-tuply
indexed coefficients.

1.3.2.6.7. The Poisson summation formula

Let � � 
 , so that 	 ��� � 
 . Let R be the lattice distribution
associated to lattice 
, with period matrix A, and let R� be
associated to the reciprocal lattice 
�. Then we may write:

�R,�� � �R, �	 �	 �����
� � �	 �R�,	 ����
� �det A�
1�R�,	 ����

i.e.
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�
x�


��x� � �det A�
1 �
��
�

	 ����� ��

This identity, which also holds for �	 , is called the Poisson
summation formula. Its usefulness follows from the fact that the
speed of decrease at infinity of � and 	 ��� are inversely related
(Section 1.3.2.4.4.3), so that if one of the series (say, the left-hand
side) is slowly convergent, the other (say, the right-hand side) will
be rapidly convergent. This procedure has been used by Ewald
(1921) [see also Bertaut (1952), Born & Huang (1954)] to evaluate
lattice sums (Madelung constants) involved in the calculation of the
internal electrostatic energy of crystals (see Chapter 3.4 in this
volume on convergence acceleration techniques for crystallo-
graphic lattice sums).

When � is a multivariate Gaussian

��x� � GB�x� � exp�
1
2x

T Bx�,
then

	 ����� � � �det �2�B
1��1�2GB
1�� �,
and Poisson’s summation formula for a lattice with period matrix A
reads: �

m��n
GB�Am� � �det A�
1�det �2�B
1��1�2

� �
���n

G4�2B
1 ��A
1�T��

or equivalently�
m��n

GC�m� � �det �2�C
1��1�2 �
���n

G4�2 C
1���

with C � AT BA�

1.3.2.6.8. Convolution of Fourier series

Let S � R � S0 and T � R � T0 be two 
-periodic distributions,
the motifs S0 and T0 having compact support. The convolution S �
T does not exist, because S and T do not satisfy the support
condition (Section 1.3.2.3.9.7). However, the three distributions R,
S0 and T0 do satisfy the generalized support condition, so that their
convolution is defined; then, by associativity and commutativity:

R � S0 � T0 � S � T0 � S0 � T �

By Fourier transformation and by the convolution theorem:

R� � 	 �S0 � T0� � �R� � 	 �S0�� � 	 �T0�
� 	 �T0� � �R� � 	 �S0���

Let �U����
� , �V����
� and �W����
� be the sets of Fourier
coefficients associated to S, T and S � T0�� S0 � T�, respectively.
Identifying the coefficients of �� for � � 
� yields the forward
version of the convolution theorem for Fourier series:

W� � �det A�U�V� �

The backward version of the theorem requires that T be infinitely
differentiable. The distribution S � T is then well defined and its
Fourier coefficients �Q����
� are given by

Q� �
�
��
�

U�V�
��

1.3.2.6.9. Toeplitz forms, Szegö’s theorem

Toeplitz forms were first investigated by Toeplitz (1907, 1910,
1911a). They occur in connection with the ‘trigonometric moment
problem’ (Shohat & Tamarkin, 1943; Akhiezer, 1965) and

probability theory (Grenander, 1952) and play an important role
in several direct approaches to the crystallographic phase problem
[see Sections 1.3.4.2.1.10, 1.3.4.5.2.2(e)]. Many aspects of their
theory and applications are presented in the book by Grenander &
Szegö (1958).

1.3.2.6.9.1. Toeplitz forms
Let f � L1����� be real-valued, so that its Fourier coefficients

satisfy the relations c
m� f � � cm� f �. The Hermitian form in n	 1
complex variables

Tn� f ��u� � �n
��0

�n

�0

u�c�

u


is called the nth Toeplitz form associated to f. It is a straightforward
consequence of the convolution theorem and of Parseval’s identity
that Tn� f � may be written:

Tn� f ��u� � �1
0

�n

�0

u
 exp�2�i
x�
����

����
2

f �x� dx�

1.3.2.6.9.2. The Toeplitz–Carathéodory–Herglotz theorem
It was shown independently by Toeplitz (1911b), Carathéodory

(1911) and Herglotz (1911) that a function f � L1 is almost
everywhere non-negative if and only if the Toeplitz forms Tn� f �
associated to f are positive semidefinite for all values of n.

This is equivalent to the infinite system of determinantal
inequalities

Dn � det

c0 c
1 � � c
n

c1 c0 c
1 � �
� c1 � � �
� � � � c
1

cn � � c1 c0

�
�����

�
				
 � 0 for all n�

The Dn are called Toeplitz determinants. Their application to the
crystallographic phase problem is described in Section 1.3.4.2.1.10.

1.3.2.6.9.3. Asymptotic distribution of eigenvalues of
Toeplitz forms

The eigenvalues of the Hermitian form Tn� f � are defined as the
n	 1 real roots of the characteristic equation det �Tn� f 
 ��� � 0.
They will be denoted by

�
�n�
1 ,��n�2 , � � � ,��n�n	1�

It is easily shown that if m � f �x� � M for all x, then m �
��n�
 � M for all n and all 
 � 1, � � � , n	 1. As n �
 these
bounds, and the distribution of the ��n� within these bounds, can be
made more precise by introducing two new notions.

(i) Essential bounds: define ess inf f as the largest m such that
f �x� � m except for values of x forming a set of measure 0; and
define ess sup f similarly.

(ii) Equal distribution. For each n, consider two sets of n	 1
real numbers:

a�n�1 , a�n�2 , � � � , a�n�n	1, and b�n�1 , b�n�2 , � � � , b�n�n	1�

Assume that for each 
 and each n, �a�n�
 � � K and �b�n�
 � � K with
K independent of 
 and n. The sets �a�n�
 � and �b�n�
 � are said to be
equally distributed in �
K, 	 K� if, for any function F over
�
K, 	 K�,

lim
n�


1
n	 1

�n	1


�1

�F�a�n�
 � 
 F�b�n�
 �� � 0�
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We may now state an important theorem of Szegö (1915, 1920).
Let f � L1, and put m � ess inf f , M � ess sup f. If m and M are
finite, then for any continuous function F��� defined in the interval
[m, M] we have

lim
n�


1
n	 1

�n	1


�1

F���n�
 � �
�1

0

F� f �x�� dx�

In other words, the eigenvalues ��n�
 of the Tn and the values
f �
��n	 2�� of f on a regular subdivision of ]0, 1[ are equally
distributed.

Further investigations into the spectra of Toeplitz matrices may
be found in papers by Hartman & Wintner (1950, 1954), Kac et al.
(1953), Widom (1965), and in the notes by Hirschman & Hughes
(1977).

1.3.2.6.9.4. Consequences of Szegö’s theorem
(i) If the �’s are ordered in ascending order, then

lim
n�
�

�n�
1 � m � ess inf f , lim

n�
�
�n�
n	1 � M � ess sup f �

Thus, when f � 0, the condition number ��n�n	1��
�n�
1 of Tn� f � tends

towards the ‘essential dynamic range’ M�m of f.
(ii) Let F��� � �s where s is a positive integer. Then

lim
n�


1
n	 1

�n	1


�1

���n�
 �s �
�1

0

� f �x��s dx�

(iii) Let m 
 0, so that ��n�
 
 0, and let Dn� f � � det Tn� f �.
Then

Dn� f � � �n	1


�1
��n�
 ,

hence

log Dn� f � � �n	1


�1
log��n�
 �

Putting F��� � log �, it follows that

lim
n�
�Dn� f ��1��n	1� � exp

�1
0

log f �x� dx

� �
�

Further terms in this limit were obtained by Szegö (1952) and
interpreted in probabilistic terms by Kac (1954).

1.3.2.6.10. Convergence of Fourier series

The investigation of the convergence of Fourier series and of
more general trigonometric series has been the subject of intense
study for over 150 years [see e.g. Zygmund (1976)]. It has been a
constant source of new mathematical ideas and theories, being
directly responsible for the birth of such fields as set theory,
topology and functional analysis.

This section will briefly survey those aspects of the classical
results in dimension 1 which are relevant to the practical use of
Fourier series in crystallography. The books by Zygmund (1959),
Tolstov (1962) and Katznelson (1968) are standard references in the
field, and Dym & McKean (1972) is recommended as a stimulant.

1.3.2.6.10.1. Classical L1 theory
The space L1����� consists of (equivalence classes of) complex-

valued functions f on the circle which are summable, i.e. for which

� f �1 �
�1
0
� f �x�� dx � 	
�

It is a convolution algebra: If f and g are in L1, then f � g is in L1.
The mth Fourier coefficient cm� f � of f,

cm� f � � �1
0

f �x� exp�
2�imx� dx

is bounded: �cm� f �� � � f �1, and by the Riemann–Lebesgue lemma
cm� f � � 0 as m �
. By the convolution theorem,
cm� f � g� � cm� f �cm�g�.

The pth partial sum Sp� f � of the Fourier series of f,

Sp� f ��x� � �
�m��p

cm� f � exp�2�imx�,

may be written, by virtue of the convolution theorem, as
Sp� f � � Dp � f , where

Dp�x� �
�
�m��p

exp�2�imx� � sin��2p	 1��x�
sin�x

is the Dirichlet kernel. Because Dp comprises numerous slowly
decaying oscillations, both positive and negative, Sp� f � may not
converge towards f in a strong sense as p �
. Indeed, spectacular
pathologies are known to exist where the partial sums, examined
pointwise, diverge everywhere (Zygmund, 1959, Chapter VIII).
When f is piecewise continuous, but presents isolated jumps,
convergence near these jumps is marred by the Gibbs phenomenon:
Sp� f � always ‘overshoots the mark’ by about 9%, the area under the
spurious peak tending to 0 as p �
 but not its height [see Larmor
(1934) for the history of this phenomenon].

By contrast, the arithmetic mean of the partial sums, also called
the pth Cesàro sum,

Cp� f � � 1
p	 1

�S0� f � 	 � � �	 Sp� f ��,

converges to f in the sense of the L1 norm: �Cp� f � 
 f �1 � 0 as
p �
. If furthermore f is continuous, then the convergence is
uniform, i.e. the error is bounded everywhere by a quantity which
goes to 0 as p �
. It may be shown that

Cp� f � � Fp � f ,

where

Fp�x� �
�
�m��p

1
 �m�
p	 1

� �
exp�2�imx�

� 1
p	 1

sin�p	 1��x
sin�x

� �2

is the Fejér kernel. Fp has over Dp the advantage of being
everywhere positive, so that the Cesàro sums Cp� f � of a positive
function f are always positive.

The de la Vallée Poussin kernel

Vp�x� � 2F2p	1�x� 
 Fp�x�
has a trapezoidal distribution of coefficients and is such that
cm�Vp� � 1 if �m� � p	 1; therefore Vp � f is a trigonometric
polynomial with the same Fourier coefficients as f over that range of
values of m.
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The Poisson kernel

Pr�x� � 1	 2
�

m�1

rm cos 2�mx

� 1
 r2

1
 2r cos 2�mx	 r2

with 0 � r � 1 gives rise to an Abel summation procedure
[Tolstov (1962, p. 162); Whittaker & Watson (1927, p. 57)] since

�Pr � f ��x� � �
m��

cm� f �r�m� exp�2�imx��

Compared with the other kernels, Pr has the disadvantage of not
being a trigonometric polynomial; however, Pr is the real part of the
Cauchy kernel (Cartan, 1961; Ahlfors, 1966):

Pr�x� � ��
1	 r exp�2�ix�
1
 r exp�2�ix�
� �

and hence provides a link between trigonometric series and analytic
functions of a complex variable.

Other methods of summation involve forming a moving average
of f by convolution with other sequences of functions �p�x� besides
Dp of Fp which ‘tend towards �’ as p �
. The convolution is
performed by multiplying the Fourier coefficients of f by those of
�p, so that one forms the quantities

S�p� f ��x� � �
�m��p

cm��p�cm� f � exp�2�imx��

For instance the ‘sigma factors’ of Lanczos (Lanczos, 1966, p. 65),
defined by

�m � sin�m��p�
m��p

,

lead to a summation procedure whose behaviour is intermediate
between those using the Dirichlet and the Fejér kernels; it
corresponds to forming a moving average of f by convolution with

�p � p��
1��2p�� 1��2p���Dp,

which is itself the convolution of a ‘rectangular pulse’ of width 1�p
and of the Dirichlet kernel of order p.

A review of the summation problem in crystallography is given
in Section 1.3.4.2.1.3.

1.3.2.6.10.2. Classical L2 theory
The space L2����� of (equivalence classes of) square-integrable

complex-valued functions f on the circle is contained in L1�����,
since by the Cauchy–Schwarz inequality

� f �2
1 �

�1
0
� f �x�� � 1 dx

� 
2

� �1
0
� f �x��2 dx

� 
 �1
0

12 dx

� 

� � f �2

2 � 
�

Thus all the results derived for L1 hold for L2, a great simplification
over the situation in � or �n where neither L1 nor L2 was contained
in the other.

However, more can be proved in L2, because L2 is a Hilbert space
(Section 1.3.2.2.4) for the inner product

� f , g� � �1
0

f �x�g�x� dx,

and because the family of functions �exp�2�imx��m�� constitutes
an orthonormal Hilbert basis for L2.

The sequence of Fourier coefficients cm� f � of f � L2 belongs to
the space �2��� of square-summable sequences:�

m��
�cm� f ��2 � 
�

Conversely, every element c � �cm� of �2 is the sequence of Fourier
coefficients of a unique function in L2. The inner product

�c, d� � �
m��

cmdm

makes �2 into a Hilbert space, and the map from L2 to �2 established
by the Fourier transformation is an isometry (Parseval/Plancherel):

� f �L2 � �c� f ���2

or equivalently:

� f , g� � �c� f �, c�g���
This is a useful property in applications, since ( f , g) may be
calculated either from f and g themselves, or from their Fourier
coefficients c� f � and c�g� (see Section 1.3.4.4.6) for crystallo-
graphic applications).

By virtue of the orthogonality of the basis �exp�2�imx��m��, the
partial sum Sp� f � is the best mean-square fit to f in the linear
subspace of L2 spanned by �exp�2�imx���m��p, and hence (Bessel’s
inequality)�

�m��p
�cm� f ��2 � � f �2

2 

�
�M ��p

�cM � f ��2 � � f �2
2�

1.3.2.6.10.3. The viewpoint of distribution theory
The use of distributions enlarges considerably the range of

behaviour which can be accommodated in a Fourier series, even in
the case of general dimension n where classical theories meet with
even more difficulties than in dimension 1.

Let �wm�m�� be a sequence of complex numbers with �wm�
growing at most polynomially as �m� � 
, say �wm� � C�m�K .
Then the sequence �wm��2�im�K	2�m�� is in �2 and even defines a
continuous function f � L2����� and an associated tempered
distribution Tf � �������. Differentiation of Tf �K 	 2� times
then yields a tempered distribution whose Fourier transform leads to
the original sequence of coefficients. Conversely, by the structure
theorem for distributions with compact support (Section
1.3.2.3.9.7), the motif T0 of a �-periodic distribution is a derivative
of finite order of a continuous function; hence its Fourier
coefficients will grow at most polynomially with �m� as �m� � 
.

Thus distribution theory allows the manipulation of Fourier
series whose coefficients exhibit polynomial growth as their order
goes to infinity, while those derived from functions had to tend to 0
by virtue of the Riemann–Lebesgue lemma. The distribution-
theoretic approach to Fourier series holds even in the case of general
dimension n, where classical theories meet with even more
difficulties (see Ash, 1976) than in dimension 1.

1.3.2.7. The discrete Fourier transformation

1.3.2.7.1. Shannon’s sampling theorem and interpolation
formula

Let � � ���n� be such that 
 � 	 ��� has compact support K.
Let � be sampled at the nodes of a lattice 
�, yielding the lattice
distribution R� � �. The Fourier transform of this sampled version
of � is

	 �R� � �� � �det A��R � 
�,
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which is essentially 
 periodized by period lattice 
 � �
���, with
period matrix A.

Let us assume that 
 is such that the translates of K by different
period vectors of 
 are disjoint. Then we may recover 
 from R � 

by masking the contents of a ‘unit cell’ � of 
 (i.e. a fundamental
domain for the action of 
 in �n) whose boundary does not meet K.
If �� is the indicator function of � , then


 � �� � �R � 
��
Transforming both sides by �	 yields

� � �	 �� � 1
�det A�	 �R

� � ��
� �

,

i.e.

� � 1
V

�	 ��� �
� �

� �R� � ��

since �det A� is the volume V of � .
This interpolation formula is traditionally credited to Shannon

(1949), although it was discovered much earlier by Whittaker
(1915). It shows that � may be recovered from its sample values on

� (i.e. from R� � �) provided 
� is sufficiently fine that no overlap
(or ‘aliasing’) occurs in the periodization of 
 by the dual lattice 
.
The interpolation kernel is the transform of the normalized indicator
function of a unit cell of 
 containing the support K of 
.

If K is contained in a sphere of radius 1�	 and if 
 and 
� are
rectangular, the length of each basis vector of 
 must be greater
than 2�	, and thus the sampling interval must be smaller than 	�2.
This requirement constitutes the Shannon sampling criterion.

1.3.2.7.2. Duality between subdivision and decimation of
period lattices

1.3.2.7.2.1. Geometric description of sublattices
Let 
A be a period lattice in �n with matrix A, and let 
�A be the

lattice reciprocal to 
A, with period matrix �A
1�T . Let 
B, B,
�B be
defined similarly, and let us suppose that 
A is a sublattice of 
B,
i.e. that 
B � 
A as a set.

The relation between 
A and 
B may be described in two
different fashions: (i) multiplicatively, and (ii) additively.

(i) We may write A � BN for some non-singular matrix N with
integer entries. N may be viewed as the period matrix of the coarser
lattice 
A with respect to the period basis of the finer lattice 
B. It
will be more convenient to write A � DB, where D � BNB
1 is a
rational matrix (with integer determinant since det D � det N) in
terms of which the two lattices are related by


A � D
B�

(ii) Call two vectors in 
B congruent modulo 
A if their
difference lies in 
A. Denote the set of congruence classes (or
‘cosets’) by 
B�
A, and the number of these classes by �
B � 
A�.
The ‘coset decomposition’


B �
�

��
B�
A

�� 	 
A�

represents 
B as the disjoint union of �
B � 
A� translates of

A� 
B�
A is a finite lattice with �
B � 
A� elements, called the
residual lattice of 
B modulo 
A.

The two descriptions are connected by the relation
�
B � 
A� � det D � det N, which follows from a volume calcula-
tion. We may also combine (i) and (ii) into

�iii� 
B �
�

��
B�
A

�� 	 D
B�

which may be viewed as the n-dimensional equivalent of the
Euclidean algorithm for integer division: � is the ‘remainder’ of the
division by 
A of a vector in 
B, the quotient being the matrix D.

1.3.2.7.2.2. Sublattice relations for reciprocal lattices
Let us now consider the two reciprocal lattices 
�A and 
�B. Their

period matrices �A
1�T and �B
1�T are related by:
�B
1�T � �A
1�T NT , where NT is an integer matrix; or equivalently
by �B
1�T � DT �A
1�T . This shows that the roles are reversed in
that 
�B is a sublattice of 
�A, which we may write:

�i�� 
�B � DT
�A

�ii�� 
�A �
�

���
�A�
�B
��� 	 
�B��

The residual lattice 
�A�

�
B is finite, with �
�A � 
�B� �

det D � det N � �
B � 
A�, and we may again combine �i�� and
�ii�� into

�iii�� 
�A �
�

���
�A�
�B
��� 	 DT
�A��

1.3.2.7.2.3. Relation between lattice distributions
The above relations between lattices may be rewritten in terms of

the corresponding lattice distributions as follows:

�i� RA � 1
�det D�D

�R�B

�ii� RB � TB�A � RA

�i�� R�B �
1

�det D� �D
T��R�A

�ii�� R�A � T�A�B � R�B

where

TB�A �
�

��
B�
A

����

and

T�A�B �
�

���
�A�
�B
�����

are (finite) residual-lattice distributions. We may incorporate the
factor 1��det D� in (i) and �i�� into these distributions and define

SB�A � 1
�det D� TB�A, S�A�B �

1
�det D� T

�
A�B�

Since �det D� � �
B � 
A� � �
�A � 
�B�, convolution with SB�A
and S�A�B has the effect of averaging the translates of a distribution
under the elements (or ‘cosets’) of the residual lattices 
B�
A and

�A�


�
B, respectively. This process will be called ‘coset averaging’.

Eliminating RA and RB between (i) and (ii), and R�A and R�B between
�i�� and �ii��, we may write:

�i�� RA � D��SB�A � RA�
�ii�� RB � SB�A � �D�RB�
�i��� R�B � �DT ���S�A�B � R�B�
�ii��� R�A � S�A�B � ��DT��R�A��

These identities show that period subdivision by convolution with
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SB�A (respectively S�A�B) on the one hand, and period decimation by
‘dilation’ by D� on the other hand, are mutually inverse operations
on RA and RB (respectively R�A and R�B).

1.3.2.7.2.4. Relation between Fourier transforms
Finally, let us consider the relations between the Fourier

transforms of these lattice distributions. Recalling the basic relation
of Section 1.3.2.6.5,

	 �RA� � 1
�det A�R

�
A

� 1
�det DB� T

�
A�B � R�B by (ii)�

� 1
�det D� T

�
A�B

� �
� 1
�det B�R

�
B

� �

i.e.

�iv� 	 �RA� � S�A�B � 	 �RB�
and similarly:

�v� 	 �R�B� � SB�A � 	 �R�A��
Thus RA (respectively R�B), a decimated version of RB

(respectively R�A), is transformed by 	 into a subdivided version
of 	 �RB� (respectively 	 �R�A�).

The converse is also true:

	 �RB� � 1
�det B�R

�
B

� 1
�det B�

1
�det D� �D

T��R�A by (i)�

� �DT �� 1
�det A�R

�
A

� �

i.e.

�iv�� 	 �RB� � �DT ��	 �RA�
and similarly

�v�� 	 �R�A� � D�	 �R�B��
Thus RB (respectively R�A), a subdivided version of RA

(respectively R�B) is transformed by 	 into a decimated version of
	 �RA� (respectively 	 �R�B�). Therefore, the Fourier transform
exchanges subdivision and decimation of period lattices for lattice
distributions.

Further insight into this phenomenon is provided by applying �	
to both sides of (iv) and (v) and invoking the convolution theorem:

�iv��� RA � �	 �S�A�B� � RB

�v��� R�B � �	 �SB�A� � R�A�

These identities show that multiplication by the transform of the
period-subdividing distribution S�A�B (respectively SB�A) has the
effect of decimating RB to RA (respectively R�A to R�B). They clearly
imply that, if � � 
B�
A and �� � 
�A�


�
B, then

�	 �S�A�B���� � 1 if � � 0 �i�e� if � belongs

to the class of 
A�,
� 0 if � �� 0;

�	 �SB�A����� � 1 if �� � 0 �i�e� if �� belongs

to the class of 
�B�,
� 0 if �� �� 0�

Therefore, the duality between subdivision and decimation may be
viewed as another aspect of that between convolution and
multiplication.

There is clearly a strong analogy between the sampling/
periodization duality of Section 1.3.2.6.6 and the decimation/
subdivision duality, which is viewed most naturally in terms of
subgroup relationships: both sampling and decimation involve
restricting a function to a discrete additive subgroup of the domain
over which it is initially given.

1.3.2.7.2.5. Sublattice relations in terms of periodic
distributions

The usual presentation of this duality is not in terms of lattice
distributions, but of periodic distributions obtained by convolving
them with a motif.

Given T0 � � ���n�, let us form RA � T0, then decimate its
transform �1��det A��R�A � �	 �T0� by keeping only its values at the
points of the coarser lattice 
�B � DT
�A; as a result, R�A is replaced
by �1��det D��R�B, and the reverse transform then yields

1
�det D�RB � T0 � SB�A � �RA � T0� by (ii),

which is the coset-averaged version of the original RA � T0. The
converse situation is analogous to that of Shannon’s sampling
theorem. Let a function � � ���n� whose transform 
 � 	 ��� has
compact support be sampled as RB � � at the nodes of 
B. Then

	 �RB � �� � 1
�det B� �R

�
B � 
�

is periodic with period lattice 
�B. If the sampling lattice 
B is
decimated to 
A � D
B, the inverse transform becomes

	 �RA � �� � 1
�det D� �R

�
A � 
�

� S�A�B � �R�B � 
� by (ii)�,

hence becomes periodized more finely by averaging over the cosets
of 
�A�


�
B. With this finer periodization, the various copies of Supp


 may start to overlap (a phenomenon called ‘aliasing’), indicating
that decimation has produced too coarse a sampling of �.

1.3.2.7.3. Discretization of the Fourier transformation

Let �0 � ���n� be such that 
0 � 	 ��0� has compact support
(�0 is said to be band-limited). Then � � RA � �0 is 
A-periodic,
and 
 � 	 ��� � �1��det A��R�A � 
0 is such that only a finite
number of points ��A of 
�A have a non-zero Fourier coefficient

0���A� attached to them. We may therefore find a decimation 
�B �
DT
�A of 
�A such that the distinct translates of Supp 
0 by vectors
of 
�B do not intersect.

The distribution 
 can be uniquely recovered from R�B � 
 by the
procedure of Section 1.3.2.7.1, and we may write:

R�B � 
 �
1

�det A�R
�
B � �R�A � 
0�

� 1
�det A�R

�
A � �R�B � 
0�

� 1
�det A�R

�
B � �T�A�B � �R�B � 
0��;

these rearrangements being legitimate because 
0 and T�A�B have
compact supports which are intersection-free under the action of

�B. By virtue of its 
�B-periodicity, this distribution is entirely
characterized by its ‘motif’ �
 with respect to 
�B:
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�
 � 1
�det A� T

�
A�B � �R�B � 
0��

Similarly, � may be uniquely recovered by Shannon interpola-
tion from the distribution sampling its values at the nodes of 
B �
D
1
A�
B is a subdivision of 
B). By virtue of its 
A-periodicity,
this distribution is completely characterized by its motif:

�� � TB�A � � � TB�A � �R�A � �0��
Let � � 
B�
A and �� � 
�A�


�
B, and define the two sets of

coefficients

�1� ����� � ��� 	 �A� for any �A � 
A

�all choices of �A give the same ���,
�2� �
���� � 
0��� 	 ��B� for the unique ��B (if it exists)

such that �� 	 ��B � Supp 
0,
� 0 if no such ��B exists�

Define the two distributions

� � �
��
B�
A

���������

and

� � �
���
�A�
�B

�
����������

The relation between � and � has two equivalent forms:

�i� RA � � � 	 �R�B � ��
�ii� �	 �RA � �� � R�B � ��
By (i), RA � � � �det B�RB � 	 ���. Both sides are weighted

lattice distributions concentrated at the nodes of 
B, and equating
the weights at �B � � 	 �A gives

����� � 1
�det D�

�
���
�A�
�B

�
���� exp�
2�i�� � �� 	 �A���

Since �� � 
�A, �� � �A is an integer, hence

����� � 1
�det D�

�
���
�A�
�B

�
���� exp�
2�i�� � ���

By (ii), we have

1
�det A�R

�
B � �T�A�B � �R�B � 
0�� � 1

�det A�
�	 �RA � ���

Both sides are weighted lattice distributions concentrated at the
nodes of 
�B, and equating the weights at ��A � �� 	 ��B gives

�
���� � �
��
B�
A

����� exp�	2�i� � ��� 	 ��B���

Since � � 
B, � � ��B is an integer, hence

�
���� � �
��
B�
A

����� exp�	2�i� � ����

Now the decimation/subdivision relations between 
A and 
B
may be written:

A � DB � BN,

so that

� � B� for � � �n

�� � �A
1�T�� for �� � �n

with �A
1�T � �B
1�T�N
1�T , hence finally

�� � � � � � �� � �� � �N
1���

Denoting ���B�� by ���� and �
��A
1�T��� by �����, the relation
between � and � may be written in the equivalent form

�i� ���� � 1
�det N�

�
����n�NT�n

����� exp�
2�i�� � �N
1���

�ii� ����� �
�

���n�N�n

���� exp�	2�i�� � �N
1���,

where the summations are now over finite residual lattices in
standard form.

Equations (i) and (ii) describe two mutually inverse linear
transformations 	 �N� and �	 �N� between two vector spaces WN
and W �

N of dimension �det N�. 	 �N� [respectively �	 �N�] is the
discrete Fourier (respectively inverse Fourier) transform associated
to matrix N.

The vector spaces WN and W �
N may be viewed from two different

standpoints:
(1) as vector spaces of weighted residual-lattice distributions, of

the form ��x�TB�A and ��x�T�A�B; the canonical basis of WN
(respectively W �

N) then consists of the ���� for � � �n�N�n

[respectively ����� for �� � �n�NT�n];
(2) as vector spaces of weight vectors for the �det N� �-functions

involved in the expression for TB�A (respectively T�A�B); the
canonical basis of WN (respectively W �

N) consists of weight vectors
u� (respectively v��) giving weight 1 to element � (respectively ��)
and 0 to the others.

These two spaces are said to be ‘isomorphic’ (a relation denoted
#), the isomorphism being given by the one-to-one correspondence:

� ��
�
�������� $ � ��

�
����u�

� ��
��
���������� $ � ��

��
�����v�� �

The second viewpoint will be adopted, as it involves only linear
algebra. However, it is most helpful to keep the first one in mind and
to think of the data or results of a discrete Fourier transform as
representing (through their sets of unique weights) two periodic
lattice distributions related by the full, distribution-theoretic Fourier
transform.

We therefore view WN (respectively W �
N) as the vector space of

complex-valued functions over the finite residual lattice 
B�
A
(respectively 
�A�


�
B) and write:

WN # L�
B�
A� # L��n�N�n�
W �

N # L�
�A�
�B� # L��n�NT�n�

since a vector such as � is in fact the function � �
� ����.
The two spaces WN and W �

N may be equipped with the following
Hermitian inner products:

��,��W �
�
�
��������

�
,��W � ��
�

���������,

which makes each of them into a Hilbert space. The canonical bases
�u��� � �n�N�n� and �v�� ��� � �n�NT�n� and WN and W �

N are
orthonormal for their respective product.
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1.3.2.7.4. Matrix representation of the discrete Fourier
transform (DFT)

By virtue of definitions (i) and (ii),

	 �N�v�� � 1
�det N�

�
�

exp�
2�i�� � �N
1���u�

�	 �N�u� �
�
��

exp�	2�i�� � �N
1���v��

so that 	 �N� and �	 �N� may be represented, in the canonical bases
of WN and W �

N, by the following matrices:

�	 �N����� �
1

�det N� exp�
2�i�� � �N
1���

� �	 �N����� � exp�	2�i�� � �N
1����
When N is symmetric, �n�N�n and �n�NT�n may be identified

in a natural manner, and the above matrices are symmetric.
When N is diagonal, say N � diag�
1, 
2, � � � , 
n�, then the

tensor product structure of the full multidimensional Fourier
transform (Section 1.3.2.4.2.4)

	 x � 	 x1 � 	 x2 � � � �� 	 xn

gives rise to a tensor product structure for the DFT matrices. The
tensor product of matrices is defined as follows:

A� B �
a11B � � � a1nB
��
� ��

�

an1B � � � annB

�
��

�
	
�

Let the index vectors � and �� be ordered in the same way as the
elements in a Fortran array, e.g. for � with �1 increasing fastest, �2
next fastest, � � � , �n slowest; then

	 �N� � 	 �
1� � 	 �
2� � � � �� 	 �
n�,
where

�	 �
j���j� ��j
� 1


j
exp 
2�i

��j �j


j

� �
,

and
�	 �N� � �	 �
1� � �	 �
2� � � � �� �	 �
n�,

where

� �	
j ���j � �j
� exp 	2�i

��j �j


j

� �
�

1.3.2.7.5. Properties of the discrete Fourier transform

The DFT inherits most of the properties of the Fourier
transforms, but with certain numerical factors (‘Jacobians’) due to
the transition from continuous to discrete measure.

(1) Linearity is obvious.
(2) Shift property. If ��
����� � ��� 
 
� and ��
������� �

���� 
 
��, where subtraction takes place by modular vector
arithmetic in �n�N�n and �n�NT�n, respectively, then the
following identities hold:

�	 �N���������� � exp�	2�i�� � �N
1��� �	 �N��������
	 �N���������� � exp�
2�i�� � �N
1���	 �N��������

(3) Differentiation identities. Let vectors � and � be constructed
from �0 � ���n� as in Section 1.3.2.7.3, hence be related by the
DFT. If Dp� designates the vector of sample values of Dp

x�
0 at the

points of 
B�
A, and Dp� the vector of values of Dp
�


0 at points of


�A�

�
B, then for all multi-indices p � �p1, p2, � � � , pn�

�Dp����� � �	 �N���	2�i���p�����
�Dp������ � 	 �N���
2�i��p� �����

or equivalently

	 �N��Dp� ����� � �	2�i���p�����
�	 �N��Dp����� � �
2�i��p�����

(4) Convolution property. Let � � WN and � � W �
N (respec-

tively � and �) be related by the DFT, and define

�� � ����� � �
����n�N�n

�������� 
 ���

�� ������� � �
��� ��n�NT�n

����� ����� 
 ��
� ��

Then
�	 �N��� ������ � �det N���������
	 �N��� � � ����� � ����������

and

�	 �N��� � � ����� � 1
�det N� �� �����

��

	 �N��������� � �� � ������
Since addition on �n�N�n and �n�NT�n is modular, this type of
convolution is called cyclic convolution.

(5) Parseval/Plancherel property. If �, �, �, � are as above,
then

�	 �N����,	 �N�����W �
1

�det N� ��,��W �

� �	 �N����, �	 �N��� ��W �
1

�det N� ��,��W �

(6) Period 4. When N is symmetric, so that the ranges of indices �
and �� can be identified, it makes sense to speak of powers of 	 �N�
and �	 �N�. Then the ‘standardized’ matrices �1��det N�1�2�	 �N�
and �1��det N�1�2� �	 �N� are unitary matrices whose fourth power is
the identity matrix (Section 1.3.2.4.3.4); their eigenvalues are
therefore  1 and  i.

1.3.3. Numerical computation of the discrete Fourier
transform

1.3.3.1. Introduction

The Fourier transformation’s most remarkable property is
undoubtedly that of turning convolution into multiplication. As
distribution theory has shown, other valuable properties – such as
the shift property, the conversion of differentiation into multi-
plication by monomials, and the duality between periodicity and
sampling – are special instances of the convolution theorem.

This property is exploited in many areas of applied mathematics
and engineering (Campbell & Foster, 1948; Sneddon, 1951;
Champeney, 1973; Bracewell, 1986). For example, the passing of
a signal through a linear filter, which results in its being convolved
with the response of the filter to a �-function ‘impulse’, may be
modelled as a multiplication of the signal’s transform by the
transform of the impulse response (also called transfer function).
Similarly, the solution of systems of partial differential equations
may be turned by Fourier transformation into a division problem for
distributions. In both cases, the formulations obtained after Fourier
transformation are considerably simpler than the initial ones, and
lend themselves to constructive solution techniques.
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Whenever the functions to which the Fourier transform is applied
are band-limited, or can be well approximated by band-limited
functions, the discrete Fourier transform (DFT) provides a means of
constructing explicit numerical solutions to the problems at hand. A
great variety of investigations in physics, engineering and applied
mathematics thus lead to DFT calculations, to such a degree that, at
the time of writing, about 50% of all supercomputer CPU time is
alleged to be spent calculating DFTs.

The straightforward use of the defining formulae for the DFT
leads to calculations of size N2 for N sample points, which become
unfeasible for any but the smallest problems. Much ingenuity has
therefore been exerted on the design and implementation of faster
algorithms for calculating the DFT (McClellan & Rader, 1979;
Nussbaumer, 1981; Blahut, 1985; Brigham, 1988). The most
famous is that of Cooley & Tukey (1965) which heralded the age
of digital signal processing. However, it had been preceded by the
prime factor algorithm of Good (1958, 1960), which has lately been
the basis of many new developments. Recent historical research
(Goldstine, 1977, pp. 249–253; Heideman et al., 1984) has shown
that Gauss essentially knew the Cooley–Tukey algorithm as early as
1805 (before Fourier’s 1807 work on harmonic analysis!); while it
has long been clear that Dirichlet knew of the basis of the prime
factor algorithm and used it extensively in his theory of multi-
plicative characters [see e.g. Chapter I of Ayoub (1963), and
Chapters 6 and 8 of Apostol (1976)]. Thus the computation of the
DFT, far from being a purely technical and rather narrow piece of
specialized numerical analysis, turns out to have very rich
connections with such central areas of pure mathematics as number
theory (algebraic and analytic), the representation theory of certain
Lie groups and coding theory – to list only a few. The interested
reader may consult Auslander & Tolimieri (1979); Auslander, Feig
& Winograd (1982, 1984); Auslander & Tolimieri (1985);
Tolimieri (1985).

One-dimensional algorithms are examined first. The Sande
mixed-radix version of the Cooley–Tukey algorithm only calls
upon the additive structure of congruence classes of integers. The
prime factor algorithm of Good begins to exploit some of their
multiplicative structure, and the use of relatively prime factors leads
to a stronger factorization than that of Sande. Fuller use of the
multiplicative structure, via the group of units, leads to the Rader
algorithm; and the factorization of short convolutions then yields
the Winograd algorithms.

Multidimensional algorithms are at first built as tensor products
of one-dimensional elements. The problem of factoring the DFT in
several dimensions simultaneously is then examined. The section
ends with a survey of attempts at formalizing the interplay between
algorithm structure and computer architecture for the purpose of
automating the design of optimal DFT code.

It was originally intended to incorporate into this section a survey
of all the basic notions and results of abstract algebra which are
called upon in the course of these developments, but time
limitations have made this impossible. This material, however, is
adequately covered by the first chapter of Tolimieri et al. (1989) in a
form tailored for the same purposes. Similarly, the inclusion of
numerous detailed examples of the algorithms described here has
had to be postponed to a later edition, but an abundant supply of
such examples may be found in the signal processing literature, for
instance in the books by McClellan & Rader (1979), Blahut (1985),
and Tolimieri et al. (1989).

1.3.3.2. One-dimensional algorithms

Throughout this section we will denote by e�t� the expression
exp�2�it�, t � �. The mapping t �
� e�t� has the following
properties:

e�t1 	 t2� � e�t1�e�t2�
e�
t� � e�t� � �e�t��
1

e�t� � 1 ! t � ��

Thus e defines an isomorphism between the additive group ���
(the reals modulo the integers) and the multiplicative group of
complex numbers of modulus 1. It follows that the mapping
� �
� e���N�, where � � � and N is a positive integer, defines an
isomorphism between the one-dimensional residual lattice ��N�
and the multiplicative group of Nth roots of unity.

The DFT on N points then relates vectors X and X� in W and W �
through the linear transformations:

F�N� � X �k� � 1
N

�
k����N�

X ��k��e�
k�k�N�

�F�N� � X ��k�� �
�

k���N�

X �k�e�k�k�N��

1.3.3.2.1. The Cooley–Tukey algorithm

The presentation of Gentleman & Sande (1966) will be followed
first [see also Cochran et al. (1967)]. It will then be reinterpreted in
geometric terms which will prepare the way for the treatment of
multidimensional transforms in Section 1.3.3.3.

Suppose that the number of sample points N is composite, say
N � N1N2. We may write k to the base N1 and k� to the base N2 as
follows:

k � k1 	 N1k2 k1 � ��N1�, k2 � ��N2�

k� � k�2 	 k�1N2 k�1 � ��N1�, k�2 � ��N2��

The defining relation for �F�N� may then be written:

X ��k�2 	 k�1N2� �
�

k1���N1�

�
k2���N2�

X �k1 	 N1k2�

� e
�k�2 	 k�1N2��k1 	 N1k2�

N1N2

� �
�

The argument of e��� may be expanded as

k�2k1

N
	 k�1k1

N1
	 k�2k2

N2
	 k�1k2,

and the last summand, being an integer, may be dropped:

X ��k�2 	 k�1N2�

�
�

k1

e
k�2k1

N

� � �
k2

X �k1 	 N1k2�e k�2k2

N2

� �� �� �

� e
k�1k1

N1

� �
�

This computation may be decomposed into five stages, as follows:
(i) form the N1 vectors Yk1 of length N2 by the prescription

Yk1�k2� � X �k1 	 N1k2�, k1 � ��N1�, k2 � ��N2�;

(ii) calculate the N1 transforms Y�k1
on N2 points:

Y�k1
� �F�N2��Yk1 �, k1 � ��N1�;

(iii) form the N2 vectors Zk�2 of length N1 by the prescription

Zk�2 �k1� � e
k�2k1

N

� �
Y �k1
�k�2�, k1 � ��N1�, k�2 � ��N2�;
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(iv) calculate the N2 transforms Z�k�2 on N1 points:

Z�k�2 � �F�N1��Zk�2 �, k�2 � ��N2�;

(v) collect X ��k�2 	 k�1N2� as Z�k�2 �k
�
1�.

If the intermediate transforms in stages (ii) and (iv) are
performed in place, i.e. with the results overwriting the data, then
at stage (v) the result X ��k�2 	 k�1N2� will be found at address
k�1 	 N1k�2 . This phenomenon is called scrambling by ‘digit
reversal’, and stage (v) is accordingly known as unscrambling.

The initial N-point transform �F�N� has thus been performed as
N1 transforms �F�N2� on N2 points, followed by N2 transforms
�F�N1� on N1 points, thereby reducing the arithmetic cost from
�N1N2�2 to N1N2�N1 	 N2�. The phase shifts applied at stage (iii)
are traditionally called ‘twiddle factors’, and the transposition
between k1 and k�2 can be performed by the fast recursive technique
of Eklundh (1972). Clearly, this procedure can be applied
recursively if N1 and N2 are themselves composite, leading to an
overall arithmetic cost of order N log N if N has no large prime
factors.

The Cooley–Tukey factorization may also be derived from a
geometric rather than arithmetic argument. The decomposition k �
k1 	 N1k2 is associated to a geometric partition of the residual
lattice ��N� into N1 copies of ��N2�, each translated by k1 �
��N1� and ‘blown up’ by a factor N1. This partition in turn induces
a (direct sum) decomposition of X as

X ��
k1

Xk1 ,

where

Xk1�k� � X �k� if k � k1 mod N1,

� 0 otherwise�

According to (i), Xk1 is related to Yk1 by decimation by N1 and
offset by k1. By Section 1.3.2.7.2, �F�N��Xk1 � is related to �F�N2��Yk1 �
by periodization by N2 and phase shift by e�k�k1�N�, so that

X ��k�� �
�

k1

e
k�k1

N

� �
Y �k1
�k�2�,

the periodization by N2 being reflected by the fact that Y �k1
does not

depend on k�1. Writing k� � k�2 	 k�1N2 and expanding k�k1 shows
that the phase shift contains both the twiddle factor e�k�2k1�N� and
the kernel e�k�1k1�N1� of �F�N1�. The Cooley–Tukey algorithm is
thus naturally associated to the coset decomposition of a lattice
modulo a sublattice (Section 1.3.2.7.2).

It is readily seen that essentially the same factorization can be
obtained for F�N�, up to the complex conjugation of the twiddle
factors. The normalizing constant 1�N arises from the normalizing
constants 1�N1 and 1�N2 in F�N1� and F�N2�, respectively.

Factors of 2 are particularly simple to deal with and give rise to a
characteristic computational structure called a ‘butterfly loop’. If
N � 2M , then two options exist:

(a) using N1 � 2 and N2 � M leads to collecting the even-
numbered coordinates of X into Y0 and the odd-numbered
coordinates into Y1

Y0�k2� � X �2k2�, k2 � 0, � � � , M 
 1,

Y1�k2� � X �2k2 	 1�, k2 � 0, � � � , M 
 1,

and writing:

X ��k�2� � Y �0 �k�2� 	 e�k�2�N�Y �1 �k�2�,
k�2 � 0, � � � , M 
 1;

X ��k�2 	M� � Y �0 �k�2� 
 e�k�2�N�Y �1 �k�2�,
k�2 � 0, � � � , M 
 1�

This is the original version of Cooley & Tukey, and the process of
formation of Y0 and Y1 is referred to as ‘decimation in time’ (i.e.
decimation along the data index k).

(b) using N1 � M and N2 � 2 leads to forming

Z0�k1� � X �k1� 	 X �k1 	M�, k1 � 0, � � � , M 
 1,

Z1�k1� � �X �k1� 
 X �k1 	M��e k1

N

� �
, k1 � 0, � � � , M 
 1,

then obtaining separately the even-numbered and odd-numbered
components of X� by transforming Z0 and Z1:

X ��2k�1� � Z�0�k�1�, k�1 � 0, � � � , M 
 1;

X ��2k�1 	 1� � Z�1�k�1�, k�1 � 0, � � � , M 
 1�

This version is due to Sande (Gentleman & Sande, 1966), and the
process of separately obtaining even-numbered and odd-numbered
results has led to its being referred to as ‘decimation in frequency’
(i.e. decimation along the result index k�).

By repeated factoring of the number N of sample points, the
calculation of F�N� and �F�N� can be reduced to a succession of
stages, the smallest of which operate on single prime factors of N.
The reader is referred to Gentleman & Sande (1966) for a
particularly lucid analysis of the programming considerations
which help implement this factorization efficiently; see also
Singleton (1969). Powers of two are often grouped together into
factors of 4 or 8, which are advantageous in that they require fewer
complex multiplications than the repeated use of factors of 2. In this
approach, large prime factors P are detrimental, since they require a
full P2-size computation according to the defining formula.

1.3.3.2.2. The Good (or prime factor) algorithm

1.3.3.2.2.1. Ring structure on ��N�
The set ��N� of congruence classes of integers modulo an

integer N [see e.g. Apostol (1976), Chapter 5] inherits from � not
only the additive structure used in deriving the Cooley–Tukey
factorization, but also a multiplicative structure in which the
product of two congruence classes mod N is uniquely defined as
the class of the ordinary product (in �) of representatives of each
class. The multiplication can be distributed over addition in the
usual way, endowing ��N� with the structure of a commutative
ring.

If N is composite, the ring ��N� has zero divisors. For example,
let N � N1N2, let n1 � N1 mod N, and let n2 � N2 mod N: then
n1n2 � 0 mod N. In the general case, a product of non-zero elements
will be zero whenever these elements collect together all the factors
of N. These circumstances give rise to a fundamental theorem in the
theory of commutative rings, the Chinese Remainder Theorem
(CRT), which will now be stated and proved [see Apostol (1976),
Chapter 5; Schroeder (1986), Chapter 16].

1.3.3.2.2.2. The Chinese remainder theorem
Let N � N1N2 � � �Nd be factored into a product of pairwise

coprime integers, so that g.c.d. �Ni, Nj� � 1 for i �� j. Then the
system of congruence equations

� � �j mod Nj, j � 1, � � � , d,

has a unique solution � mod N. In other words, each � � ��N� is
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associated in a one-to-one fashion to the d-tuple ��1, �2, � � � , �d� of
its residue classes in ��N1�,��N2�, � � � ,��Nd�.

The proof of the CRT goes as follows. Let

Qj � N
Nj
�
�
i ��j

Ni�

Since g.c.d. �Nj, Qj� � 1 there exist integers nj and qj such that

njNj 	 qjQj � 1, j � 1, � � � , d,

then the integer

� ��d
i�1

�iqiQi mod N

is the solution. Indeed,

� � �jqjQj mod Nj

because all terms with i �� j contain Nj as a factor; and

qjQj � 1 mod Nj

by the defining relation for qj.
It may be noted that

�qiQi��qjQj� � 0 mod N for i �� j,

�qjQj�2 � qjQj mod N , j � 1, � � � , d,

so that the qjQj are mutually orthogonal idempotents in the ring
��N�, with properties formally similar to those of mutually
orthogonal projectors onto subspaces in linear algebra. The analogy
is exact, since by virtue of the CRT the ring ��N� may be
considered as the direct product

��N1�� ��N2�� � � �� ��Nd�

via the two mutually inverse mappings:
(i) � �
� ��1, �2, � � � , �d� by � � �j mod Nj for each j;
(ii) ��1, �2, � � � , �d� �
� � by � ��d

i�1�iqiQi mod N .
The mapping defined by (ii) is sometimes called the ‘CRT

reconstruction’ of � from the �j.
These two mappings have the property of sending sums to sums

and products to products, i.e:

�i� �	 �� �
� ��1 	 ��1, �2 	 ��2, � � � , �d 	 ��d�
��� �
� ��1�

�
1, �2�

�
2, � � � , �d�

�
d�

�ii� ��1 	 ��1, �2 	 ��2, � � � , �d 	 ��d� �
� �	 ��

��1�
�
1, �2�

�
2, � � � , �d�

�
d� �
� ���

(the last proof requires using the properties of the idempotents
qjQj). This may be described formally by stating that the CRT
establishes a ring isomorphism:

��N� # ���N1�� � � � �� ���Nd���

1.3.3.2.2.3. The prime factor algorithm
The CRT will now be used to factor the N-point DFT into a tensor

product of d transforms, the jth of length Nj.
Let the indices k and k� be subjected to the following mappings:
(i) k �
� �k1, k2, � � � , kd�, kj � ��Nj�, by kj � k mod Nj for each

j, with reconstruction formula

k ��d
i�1

kiqiQi mod N ;

(ii) k� �
� �k�1 , k�2 , � � � , k�d�, k�j � ��Nj�, by k�j � qjk� mod Nj

for each j, with reconstruction formula

k� ��d
i�1

k�i Qi mod N �

Then

k�k � �d
i�1

k�i Qi

� � �d
j�1

kjqjQj

� 

mod N

� �d
i� j�1

k�i kjQiqjQj mod N �

Cross terms with i �� j vanish since they contain all the factors of N,
hence

k�k ��d
j�1

qjQ
2
j k�j kj mod N

��d
j�1
�1
 njNj�Qjk

�
j kj mod N �

Dividing by N, which may be written as NjQj for each j, yields

k�k
N
�
�d

j�1

�1
 njNj� Qj

NjQj
k�j kj mod 1

�
�d

j�1

1
Nj

 nj

� �
k�j kj mod 1,

and hence

k�k
N
�
�d

j�1

k�j kj

Nj
mod 1�

Therefore, by the multiplicative property of e���,

e
k�k
N

� �
�
�d

j�1

e
k�j kj

Nj

� �
�

Let X � L���N�� be described by a one-dimensional array X �k�
indexed by k. The index mapping (i) turns X into an element of
L���N1�� � � �� ��Nd�� described by a d-dimensional array
X �k1, � � � , kd�; the latter may be transformed by
�F�N1�

�
� � �
�

�F�Nd� into a new array X ��k�1 , k�2 , � � � , k�d�. Finally,
the one-dimensional array of results X ��k�� will be obtained by
reconstructing k� according to (ii).

The prime factor algorithm, like the Cooley–Tukey algorithm,
reindexes a 1D transform to turn it into d separate transforms, but
the use of coprime factors and CRT index mapping leads to the
further gain that no twiddle factors need to be applied between the
successive transforms (see Good, 1971). This makes up for the cost
of the added complexity of the CRT index mapping.

The natural factorization of N for the prime factor algorithm is
thus its factorization into prime powers: �F�N� is then the tensor
product of separate transforms (one for each prime power factor
Nj � p


j

j ) whose results can be reassembled without twiddle factors.
The separate factors pj within each Nj must then be dealt with by
another algorithm (e.g. Cooley–Tukey, which does require twiddle
factors). Thus, the DFT on a prime number of points remains
undecomposable.

1.3.3.2.3. The Rader algorithm

The previous two algorithms essentially reduce the calculation of
the DFT on N points for N composite to the calculation of smaller
DFTs on prime numbers of points, the latter remaining irreducible.
However, Rader (1968) showed that the p-point DFT for p an odd
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prime can itself be factored by invoking some extra arithmetic
structure present in ��p�.

1.3.3.2.3.1. N an odd prime
The ring ��p� � �0, 1, 2, � � � , p
 1� has the property that its

p
 1 non-zero elements, called units, form a multiplicative group
U�p�. In particular, all units r � U�p� have a unique multiplicative
inverse in ��p�, i.e. a unit s � U�p� such that rs � 1 mod p. This
endows ��p� with the structure of a finite field.

Furthermore, U�p� is a cyclic group, i.e. consists of the
successive powers gm mod p of a generator g called a primitive
root mod p (such a g may not be unique, but it always exists). For
instance, for p � 7, U�7� � �1, 2, 3, 4, 5, 6� is generated by g � 3,
whose successive powers mod 7 are:

g0 � 1, g1 � 3, g2 � 2, g3 � 6, g4 � 4, g5 � 5

[see Apostol (1976), Chapter 10].
The basis of Rader’s algorithm is to bring to light a hidden

regularity in the matrix F�p� by permuting the basis vectors uk and
vk� of L���p�� as follows:

u�0 � u0

u�m � uk with k � gm, m � 1, � � � , p
 1;

v�0 � v0

v�m� � vk� with k� � gm� , m� � 1, � � � , p
 1;

where g is a primitive root mod p.
With respect to these new bases, the matrix representing �F�p�

will have the following elements:

element �0, 0� � 1

element �0, m	 1� � 1 for all m � 0, � � � p
 2,

element �m� 	 1, 0� � 1 for all m� � 0, � � � , p
 2,

element �m� 	 1, m	 1� � e
k�k
p

� �

� e�g�m�	m��p�
for all m� � 0, � � � , p
 2�

Thus the ‘core’ �C�p� of matrix �F�p�, of size �p
 1� � �p
 1�,
formed by the elements with two non-zero indices, has a so-called
skew-circulant structure because element �m�, m� depends only on
m� 	 m. Simplification may now occur because multiplication by
�C�p� is closely related to a cyclic convolution. Introducing the
notation C�m� � e�gm�p� we may write the relation Y� � �F�p�Y in
the permuted bases as

Y ��0� ��
k

Y�k�

Y ��m� 	 1� � Y�0� 	 �p
2

m�0
C�m� 	 m�Y�m	 1�

� Y�0� 	 �p
2

m�0
C�m� 
 m�Z�m�

� Y�0� 	 �C � Z��m��, m� � 0, � � � , p
 2,

where Z is defined by Z�m� � Y�p
 m
 2�, m � 0, � � � , p
 2.
Thus Y� may be obtained by cyclic convolution of C and Z,

which may for instance be calculated by

C � Z � F�p
 1���F�p
 1��C� � �F�p
 1��Z��,
where � denotes the component-wise multiplication of vectors.
Since p is odd, p
 1 is always divisible by 2 and may even be

highly composite. In that case, factoring �F�p
 1� by means of the
Cooley–Tukey or Good methods leads to an algorithm of complex-
ity p log p rather than p2 for �F�p�. An added bonus is that, because
g�p
1��2 � 
1, the elements of �F�p
 1��C� can be shown to be
either purely real or purely imaginary, which halves the number of
real multiplications involved.

1.3.3.2.3.2. N a power of an odd prime
This idea was extended by Winograd (1976, 1978) to the

treatment of prime powers N � p
 , using the cyclic structure of the
multiplicative group of units U�p
�. The latter consists of all those
elements of ��p
� which are not divisible by p, and thus has q
 �
p

1�p
 1� elements. It is cyclic, and there exist primitive roots g
modulo p
 such that

U�p
� � �1, g, g2, g3, � � � , gq

1��
The p

1 elements divisible by p, which are divisors of zero, have to
be treated separately just as 0 had to be treated separately for N � p.

When k� �� U�p
�, then k� � pk�1 with k�1 � ��p

1�. The results
X ��pk�1� are p-decimated, hence can be obtained via the p

1-point
DFT of the p

1-periodized data Y:

X ��pk�1� � �F�p

1��Y��k�1�
with

Y�k1� �
�

k2���p�
X �k1 	 p

1k2��

When k� � U�p
�, then we may write

X ��k�� � X �
0 �k�� 	 X �

1 �k��,
where X�0 contains the contributions from k �� U�p
� and X�1 those
from k � U�p
�. By a converse of the previous calculation, X�0
arises from p-decimated data Z, hence is the p

1-periodization of
the p

1-point DFT of these data:

X �
0 �p

1k�1 	 k�2� � �F�p

1��Z��k�2�

with

Z�k2� � X �pk2�, k2 � ��p

1�

(the p

1-periodicity follows implicity from the fact that the
transform on the right-hand side is independent of k�1 � ��p�).

Finally, the contribution X �
1 from all k � U�p
� may be

calculated by reindexing by the powers of a primitive root g
modulo p
 , i.e. by writing

X �
1 �gm� � � �q

1

m�0
X �gm�e�g�m�	m��p
 �

then carrying out the multiplication by the skew-circulant matrix
core as a convolution.

Thus the DFT of size p
 may be reduced to two DFTs of size p

1

(dealing, respectively, with p-decimated results and p-decimated
data) and a convolution of size q
 � p

1�p
 1�. The latter may be
‘diagonalized’ into a multiplication by purely real or purely
imaginary numbers (because g�q
�2� � 
1) by two DFTs, whose
factoring in turn leads to DFTs of size p

1 and p
 1. This method,
applied recursively, allows the complete decomposition of the DFT
on p
 points into arbitrarily small DFTs.

1.3.3.2.3.3. N a power of 2
When N � 2
 , the same method can be applied, except for a

slight modification in the calculation of X�1. There is no primitive
root modulo 2
 for 
 
 2: the group U�2
� is the direct product of
two cyclic groups, the first (of order 2) generated by 
1, the second
(of order N�4) generated by 3 or 5. One then uses a representation
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k � �
1�m1 5m2

k� � �
1�m�1 5m�2

and the reindexed core matrix gives rise to a two-dimensional
convolution. The latter may be carried out by means of two 2D
DFTs on 2� �N�4� points.

1.3.3.2.4. The Winograd algorithms

The cyclic convolutions generated by Rader’s multiplicative
reindexing may be evaluated more economically than through DFTs
if they are re-examined within a new algebraic setting, namely the
theory of congruence classes of polynomials [see, for instance,
Blahut (1985), Chapter 2; Schroeder (1986), Chapter 24].

The set, denoted ��X �, of polynomials in one variable with
coefficients in a given field � has many of the formal properties of
the set � of rational integers: it is a ring with no zero divisors and
has a Euclidean algorithm on which a theory of divisibility can be
built.

Given a polynomial P�z�, then for every W �z� there exist unique
polynomials Q�z� and R�z� such that

W�z� � P�z�Q�z� 	 R�z�
and

degree �R� � degree �P��
R�z� is called the residue of H�z� modulo P�z�. Two polynomials
H1�z� and H2�z� having the same residue modulo P�z� are said to be
congruent modulo P�z�, which is denoted by

H1�z� � H2�z� mod P�z��
If H�z� � 0 mod P�z�, H�z� is said to be divisible by P�z�. If

H�z� only has divisors of degree zero in ��X �, it is said to be
irreducible over � (this notion depends on �). Irreducible
polynomials play in ��X � a role analogous to that of prime numbers
in �, and any polynomial over � has an essentially unique
factorization as a product of irreducible polynomials.

There exists a Chinese remainder theorem (CRT) for poly-
nomials. Let P�z� � P1�z� � � �Pd�z� be factored into a product of
pairwise coprime polynomials [i.e. Pi�z� and Pj�z� have no common
factor for i �� j]. Then the system of congruence equations

H�z� � Hj�z� mod Pj�z�, j � 1, � � � , d,

has a unique solution H�z� modulo P�z�. This solution may be
constructed by a procedure similar to that used for integers. Let

Qj�z� � P�z��Pj�z� �
�
i ��j

Pi�z��

Then Pj and Qj are coprime, and the Euclidean algorithm may be
used to obtain polynomials pj�z� and qj�z� such that

pj�z�Pj�z� 	 qj�z�Qj�z� � 1�

With Si�z� � qi�z�Qi�z�, the polynomial

H�z� ��d
i�1

Si�z�Hi�z� mod P�z�

is easily shown to be the desired solution.
As with integers, it can be shown that the 1:1 correspondence

between H�z� and Hj�z� sends sums to sums and products to
products, i.e. establishes a ring isomorphism:

��X � mod P # ���X � mod P1� � � � �� ���X � mod Pd��
These results will now be applied to the efficient calculation of

cyclic convolutions. Let U � �u0, u1, � � � , uN
1� and V �
�v0, v1, � � � , vN
1� be two vectors of length N, and let W �

�w0, w1, � � � , wN
1� be obtained by cyclic convolution of U and V:

wn �
�N
1

m�0
umvn
m, n � 0, � � � , N 
 1�

The very simple but crucial result is that this cyclic convolution
may be carried out by polynomial multiplication modulo �zN 
 1�:
if

U�z� � �N
1

l�0
ulz

l

V �z� � �N
1

m�0
vmzm

W�z� � �N
1

n�0
wnzn

then the above relation is equivalent to

W�z� � U�z�V �z� mod �zN 
 1��
Now the polynomial zN 
 1 can be factored over the field of rational
numbers into irreducible factors called cyclotomic polynomials: if d
is the number of divisors of N, including 1 and N, then

zN 
 1 � �d
i�1

Pi�z�,

where the cyclotomics Pi�z� are well known (Nussbaumer, 1981;
Schroeder, 1986, Chapter 22). We may now invoke the CRT, and
exploit the ring isomorphism it establishes to simplify the
calculation of W �z� from U�z� and V �z� as follows:

(i) compute the d residual polynomials

Ui�z� � U�z� mod Pi�z�, i � 1, � � � , d,

Vi�z� � V �z� mod Pi�z�, i � 1, � � � , d;

(ii) compute the d polynomial products

Wi�z� � Ui�z�Vi�z� mod Pi�z�, i � 1, � � � , d;

(iii) use the CRT reconstruction formula just proved to recover
W�z� from the Wi�z�:

W�z� ��d
i�1

Si�z�Wi�z� mod �zN 
 1��

When N is not too large, i.e. for ‘short cyclic convolutions’, the
Pi�z� are very simple, with coefficients 0 or  1, so that (i) only
involves a small number of additions. Furthermore, special
techniques have been developed to multiply general polynomials
modulo cyclotomic polynomials, thus helping keep the number of
multiplications in (ii) and (iii) to a minimum. As a result, cyclic
convolutions can be calculated rapidly when N is sufficiently
composite.

It will be recalled that Rader’s multiplicative indexing often
gives rise to cyclic convolutions of length p
 1 for p an odd prime.
Since p
 1 is highly composite for all p � 50 other than 23 and 47,
these cyclic convolutions can be performed more efficiently by the
above procedure than by DFT.

These combined algorithms are due to Winograd (1977, 1978,
1980), and are known collectively as ‘Winograd small FFT
algorithms’. Winograd also showed that they can be thought of as
bringing the DFT matrix F to the following ‘normal form’:

F � CBA,

where
A is an integer matrix with entries 0,  1, defining the ‘pre-

additions’,

54

1. GENERAL RELATIONSHIPS AND TECHNIQUES



B is a diagonal matrix of multiplications,
C is a matrix with entries 0, 1, i, defining the ‘post-additions’.

The elements on the diagonal of B can be shown to be either real or
pure imaginary, by the same argument as in Section 1.3.3.2.3.1.
Matrices A and C may be rectangular rather than square, so that
intermediate results may require extra storage space.

1.3.3.3. Multidimensional algorithms

From an algorithmic point of view, the distinction between one-
dimensional (1D) and multidimensional DFTs is somewhat blurred
by the fact that some factoring techniques turn a 1D transform into a
multidimensional one. The distinction made here, however, is a
practical one and is based on the dimensionality of the indexing sets
for data and results. This section will therefore be concerned with
the problem of factoring the DFT when the indexing sets for the
input data and output results are multidimensional.

1.3.3.3.1. The method of successive one-dimensional
transforms

The DFT was defined in Section 1.3.2.7.4 in an n-dimensional
setting and it was shown that when the decimation matrix N is
diagonal, say N � diag�N �1�, N �2�, � � � , N �n��, then �F�N� has a
tensor product structure:

�F�N� � �F�N �1�� � �F�N �2�� � � � �� �F�N �n���
This may be rewritten as follows:

�F�N� � ��F�N �1�� � IN �2� � � � �� IN �n� �
� �IN �1� � �F�N �2�� � � � �� IN �n� �
� � � �

� �IN �1� � IN �2� � � � �� �F�N �n��,
where the I’s are identity matrices and � denotes ordinary matrix
multiplication. The matrix within each bracket represents a one-
dimensional DFT along one of the n dimensions, the other
dimensions being left untransformed. As these matrices commute,
the order in which the successive 1D DFTs are performed is
immaterial.

This is the most straightforward method for building an n-
dimensional algorithm from existing 1D algorithms. It is known in
crystallography under the name of ‘Beevers–Lipson factorization’
(Section 1.3.4.3.1), and in signal processing as the ‘row–column
method’.

1.3.3.3.2. Multidimensional factorization

Substantial reductions in the arithmetic cost, as well as gains in
flexibility, can be obtained if the factoring of the DFT is carried out
in several dimensions simultaneously. The presentation given here
is a generalization of that of Mersereau & Speake (1981), using the
abstract setting established independently by Auslander, Tolimieri
& Winograd (1982).

Let us return to the general n-dimensional setting of Section
1.3.2.7.4, where the DFT was defined for an arbitrary decimation
matrix N by the formulae (where �N� denotes �det N�):

F�N� � X �k� � 1
�N�
�

k�
X ��k��e�
k� � �N
1k��

�F�N� � X ��k�� �
�

k

X �k�e�k� � �N
1k��

with

k � �n�N�n, k� � �n�NT�n�

1.3.3.3.2.1. Multidimensional Cooley–Tukey factorization
Let us now assume that this decimation can be factored into d

successive decimations, i.e. that

N � N1N2 � � �Nd
1Nd

and hence

NT � NT
d NT

d
1 � � �N
T
2 NT

1 �

Then the coset decomposition formulae corresponding to these
successive decimations (Section 1.3.2.7.1) can be combined as
follows:

�n �
�
k1

�k1 	 N1�
n�

�
�
k1

k1 	 N1

�
k2

�k2 	 N2�
n�

� �� �

� � � �

�
�
k1

� � �
�
kd

�k1 	 N1k2 	 � � �	 N1N2 � � � �� Nd
1kd 	 N�n�

with kj � �n�Nj�
n. Therefore, any k � ��N�n may be written

uniquely as

k � k1 	 N1k2 	 � � �	 N1N2 � � � �� Nd
1kd �

Similarly:

�n �
�
k�d

�k�d 	 NT
d�

n�

� � � �

�
�
k�d

� � �
�
k�1

�k�d 	 NT
d k�d
1 	 � � �	 NT

d � � � �� NT
2 k�1

	 NT�n�
so that any k� � �n�NT�n may be written uniquely as

k� � k�d 	 NT
d k�d
1 	 � � �	 NT

d � � � �� NT
2 k�1

with k�j � �n�NT
j �

n. These decompositions are the vector
analogues of the multi-radix number representation systems used
in the Cooley–Tukey factorization.

We may then write the definition of �F�N� with d � 2 factors as

X ��k�2 	 NT
2 k�1� �

�
k1

�
k2

X �k1 	 N1k2�

� e��k�T2 	 k�T1 N2�N
1
2 N
1

1 �k1 	 N1k2���
The argument of e(–) may be expanded as

k�2 � �N
1k1� 	 k�1 � �N
1
1 k1� 	 k�2 � �N
1

2 k2� 	 k�1 � k2�

The first summand may be recognized as a twiddle factor, the
second and third as the kernels of �F�N1� and �F�N2�, respectively,
while the fourth is an integer which may be dropped. We are thus
led to a ‘vector-radix’ version of the Cooley–Tukey algorithm, in
which the successive decimations may be introduced in all n
dimensions simultaneously by general integer matrices. The
computation may be decomposed into five stages analogous to
those of the one-dimensional algorithm of Section 1.3.3.2.1:

(i) form the �N1� vectors Yk1 of shape N2 by

Yk1�k2� � X �k1 	 N1k2�, k1 � �n�N1�
n, k2 � �n�N2�

n;
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(ii) calculate the �N1� transforms Y�k1
on �N2� points:

Y �k1
�k�2� �

�
k2

e�k�2 � �N
1
2 k2��Yk1�k2�, k1 � �n�N1�

n;

(iii) form the �N2� vectors Zk�2 of shape N1 by

Zk�2�k1� � e�k�2 � �N
1k1��Y �k1
�k�2�, k1 � �n�N1�

n,

k�2 � �n�NT
2�

n;

(iv) calculate the �N2� transforms Z�k�2 on �N1� points:

Z�k�2�k
�
1� �

�
k1

e�k�1 � �N
1
1 k1��Zk�2�k1�, k�2 � �n�NT

2�
n;

(v) collect X ��k�2 	 NT
2 k�1� as Z�k�2�k

�
1�.

The initial �N�-point transform �F�N� can thus be performed as
�N1� transforms �F�N2� on �N2� points, followed by �N2� transforms
�F�N1� on �N1� points. This process can be applied successively to all
d factors. The same decomposition applies to F�N�, up to the
complex conjugation of twiddle factors, the normalization factor
1��N� being obtained as the product of the factors 1��Nj� in the
successive partial transforms F�Nj�.

The geometric interpretation of this factorization in terms of
partial transforms on translates of sublattices applies in full to this n-
dimensional setting; in particular, the twiddle factors are seen to be
related to the residual translations which place the sublattices in
register within the big lattice. If the intermediate transforms are
performed in place, then the quantity

X ��k�d 	 NT
d k�d
1 	 � � �	 NT

d NT
d
1 � � � �� NT

2 k�1�
will eventually be found at location

k�1 	 N1k�2 	 � � �	 N1N2 � � � �� Nd
1k�d ,

so that the final results will have to be unscrambled by a process
which may be called ‘coset reversal’, the vector equivalent of digit
reversal.

Factoring by 2 in all n dimensions simultaneously, i.e. taking
N � 2M, leads to ‘n-dimensional butterflies’. Decimation in time
corresponds to the choice N1 � 2I, N2 � M, so that k1 � �n�2�n is
an n-dimensional parity class; the calculation then proceeds by

Yk1�k2� � X �k1 	 2k2�, k1 � �n�2�n, k2 � �n�M�n,

Y �k1
� �F�M��Yk1 �, k1 � �n�2�n;

X ��k�2 	MT k�1� �
�

k1��n�2�n
�
1�k�1�k1

� e�k�2 � �N
1k1��Y �k1
�k�2��

Decimation in frequency corresponds to the choice N1 � M,
N2 � 2I, so that k2 � �n�2�n labels ‘octant’ blocks of shape M;
the calculation then proceeds through the following steps:

Zk�2�k1� �
�

k2��n�2�n
�
1�k�2�k2 X �k1 	Mk2�

� �

� e�k�2 � �N
1k1��,
Z�k�2 � �F�M��Zk�2 �,

X ��k�2 	 2k�1� � Z�k�2�k
�
1�,

i.e. the 2n parity classes of results, corresponding to the different
k�2 � �n�2�n, are obtained separately. When the dimension n is 2
and the decimating matrix is diagonal, this analysis reduces to the
‘vector radix FFT’ algorithms proposed by Rivard (1977) and
Harris et al. (1977). These lead to substantial reductions in the
number M of multiplications compared to the row–column method:

M is reduced to 3M�4 by simultaneous 2� 2 factoring, and to
15M�32 by simultaneous 4� 4 factoring.

The use of a non-diagonal decimating matrix may bring savings
in computing time if the spectrum of the band-limited function
under study is of such a shape as to pack more compactly in a non-
rectangular than in a rectangular lattice (Mersereau, 1979). If, for
instance, the support K of the spectrum 
 is contained in a sphere,
then a decimation matrix producing a close packing of these spheres
will yield an aliasing-free DFT algorithm with fewer sample points
than the standard algorithm using a rectangular lattice.

1.3.3.3.2.2. Multidimensional prime factor algorithm
Suppose that the decimation matrix N is diagonal

N � diag �N �1�, N �2�, � � � , N �n��
and let each diagonal element be written in terms of its prime
factors:

N �i� � �m
j�1

p
�i� j�
j ,

where m is the total number of distinct prime factors present in the
N �i�.

The CRT may be used to turn each 1D transform along
dimension i �i � 1, � � � , n� into a multidimensional transform with
a separate ‘pseudo-dimension’ for each distinct prime factor of N �i�;
the number �i, of these pseudo-dimensions is equal to the
cardinality of the set:

� j � �1, � � � , m��
�i, j� 
 0 for some i��
The full n-dimensional transform thus becomes �-dimensional,
with � ��n

i�1�i.
We may now permute the � pseudo-dimensions so as to bring

into contiguous position those corresponding to the same prime
factor pj; the m resulting groups of pseudo-dimensions are said to
define ‘p-primary’ blocks. The initial transform is now written as a
tensor product of m p-primary transforms, where transform j is on

p
�1� j�
j � p
�2� j�

j � � � �� p
�n� j�
j

points [by convention, dimension i is not transformed if 
�i, j� � 0].
These p-primary transforms may be computed, for instance, by
multidimensional Cooley–Tukey factorization (Section 1.3.3.3.1),
which is faster than the straightforward row–column method. The
final results may then be obtained by reversing all the permutations
used.

The extra gain with respect to the multidimensional Cooley–
Tukey method is that there are no twiddle factors between p-
primary pieces corresponding to different primes p.

The case where N is not diagonal has been examined by
Guessoum & Mersereau (1986).

1.3.3.3.2.3. Nesting of Winograd small FFTs
Suppose that the CRT has been used as above to map an n-

dimensional DFT to a �-dimensional DFT. For each � � 1, � � � ,�
[� runs over those pairs (i, j) such that 
�i, j� 
 0], the Rader/
Winograd procedure may be applied to put the matrix of the �th 1D
DFT in the CBA normal form of a Winograd small FFT. The full
DFT matrix may then be written, up to permutation of data and
results, as

��
��1

�C�B�A���

A well known property of the tensor product of matrices allows
this to be rewritten as
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��
��1

C�

� 

�

��
��1

B�

� 

�

��
��1

A�

� 


and thus to form a matrix in which the combined pre-addition,
multiplication and post-addition matrices have been precomputed.
This procedure, called nesting, can be shown to afford a reduction
of the arithmetic operation count compared to the row–column
method (Morris, 1978).

Clearly, the nesting rearrangement need not be applied to all �
dimensions, but can be restricted to any desired subset of them.

1.3.3.3.2.4. The Nussbaumer–Quandalle algorithm
Nussbaumer’s approach views the DFT as the evaluation of

certain polynomials constructed from the data (as in Section
1.3.3.2.4). For instance, putting � � e�1�N�, the 1D N-point DFT

X ��k�� � �N
1

k�0
X �k��k�k

may be written

X ��k�� � Q��k� �,
where the polynomial Q is defined by

Q�z� � �N
1

k�0
X �k�zk �

Let us consider (Nussbaumer & Quandalle, 1979) a 2D transform
of size N � N :

X ��k�1 , k�2� �
�N
1

k1�0

�N
1

k2�0
X �k1, k2��k�1 k1	k�2 k2 �

By introduction of the polynomials

Qk2�z� �
�
k1

X �k1, k2�zk1

Rk�2 �z� �
�
k2

�k�2 k2 Qk2�z�,

this may be rewritten:

X ��k�1 , k�2� � Rk�2 ��k�1 � ��
k2

�k�2 k2 Qk2��k�1 ��

Let us now suppose that k�1 is coprime to N. Then k�1 has a unique
inverse modulo N (denoted by 1�k�1), so that multiplication by k�1
simply permutes the elements of ��N� and hence

�N
1

k2�0
f �k2� �

�N
1

k2�0
f �k�1k2�

for any function f over ��N�. We may thus write:

X ��k�1, k�2� �
�
k2

�k�1 k�2 k2 Qk�1 k2��k�1 �

� Sk�1 k2��k�1 �
where

Sk� �z� �
�
k2

zk�k2 Qk2�z��

Since only the value of polynomial Sk� �z� at z � �k�1 is involved in
the result, the computation of Sk� may be carried out modulo the
unique cyclotomic polynomial P�z� such that P��k�1 � � 0. Thus, if
we define:

Tk� �z� �
�
k2

zk�k2 Qk2�z� mod P�z�

we may write:

X ��k�1 , k�2� � Tk�1 k�2 ��k�1 �
or equivalently

X � k�1,
k�2
k�1

� �
� Tk�2 ��k�1 ��

For N an odd prime p, all non-zero values of k�1 are coprime with
p so that the p� p-point DFT may be calculated as follows:

(1) form the polynomials

Tk�2 �z� �
�
k1

�
k2

X �k1, k2�zk1	k�2 k2 mod P�z�

for k�2 � 0, � � � , p
 1;
(2) evaluate Tk�2 ��k�1 � for k�1 � 0, � � � , p
 1;
(3) put X ��k�1 , k�2�k�1� � Tk�2 ��k�1 �;
(4) calculate the terms for k�1 � 0 separately by

X ��0, k�2� �
�
k2

�
k1

X �k1, k2�
� �

�k�2 k2 �

Step (1) is a set of p ‘polynomial transforms’ involving no
multiplications; step (2) consists of p DFTs on p points each since if

Tk�2 �z� �
�
k1

Yk�2 �k1�zk1

then

Tk�2 ��k�1 � ��
k1

Yk�2 �k1��k�1 k1 � Y �k�2 �k
�
1�;

step (3) is a permutation; and step (4) is a p-point DFT. Thus the 2D
DFT on p� p points, which takes 2p p-point DFTs by the row–
column method, involves only �p	 1� p-point DFTs; the other
DFTs have been replaced by polynomial transforms involving only
additions.

This procedure can be extended to n dimensions, and reduces the
number of 1D p-point DFTs from npn
1 for the row–column method
to �pn 
 1���p
 1�, at the cost of introducing extra additions in the
polynomial transforms.

A similar algorithm has been formulated by Auslander et al.
(1983) in terms of Galois theory.

1.3.3.3.3. Global algorithm design

1.3.3.3.3.1. From local pieces to global algorithms
The mathematical analysis of the structure of DFT computations

has brought to light a broad variety of possibilities for reducing or
reshaping their arithmetic complexity. All of them are ‘analytic’ in
that they break down large transforms into a succession of smaller
ones.

These results may now be considered from the converse
‘synthetic’ viewpoint as providing a list of procedures for
assembling them:

(i) the building blocks are one-dimensional p-point algorithms
for p a small prime;

(ii) the low-level connectors are the multiplicative reindexing
methods of Rader and Winograd, or the polynomial transform
reindexing method of Nussbaumer and Quandalle, which allow the
construction of efficient algorithms for larger primes p, for prime
powers p
 , and for p-primary pieces of shape p
 � � � �� p
;

(iii) the high-level connectors are the additive reindexing
scheme of Cooley–Tukey, the Chinese remainder theorem
reindexing, and the tensor product construction;

(iv) nesting may be viewed as the ‘glue’ which seals all
elements.
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The simplest DFT may then be carried out into a global algorithm
in many different ways. The diagrams in Fig. 1.3.3.1 illustrate a few
of the options available to compute a 400-point DFT. They may
differ greatly in their arithmetic operation counts.

1.3.3.3.3.2. Computer architecture considerations
To obtain a truly useful measure of the computational complexity

of a DFT algorithm, its arithmetic operation count must be tempered
by computer architecture considerations. Three main types of trade-
offs must be borne in mind:

(i) reductions in floating-point (f.p.) arithmetic count are
obtained by reindexing, hence at the cost of an increase in integer
arithmetic on addresses, although some shortcuts may be found
(Uhrich, 1969; Burrus & Eschenbacher, 1981);

(ii) reduction in the f.p. multiplication count usually leads to a
large increase in the f.p. addition count (Morris, 1978);

(iii) nesting can increase execution speed, but causes a loss of
modularity and hence complicates program development (Silver-
man, 1977; Kolba & Parks, 1977).

Many of the mathematical developments above took place in the
context of single-processor serial computers, where f.p. addition is
substantially cheaper than f.p. multiplication but where integer
address arithmetic has to compete with f.p. arithmetic for processor
cycles. As a result, the alternatives to the Cooley–Tukey algorithm
hardly ever led to particularly favourable trade-offs, thus creating
the impression that there was little to gain by switching to more
exotic algorithms.

The advent of new machine architectures with vector and/or
parallel processing features has greatly altered this picture (Pease,
1968; Korn & Lambiotte, 1979; Fornberg, 1981; Swartzrauber,
1984):

(i) pipelining equalizes the cost of f.p. addition and f.p.
multiplication, and the ideal ‘blend’ of the two types of operations
depends solely on the number of adder and multiplier units
available in each machine;

(ii) integer address arithmetic is delegated to specialized
arithmetic and logical units (ALUs) operating concurrently with

the f.p. units, so that complex reindexing schemes may be used
without loss of overall efficiency.

Another major consideration is that of data flow [see e.g. Nawab
& McClellan (1979)]. Serial machines only have few registers and
few paths connecting them, and allow little or no overlap between
computation and data movement. New architectures, on the other
hand, comprise banks of vector registers (or ‘cache memory’)
besides the usual internal registers, and dedicated ALUs can service
data transfers between several of them simultaneously and
concurrently with computation.

In this new context, the devices described in Sections 1.3.3.2 and
1.3.3.3 for altering the balance between the various types of
arithmetic operations, and reshaping the data flow during the
computation, are invaluable. The field of machine-dependent DFT
algorithm design is thriving on them [see e.g. Temperton
(1983a,b,c, 1985); Agarwal & Cooley (1986, 1987)].

1.3.3.3.3.3. The Johnson–Burrus family of algorithms
In order to explore systematically all possible algorithms for

carrying out a given DFT computation, and to pick the one best
suited to a given machine, attempts have been made to develop:

(i) a high-level notation of describing all the ingredients of a
DFT computation, including data permutation and data flow;

(ii) a formal calculus capable of operating on these descriptions
so as to represent all possible reorganizations of the computation;

(iii) an automatic procedure for evaluating the performance of a
given algorithm on a specific architecture.

Task (i) can be accomplished by systematic use of a tensor
product notation to represent the various stages into which the DFT
can be factored (reindexing, small transforms on subsets of indices,
twiddle factors, digit-reversal permutations).

Task (ii) may for instance use the Winograd CBA normal form
for each small transform, then apply the rules governing the
rearrangement of tensor product

�
and ordinary product �

operations on matrices. The matching of these rearrangements to
the architecture of a vector and/or parallel computer can be
formalized algebraically [see e.g. Chapter 2 of Tolimieri et al.
(1989)].

Task (iii) is a complex search which requires techniques such as
dynamic programming (Bellman, 1958).

Johnson & Burrus (1983) have proposed and tested such a
scheme to identify the optimal trade-offs between prime factor
nesting and Winograd nesting of small Winograd transforms. In
step (ii), they further decomposed the pre-addition matrix A and
post-addition matrix C into several factors, so that the number of
design options available becomes very large: the N-point DFT when
N has four factors can be calculated in over 1012 distinct ways.

This large family of nested algorithms contains the prime factor
algorithm and the Winograd algorithms as particular cases, but
usually achieves greater efficiency than either by reducing the f.p.
multiplication count while keeping the number of f.p. additions
small.

There is little doubt that this systematic approach will be
extended so as to incorporate all available methods of restructuring
the DFT.

1.3.4. Crystallographic applications of Fourier
transforms

1.3.4.1. Introduction

The central role of the Fourier transformation in X-ray
crystallography is a consequence of the kinematic approximation
used in the description of the scattering of X-rays by a distribution
of electrons (Bragg, 1915; Duane, 1925; Havighurst, 1925a,b;
Zachariasen, 1945; James, 1948a, Chapters 1 and 2; Lipson &
Cochran, 1953, Chapter 1; Bragg, 1975).

Fig. 1.3.3.1. A few global algorithms for computing a 400-point DFT. CT:
Cooley–Tukey factorization. PF: prime factor (or Good) factorization.
W: Winograd algorithm.
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Let ��X� be the density of electrons in a sample of matter
contained in a finite region V which is being illuminated by a
parallel monochromatic X-ray beam with wavevector K0. Then the
far-field amplitude scattered in a direction corresponding to
wavevector K � K0 	H is proportional to

F�H� � �
V
��X� exp�2�iH � X� d3X

� �	 ����H�
� ��x, exp�2�iH � X���

In certain model calculations, the ‘sample’ may contain not only
volume charges, but also point, line and surface charges. These
singularities may be accommodated by letting � be a distribution,
and writing

F�H� � �	 ����H� � ��x, exp�2�iH � X���
F is still a well behaved function (analytic, by Section 1.3.2.4.2.10)
because � has been assumed to have compact support.

If the sample is assumed to be an infinite crystal, so that � is now
a periodic distribution, the customary limiting process by which it is
shown that F becomes a discrete series of peaks at reciprocal-lattice
points (see e.g. von Laue, 1936; Ewald, 1940; James, 1948a p. 9;
Lipson & Taylor, 1958, pp. 14–27; Ewald, 1962, pp. 82–101;
Warren, 1969, pp. 27–30) is already subsumed under the treatment
of Section 1.3.2.6.

1.3.4.2. Crystallographic Fourier transform theory

1.3.4.2.1. Crystal periodicity

1.3.4.2.1.1. Period lattice, reciprocal lattice and structure
factors

Let � be the distribution of electrons in a crystal. Then, by
definition of a crystal, � is 
-periodic for some period lattice 

(Section 1.3.2.6.5) so that there exists a motif distribution �0 with
compact support such that

� � R � �0,

where R ��x�
��X�. The lattice 
 is usually taken to be the finest
for which the above representation holds.

Let 
 have a basis �a1, a2, a3� over the integers, these basis
vectors being expressed in terms of a standard orthonormal basis
�e1, e2, e3� as

ak �
�3
j�1

ajkej�

Then the matrix

A �
a11 a12 a13

a21 a22 a23

a31 a32 a33

�
�

�



is the period matrix of 
 (Section 1.3.2.6.5) with respect to the unit
lattice with basis �e1, e2, e3�, and the volume V of the unit cell is
given by V � �det A�.

By Fourier transformation

�	 ��� � R� � �	 ��0�,
where R� ��H�
���H� is the lattice distribution associated to the
reciprocal lattice 
�. The basis vectors �a�1, a�2, a�3� have coordinates
in �e1, e2, e3� given by the columns of �A
1�T , whose expression in
terms of the cofactors of A (see Section 1.3.2.6.5) gives the familiar
formulae involving the cross product of vectors for n � 3. The H-
distribution F of scattered amplitudes may be written

F � �	 ���H �
�

H�
�
�	 ��0��H���H� �

�
H�
�

FH��H�

and is thus a weighted reciprocal-lattice distribution, the weight FH
attached to each node H � 
� being the value at H of the transform
�	 ��0� of the motif �0. Taken in conjunction with the assumption
that the scattering is elastic, i.e. that H only changes the direction
but not the magnitude of the incident wavevector K0, this result
yields the usual forms (Laue or Bragg) of the diffraction conditions:
H � 
�, and simultaneously H lies on the Ewald sphere.

By the reciprocity theorem, �0 can be recovered if F is known for
all H � 
� as follows [Section 1.3.2.6.5, e.g. (iv)]:

�x � 1
V

�
H�
�

FH exp�
2�iH � X��

These relations may be rewritten in terms of standard, or
‘fractional crystallographic’, coordinates by putting

X � Ax, H � �A
1�T h,

so that a unit cell of the crystal corresponds to x � �3��3, and that
h � �3. Defining �
 and �
0 by

� � 1
V

A��
, �0 � 1
V

A��
0

so that

��X� d3X � �
�x� d3x, �0�X� d3X � �
0�x� d3x,

we have

�	 ��
�h �
�

h��3

F�h���h�,

F�h� � ��
0
x, exp�2�ih � x��

� �
�3��3

�
0�x� exp�2�ih � x� d3x if �
0 � L1
loc��3��3�,

�
x �
�

h��3

F�h� exp�
2�ih � x��

These formulae are valid for an arbitrary motif distribution �
0,
provided the convergence of the Fourier series for �
 is considered
from the viewpoint of distribution theory (Section 1.3.2.6.10.3).

The experienced crystallographer may notice the absence of the
familiar factor 1�V from the expression for �
 just given. This is
because we use the (mathematically) natural unit for �
, the electron
per unit cell, which matches the dimensionless nature of the
crystallographic coordinates x and of the associated volume
element d3x. The traditional factor 1�V was the result of the
somewhat inconsistent use of x as an argument but of d3X as a
volume element to obtain � in electrons per unit volume (e.g. A

� 3
). A

fortunate consequence of the present convention is that nuisance
factors of V or 1�V , which used to abound in convolution or scalar
product formulae, are now absent.

It should be noted at this point that the crystallographic
terminology regarding 	 and �	 differs from the standard
mathematical terminology introduced in Section 1.3.2.4.1 and
applied to periodic distributions in Section 1.3.2.6.4: F is the
inverse Fourier transform of � rather than its Fourier transform, and
the calculation of � is called a Fourier synthesis in crystallography
even though it is mathematically a Fourier analysis. The origin of
this discrepancy may be traced to the fact that the mathematical
theory of the Fourier transformation originated with the study of
temporal periodicity, while crystallography deals with spatial
periodicity; since the expression for the phase factor of a plane
wave is exp�2�i�
t 
K � X��, the difference in sign between the
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contributions from time versus spatial displacements makes this
conflict unavoidable.

1.3.4.2.1.2. Structure factors in terms of form factors
In many cases, �
0 is a sum of translates of atomic electron-

density distributions. Assume there are n distinct chemical types of
atoms, with Nj identical isotropic atoms of type j described by an
electron distribution �
j about their centre of mass. According to
quantum mechanics each �
j is a smooth rapidly decreasing function
of x, i.e. �
j � 
 , hence �
0 � 
 and (ignoring the effect of thermal
agitation)

�
0�x� ��n
j�1

�Nj

kj�1
�
j�x
 xkj�

� �
,

which may be written (Section 1.3.2.5.8)

�
0 ��n
j�1

�
j �
�Nj

kj�1
��xkj �

� 
� �
�

By Fourier transformation:

F�h� ��n
j�1

�	 ��
j��h� �
�Nj

kj�1
exp�2�ih � xkj�

� �� �
�

Defining the form factor fj of atom j as a function of h to be

fj�h� � �	 ��
j��h�
we have

F�h� ��n
j�1

fj�h� �
�Nj

kj�1
exp�2�ih � xkj�

� �
�

If X � Ax and H � �A
1�T h are the real- and reciprocal-space
coordinates in Å and A

� 
1
, and if �j��X�� is the spherically

symmetric electron-density function for atom type j, then

fj�H� �
�


0

4��X�2�j��X�� sin�2��H��X��
2��H��X� d�X��

More complex expansions are used for electron-density studies
(see Chapter 1.2 in this volume). Anisotropic Gaussian atoms may
be dealt with through the formulae given in Section 1.3.2.4.4.2.

1.3.4.2.1.3. Fourier series for the electron density and its
summation

The convergence of the Fourier series for �

�
�x� � �

h��3

F�h� exp�
2�ih � x�

is usually examined from the classical point of view (Section
1.3.2.6.10). The summation of multiple Fourier series meets with
considerable difficulties, because there is no natural order in �n to
play the role of the natural order in � (Ash, 1976). In crystal-
lography, however, the structure factors F�h� are often obtained
within spheres �H� � 	
1 for increasing resolution (decreasing
	). Therefore, successive estimates of �
 are most naturally
calculated as the corresponding partial sums (Section 1.3.2.6.10.1):

S	��
��x� �
�

��A
1�T h��	
1

F�h� exp�
2�ih � x��

This may be written

S	��
��x� � �D	 � �
��x�,

where D	 is the ‘spherical Dirichlet kernel’

D	�x� �
�

��A
1�T h��	
1

exp�
2�ih � x��

D	 exhibits numerous negative ripples around its central peak.
Thus the ‘series termination errors’ incurred by using S	��
� instead
of �
consist of negative ripples around each atom, and may lead to a
Gibbs-like phenomenon (Section 1.3.2.6.10.1) near a molecular
boundary.

As in one dimension, Cesàro sums (arithmetic means of partial
sums) have better convergence properties, as they lead to a
convolution by a ‘spherical Fejér kernel’ which is everywhere
positive. Thus Cesàro summation will always produce positive
approximations to a positive electron density. Other positive
summation kernels were investigated by Pepinsky (1952) and by
Waser & Schomaker (1953).

1.3.4.2.1.4. Friedel’s law, anomalous scatterers
If the wavelength � of the incident X-rays is far from any

absorption edge of the atoms in the crystal, there is a constant phase
shift in the scattering, and the electron density may be considered to
be real-valued. Then

F�h� � �
�3��3

�
�x� exp�2�ih � x� d3x

� �
�3��3

�
�x� exp�2�i�
h� � x� d3x

� F�
h� since �
�x� � �
�x��
Thus if

F�h� � �F�h�� exp�i��h��,
then

�F�
h�� � �F�h�� and ��
h� � 
��h��
This is Friedel’s law (Friedel, 1913). The set �Fh� of Fourier
coefficients is said to have Hermitian symmetry.

If � is close to some absorption edge(s), the proximity to
resonance induces an extra phase shift, whose effect may be
represented by letting �
�x� take on complex values. Let

�
�x� � �
R�x� 	 i�
I�x�
and correspondingly, by termwise Fourier transformation

F�h� � FR�h� 	 iFI�h��
Since �
R�x� and �
I�x� are both real, FR�h� and FI�h� are both

Hermitian symmetric, hence

F�
h� � FR�h� 	 iFI�h�,
while

F�h� � FR�h� 
 iFI�h��
Thus F�
h� �� F�h�, so that Friedel’s law is violated. The
components FR�h� and FI�h�, which do obey Friedel’s law, may
be expressed as:

FR�h� � 1
2�F�h� 	 F�
h��,

FI�h� � 1
2i
�F�h� 
 F�
h���
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1.3.4.2.1.5. Parseval’s identity and other L2 theorems
By Section 1.3.2.4.3.3 and Section 1.3.2.6.10.2,�

h��3

�F�h��2 � �
�3��3

��
�x��2 d3x � V
�

�3�


���X��2 d3X�

Usually �
�x� is real and positive, hence ��
�x�� � �
�x�, but the
identity remains valid even when �
�x� is made complex-valued by
the presence of anomalous scatterers.

If �Gh� is the collection of structure factors belonging to another
electron density � � A��
 with the same period lattice as �, then�

h��3

F�h�G�h� � �
�3��3

�
�x��
�x� d3x

� V
�

�3�


��X���X� d3X�

Thus, norms and inner products may be evaluated either from
structure factors or from ‘maps’.

1.3.4.2.1.6. Convolution, correlation and Patterson
function

Let �
� r � �
0 and �
 � r � �
0 be two electron densities referred
to crystallographic coordinates, with structure factors �Fh�h��3 and
�Gh�h��3 , so that

�
x �
�

h��3

F�h� exp�
2�ih � x�,

�
x �
�

h��3

G�h� exp�
2�ih � x��

The distribution � � r � ��
0 � �
0� is well defined, since the
generalized support condition (Section 1.3.2.3.9.7) is satisfied. The
forward version of the convolution theorem implies that if

�x �
�

h��3

W �h� exp�
2�ih � x�,

then

W�h� � F�h�G�h��
If either �
0 or �
0 is infinitely differentiable, then the distribution

� � �
� �
 exists, and if we analyse it as

�x �
�

h��3

Y�h� exp�
2�ih � x�,

then the backward version of the convolution theorem reads:

Y�h� � �
k��3

F�h�G�h
 k��

The cross correlation ���
, �
� between �
and �
 is the �3-periodic
distribution defined by:

� � ��
0 � �
�
If �
0 and �
0 are locally integrable,

���
,�
��t� � �
�3

�
0�x��
�x	 t� d3x

� �
�3��3

�
�x��
�x	 t� d3x�

Let

��t� � �
h��3

K�h� exp�
2�ih � t��

The combined use of the shift property and of the forward
convolution theorem then gives immediately:

K�h� � F�h�G�h�;

hence the Fourier series representation of ���
, �
�:
���
, �
��t� � �

h��3

F�h�G�h� exp�
2�ih � t��

Clearly, ���
, �
� � ����
, �
���, as shown by the fact that permuting F
and G changes K�h� into its complex conjugate.

The auto-correlation of �
 is defined as ���
, �
� and is called the
Patterson function of �
. If �
 consists of point atoms, i.e.

�
0 ��N
j�1

Zj��xj�,

then

���
, �
� � r � �N
j�1

�N
k�1

ZjZk��xj
xk�

� �

contains information about interatomic vectors. It has the Fourier
series representation

���
, �
��t� � �
h��3

�F�h��2 exp�
2�ih � t�,

and is therefore calculable from the diffraction intensities alone. It
was first proposed by Patterson (1934, 1935a,b) as an extension to
crystals of the radially averaged correlation function used by
Warren & Gingrich (1934) in the study of powders.

1.3.4.2.1.7. Sampling theorems, continuous transforms,
interpolation

Shannon’s sampling and interpolation theorem (Section
1.3.2.7.1) takes two different forms, according to whether the
property of finite bandwidth is assumed in real space or in reciprocal
space.

(1) The most usual setting is in reciprocal space (see Sayre,
1952c). Only a finite number of diffraction intensities can be
recorded and phased, and for physical reasons the cutoff criterion is
the resolution 	 � 1��H�max. Electron-density maps are thus
calculated as partial sums (Section 1.3.4.2.1.3), which may be
written in Cartesian coordinates as

S	����X� �
�

H�
�� �H��	
1

F�H� exp�
2�iH � X��

S	��� is band-limited, the support of its spectrum being contained
in the solid sphere �	 defined by �H� � 	
1. Let �	 be the
indicator function of �	. The transform of the normalized version
of �	 is (see below, Section 1.3.4.4.3.5)

I	�X� � 3	3

4�
	 ��	��X�

� 3
u3
�sin u
 u cos u� where u � 2�

�X�
	

�

By Shannon’s theorem, it suffices to calculate S	��� on an integral
subdivision � of the period lattice 
 such that the sampling criterion
is satisfied (i.e. that the translates of �	 by vectors of �� do not
overlap). Values of S	��� may then be calculated at an arbitrary
point X by the interpolation formula:

S	����X� �
�

Y��
I	�X
 Y�S	����Y��

(2) The reverse situation occurs whenever the support of the
motif �
0 does not fill the whole unit cell, i.e. whenever there exists a
region M (the ‘molecular envelope’), strictly smaller than the unit
cell, such that the translates of M by vectors of r do not overlap and
that
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�M � �
0 � �
0�

It then follows that �
� r � ��M � �
�� Defining the ‘interference
function’ G as the normalized indicator function of M according to

G��� � 1
vol�M�

�	 ��M ����

we may invoke Shannon’s theorem to calculate the value �	 ��
0��� �
at an arbitrary point � of reciprocal space from its sample values
F�h� � �	 ��
0��h� at points of the reciprocal lattice as

�	 ��
0���� � �
h��3

G�� 
 h�F�h��

This aspect of Shannon’s theorem constitutes the mathematical
basis of phasing methods based on geometric redundancies created
by solvent regions and/or noncrystallographic symmetries (Bri-
cogne, 1974). The connection between Shannon’s theorem and the
phase problem was first noticed by Sayre (1952b). He pointed out
that the Patterson function of �
, written as ���
, �
� � r � ���
0 � �
0�,
may be viewed as consisting of a motif �0 � ��
0 � �
0 (containing all
the internal interatomic vectors) which is periodized by convolution
with r. As the translates of �0 by vectors of �3 do overlap, the
sample values of the intensities �F�h��2 at nodes of the reciprocal
lattice do not provide enough data to interpolate intensities �F����2
at arbitrary points of reciprocal space. Thus the loss of phase is
intimately related to the impossibility of intensity interpolation,
implying in return that any indication of intensity values attached to
non-integral points of the reciprocal lattice is a potential source of
phase information.

1.3.4.2.1.8. Sections and projections
It was shown at the end of Section 1.3.2.5.8 that the convolution

theorem establishes, under appropriate assumptions, a duality
between sectioning a smooth function (viewed as a multiplication
by a �-function in the sectioning coordinate) and projecting its
transform (viewed as a convolution with the function 1 everywhere
equal to 1 as a function of the projection coordinate). This duality
follows from the fact that 	 and �	 map 1xi to �xi and �xi to 1xi

(Section 1.3.2.5.6), and from the tensor product property (Section
1.3.2.5.5).

In the case of periodic distributions, projection and section must
be performed with respect to directions or subspaces which are
integral with respect to the period lattice if the result is to be
periodic; furthermore, projections must be performed only on the
contents of one repeating unit along the direction of projection, or
else the result would diverge. The same relations then hold between
principal central sections and projections of the electron density and
the dual principal central projections and sections of the weighted
reciprocal lattice, e.g.

�
�x1, 0, 0� $ �
h1� h2

F�h1, h2, h3�,

�
�x1, x2, 0� $�
h3

F�h1, h2, h3�,

�
1� 2�x3� �
�

�2��2

�
�x1, x2, x3� dx1 dx2 $ F�0, 0, h3�,

�
1�x2, x3� �
�

���

�
�x1, x2, x3� dx1 $ F�0, h2, h3�

etc.
When the sections are principal but not central, it suffices to use

the shift property of Section 1.3.2.5.5. When the sections or
projections are not principal, they can be made principal by
changing to new primitive bases B and B� for 
 and 
�,
respectively, the transition matrices P and P� to these new bases

being related by P� � �P
1�T in order to preserve duality. This
change of basis must be such that one of these matrices (say, P)
should have a given integer vector u as its first column, u being
related to the line or plane defining the section or projection of
interest.

The problem of constructing a matrix P given u received an
erroneous solution in Volume II of International Tables (Patterson,
1959), which was subsequently corrected in 1962. Unfortunately,
the solution proposed there is complicated and does not suggest a
general approach to the problem. It therefore seems worthwhile to
record here an effective procedure which solves this problem in any
dimension n (Watson, 1970).

Let

u �
u1

��
�

un

�
��

�
	


be a primitive integral vector, i.e. g.c.d. �u1, � � � , un� � 1. Then an
n� n integral matrix P with det P � 1 having u as its first column
can be constructed by induction as follows. For n � 1 the result is
trivial. For n � 2 it can be solved by means of the Euclidean
algorithm, which yields z1, z2 such that u1z2 
 u2z1 � 1, so that we

may take P � u1 z1

u2 z2

� �
. Note that, if z � z1

z2

� �
is a solution,

then z	 mu is another solution for any m � �. For n � 3, write

u � u1

dz

� �
with d � g.c.d. �u2, � � � , un� so that both z �

z2

��
�

zn

�
��

�
	


and
u1

d

� �
are primitive. By the inductive hypothesis there is an

integral 2� 2 matrix V with
u1

d

� �
as its first column, and an

integral �n
 1� � �n
 1� matrix Z with z as its first column, with
det V � 1 and det Z � 1.

Now put

P � 1
Z

� �
V

In
2

� �
,

i.e.

P �

1 0 0 � 0
0 z2 � � �
0 z3 � � �
� � � � �
0 zn � � �

�
�����

�
				


u1 � 0 � 0
d � 0 � 0
0 0 1 � 0
� � � � �
0 0 0 � 1

�
�����

�
				
�

The first column of P is

u1

dz2

�
�

dzn

�
�����

�
				
 � u,

and its determinant is 1, QED.
The incremental step from dimension n
 1 to dimension n is the

construction of 2� 2 matrix V, for which there exist infinitely many
solutions labelled by an integer mn
1. Therefore, the collection of
matrices P which solve the problem is labelled by n
 1 arbitrary
integers �m1, m2, � � � , mn
1�. This freedom can be used to adjust the
shape of the basis B.

62

1. GENERAL RELATIONSHIPS AND TECHNIQUES



Once P has been chosen, the calculation of general sections and
projections is transformed into that of principal sections and
projections by the changes of coordinates:

x � Px�, h � P�h�,

and an appeal to the tensor product property.
Booth (1945a) made use of the convolution theorem to form the

Fourier coefficients of ‘bounded projections’, which provided a
compromise between 2D and 3D Fourier syntheses. If it is desired to
compute the projection on the (x, y) plane of the electron density
lying between the planes z � z1 and z � z2, which may be written as

��
� �1x � 1y � ��z1� z2��� � ��x � �y � 1z��
The transform is then

�F � ��h � �k � �	 ���z1� z2���� � �1h � 1k � �l�,
giving for coefficient �h, k�:

�
l��

F�h, k, l� exp�2�il��z1 	 z2��2�� � sin�l�z1 
 z2�
�l

�

1.3.4.2.1.9. Differential syntheses
Another particular instance of the convolution theorem is the

duality between differentiation and multiplication by a monomial
(Sections 1.3.2.4.2.8, 1.3.2.5.8).

In the present context, this result may be written

�	
	m1	m2	m3�

	X m1
1 	X m2

2 	X m3
3

� �
�H�

� �
2�i�m1	m2	m3 Hm1
1 Hm2

2 Hm3
3 F�AT H�

in Cartesian coordinates, and

�	
	m1	m2	m3�


	xm1
1 	xm2

2 	xm3
3

� �
�h� � �
2�i�m1	m2	m3 hm1

1 hm2
2 hm3

3 F�h�

in crystallographic coordinates.
A particular case of the first formula is


4�2 �
H�
�

�H�2F�AT H� exp�
2�iH � X� � 	��X�,

where

	� �
�3

j�1

	2�

	X 2
j

is the Laplacian of �.
The second formula has been used with �m� � 1 or 2 to compute

‘differential syntheses’ and refine the location of maxima (or other
stationary points) in electron-density maps. Indeed, the values at x
of the gradient vector ��
 and Hessian matrix ���T��
 are readily
obtained as

���
��x� � �
h��3

�
2�ih�F�h� exp�
2�ih � x�,

����T��
��x� � �
h��3

�
4�2hhT�F�h� exp�
2�ih � x�,

and a step of Newton iteration towards the nearest stationary point
of �
will proceed by

x �
� x
 �����T��
��x��
1���
��x��
The modern use of Fourier transforms to speed up the

computation of derivatives for model refinement will be described
in Section 1.3.4.4.7.

The converse property is also useful: it relates the derivatives of
the continuous transform �	 ��0� to the moments of �0:

	m1	m2	m3 �	 ��0�
	X m1

1 	X m2
2 	X m3

3
�H� � �	 ��2�i�m1	m2	m3 X m1

1 X m2
2 X m3

3 �0
x��H��

For �m� � 2 and H � 0, this identity gives the well known relation
between the Hessian matrix of the transform �	 ��0� at the origin of
reciprocal space and the inertia tensor of the motif �0. This is a
particular case of the moment-generating properties of �	 , which
will be further developed in Section 1.3.4.5.2.

1.3.4.2.1.10. Toeplitz forms, determinantal inequalities
and Szegö’s theorem

The classical results presented in Section 1.3.2.6.9 can be readily
generalized to the case of triple Fourier series; no new concept is
needed, only an obvious extension of the notation.

Let �
 be real-valued, so that Friedel’s law holds and
F�
h� � F�h�. Let � be a finite set of indices comprising the
origin: � � �h0 � 0, h1, � � � , hn�. Then the Hermitian form in n	
1 complex variables

T���
��u� �
�n

j� k�0
F�hj 
 hk�ujuk

is called the Toeplitz form of order � associated to �
. By the
convolution theorem and Parseval’s identity,

T���
��u� �
�

�3��3

�
�x� �n
j�0

uj exp�2�ihj � x�
�����

�����
2

d3x�

If �
 is almost everywhere non-negative, then for all � the forms
T���
� are positive semi-definite and therefore all Toeplitz
determinants D���
� are non-negative, where

D���
� � det ��F�hj 
 hk����
The Toeplitz–Carathéodory–Herglotz theorem given in Section

1.3.2.6.9.2 states that the converse is true: if D���� � 0 for all �,
then �
 is almost everywhere non-negative. This result is known in
the crystallographic literature through the papers of Karle &
Hauptman (1950), MacGillavry (1950), and Goedkoop (1950),
following previous work by Harker & Kasper (1948) and Gillis
(1948a,b).

Szegö’s study of the asymptotic distribution of the eigenvalues of
Toeplitz forms as their order tends to infinity remains valid. Some
precautions are needed, however, to define the notion of a sequence
��k� of finite subsets of indices tending to infinity: it suffices that
the �k should consist essentially of the reciprocal-lattice points h
contained within a domain of the form k� (k-fold dilation of �)
where � is a convex domain in �3 containing the origin (Widom,
1960). Under these circumstances, the eigenvalues ��n�
 of the
Toeplitz forms T�k ��
� become equidistributed with the sample
values �
�n�
� of �
on a grid satisfying the Shannon sampling criterion
for the data in �k (cf. Section 1.3.2.6.9.3).

A particular consequence of this equidistribution is that the
geometric means of the ��n�
 and of the �
�n�
� are equal, and hence as in
Section 1.3.2.6.9.4

lim
k�


�D�k ��
��1���k � � exp
�

�3��3

log �
�x� d3x

� �
,

where ��k � denotes the number of reflections in �k . Complementary
terms giving a better comparison of the two sides were obtained by
Widom (1960, 1975) and Linnik (1975).

63

1.3. FOURIER TRANSFORMS IN CRYSTALLOGRAPHY



This formula played an important role in the solution of the 2D
Ising model by Onsager (1944) (see Montroll et al., 1963). It is also
encountered in phasing methods involving the ‘Burg entropy’
(Britten & Collins, 1982; Narayan & Nityananda, 1982; Bricogne,
1982, 1984, 1988).

1.3.4.2.2. Crystal symmetry

1.3.4.2.2.1. Crystallographic groups
The description of a crystal given so far has dealt only with its

invariance under the action of the (discrete Abelian) group of
translations by vectors of its period lattice 
.

Let the crystal now be embedded in Euclidean 3-space, so that it
may be acted upon by the group M�3� of rigid (i.e. distance-
preserving) motions of that space. The group M�3� contains a
normal subgroup T�3� of translations, and the quotient group
M�3��T�3� may be identified with the 3-dimensional orthogonal
group O�3�. The period lattice 
 of a crystal is a discrete uniform
subgroup of T�3�.

The possible invariance properties of a crystal under the action of
M�3� are captured by the following definition: a crystallographic
group is a subgroup � of M�3� if

(i) � % T�3� � 
, a period lattice and a normal subgroup of �;
(ii) the factor group G � ��
 is finite.

The two properties are not independent: by a theorem of
Bieberbach (1911), they follow from the assumption that 
 is a
discrete subgroup of M�3� which operates without accumulation
point and with a compact fundamental domain (see Auslander,
1965). These two assumptions imply that G acts on 
 through an
integral representation, and this observation leads to a complete
enumeration of all distinct �’s. The mathematical theory of these
groups is still an active research topic (see, for instance, Farkas,
1981), and has applications to Riemannian geometry (Wolf, 1967).

This classification of crystallographic groups is described
elsewhere in these Tables (Wondratschek, 1995), but it will be
surveyed briefly in Section 1.3.4.2.2.3 for the purpose of establish-
ing further terminology and notation, after recalling basic notions
and results concerning groups and group actions in Section
1.3.4.2.2.2.

1.3.4.2.2.2. Groups and group actions
The books by Hall (1959) and Scott (1964) are recommended as

reference works on group theory.

(a) Left and right actions
Let G be a group with identity element e, and let X be a set. An

action of G on X is a mapping from G� X to X with the property
that, if g x denotes the image of �g, x�, then

(i) �g1g2�x � g1�g2x� for all g1, g2 � G and all x � X ,

(ii) ex � x for all x � X �

An element g of G thus induces a mapping Tg of X into itself defined
by Tg�x� � gx, with the ‘representation property’:

(iii) Tg1g2 � Tg1 Tg2 for all g1, g2 � G�

Since G is a group, every g has an inverse g
1; hence every mapping
Tg has an inverse Tg
1 , so that each Tg is a permutation of X.

Strictly speaking, what has just been defined is a left action. A
right action of G on X is defined similarly as a mapping
�g, x� �
� xg such that

�i�� x�g1g2� � �xg1�g2 for all g1, g2 � G and all x � X ,

�ii�� xe � x for all x � X �

The mapping T �g defined by T �g�x� � xg then has the ‘right-
representation’ property:

�iii�� T �g1g2
� T �g2

T �g1
for all g1, g2 � G�

The essential difference between left and right actions is of
course not whether the elements of G are written on the left or right
of those of X: it lies in the difference between (iii) and (iii�). In a left
action the product g1g2 in G operates on x � X by g2 operating first,
then g1 operating on the result; in a right action, g1 operates first,
then g2. This distinction will be of importance in Sections
1.3.4.2.2.4 and 1.3.4.2.2.5. In the sequel, we will use left actions
unless otherwise stated.

(b) Orbits and isotropy subgroups
Let x be a fixed element of X. Two fundamental entities are

associated to x:
(1) the subset of G consisting of all g such that gx � x is a

subgroup of G, called the isotropy subgroup of x and denoted Gx;
(2) the subset of X consisting of all elements gx with g running

through G is called the orbit of x under G and is denoted Gx.
Through these definitions, the action of G on X can be related to

the internal structure of G, as follows. Let G�Gx denote the
collection of distinct left cosets of Gx in G, i.e. of distinct subsets of
G of the form gGx. Let �G�, �Gx�, �Gx� and �G�Gx� denote the
numbers of elements in the corresponding sets. The number �G�Gx�
of distinct cosets of Gx in G is also denoted �G � Gx� and is called the
index of Gx in G; by Lagrange’s theorem

�G � Gx� � �G�Gx� � �G�
�Gx� �

Now if g1 and g2 are in the same coset of Gx, then g2 � g1g� with
g� � Gx, and hence g1x � g2x; the converse is obviously true.
Therefore, the mapping from cosets to orbit elements

gGx �
� gx

establishes a one-to-one correspondence between the distinct left
cosets of Gx in G and the elements of the orbit of x under G. It
follows that the number of distinct elements in the orbit of x is equal
to the index of Gx in G:

�Gx� � �G � Gx� � �G�
�Gx� ,

and that the elements of the orbit of x may be listed without
repetition in the form

Gx � ��x�� � G�Gx��
Similar definitions may be given for a right action of G on X. The

set of distinct right cosets Gxg in G, denoted Gx&G, is then in one-to-
one correspondence with the distinct elements in the orbit xG of x.

(c) Fundamental domain and orbit decomposition
The group properties of G imply that two orbits under G are

either disjoint or equal. The set X may thus be written as the disjoint
union

X �
�
i�I

Gxi,

where the xi are elements of distinct orbits and I is an indexing set
labelling them. The subset D � �xi�i�I is said to constitute a
fundamental domain (mathematical terminology) or an asymmetric
unit (crystallographic terminology) for the action of G on X: it
contains one representative xi of each distinct orbit. Clearly, other
fundamental domains may be obtained by choosing different
representatives for these orbits.

If X is finite and if f is an arbitrary complex-valued function over
X, the ‘integral’ of f over X may be written as a sum of integrals over
the distinct orbits, yielding the orbit decomposition formula:
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�
x�X

f �x� �
�
i�I

�
yi�Gxi

f �yi�
� 


�
�
i�I

�
�i�G�Gxi

f ��ixi�
�
�

�



�
�
i�I

1
�Gxi �

�
gi�G

f �gixi�
� 


�

In particular, taking f �x� � 1 for all x and denoting by �X � the
number of elements of X:

�X � �
�
i�I

�Gxi� �
�
i�I

�G�Gxi � �
�
i�I

�G�
�Gxi �

�

(d) Conjugation, normal subgroups, semi-direct products
A group G acts on itself by conjugation, i.e. by associating to

g � G the mapping Cg defined by

Cg�h� � ghg
1�

Indeed, Cg�hk� � Cg�h�Cg�k� and �Cg�h��
1 � Cg
1�h�. In parti-
cular, Cg operates on the set of subgroups of G, two subgroups H
and K being called conjugate if H � Cg�K� for some g � G; for
example, it is easily checked that Ggx � Cg�Gx�. The orbits under
this action are the conjugacy classes of subgroups of G, and the
isotropy subgroup of H under this action is called the normalizer of
H in G.

If �H� is a one-element orbit, H is called a self-conjugate or
normal subgroup of G; the cosets of H in G then form a group G�H
called the factor group of G by H.

Let G and H be two groups, and suppose that G acts on H by
automorphisms of H, i.e. in such a way that

g�h1h2� � g�h1�g�h2�
g�eH� � eH �where eH is the identity element of H��

g�h
1� � �g�h��
1

Then the symbols [g, h] with g � G, h � H form a group K under
the product rule:

�g1, h1��g2, h2� � �g1g2, h1g1�h2��
{associativity checks; [eG, eH ] is the identity; �g, h� has inverse
�g
1, g
1�h
1��}. The group K is called the semi-direct product of H
by G, denoted K � H G .

The elements �g, eH � form a subgroup of K isomorphic to G, the
elements �eG, h� form a normal subgroup of K isomorphic to H, and
the action of G on H may be represented as an action by conjugation
in the sense that

C�g� eH ���eG, h�� � �eG, g�h���
A familiar example of semi-direct product is provided by the

group of Euclidean motions M�3� (Section 1.3.4.2.2.1). An element
S of M�3� may be written S � �R, t� with R � O�3�, the orthogonal
group, and t � T�3�, the translation group, and the product law

�R1, t1��R2, t2� � �R1R2, t1 	 R1�t2��
shows that M�3� � T�3� O�3� with O�3� acting on T�3� by
rotating the translation vectors.

(e) Associated actions in function spaces
For every left action Tg of G in X, there is an associated left action

T�
g of G on the space L�X � of complex-valued functions over X,

defined by ‘change of variable’ (Section 1.3.2.3.9.5):

�T�
g f ��x� � f ��Tg�
1x� � f �g
1x��

Indeed for any g1, g2 in G,

�T�
g1
�T�

g2
f ���x� � �T�

g2
f ���Tg1�
1x� � f �T
1

g2
T
1

g1
x�

� f ��Tg1 Tg2�
1x�;
since Tg1 Tg2 � Tg1g2 , it follows that

T�
g1

T�
g2
� T�

g1g2
�

It is clear that the change of variable must involve the action of g
1

(not g) if T� is to define a left action; using g instead would yield a
right action.

The linear representation operators T�
g on L�X � provide the most

natural instrument for stating and exploiting symmetry properties
which a function may possess with respect to the action of G. Thus a
function f � L�X � will be called G-invariant if f �gx� � f �x� for all
g � G and all x � X . The value f �x� then depends on x only through
its orbit Gx, and f is uniquely defined once it is specified on a
fundamental domain D � �xi�i�I ; its integral over X is then a
weighted sum of its values in D:�

x�X
f �x� ��

i�I
�G � Gxi � f �xi��

The G-invariance of f may be written:

T�
g f � f for all g � G�

Thus f is invariant under each T�
g , which obviously implies that f is

invariant under the linear operator in L�X �

AG � 1
�G�
�
g�G

T�
g ,

which averages an arbitrary function by the action of G. Conversely,
if AG f � f , then

T�
g0

f � T�
g0
�AG f � � �T�

g0
AG�f � AG f � f for all g0 � G,

so that the two statements of the G-invariance of f are equivalent.
The identity

T�
g0

AG � AG for all g0 � G

is easily proved by observing that the map g �
� g0g (g0 being any
element of G) is a one-to-one map from G into itself, so that�

g�G
T�

g �
�
g�G

T�
g0g

as these sums differ only by the order of the terms. The same
identity implies that AG is a projector:

�AG�2 � AG,

and hence that its eigenvalues are either 0 or 1. In summary, we may
say that the invariance of f under G is equivalent to f being an
eigenfunction of the associated projector AG for eigenvalue 1.

( f ) Orbit exchange
One final result about group actions which will be used

repeatedly later is concerned with the case when X has the structure
of a Cartesian product:

X � X1 � X2 � � � �� Xn

and when G acts diagonally on X, i.e. acts on each Xj separately:

gx � g�x1, x2, � � � , xn� � �gx1, gx2, � � � , gxn��
Then complete sets (but not usually minimal sets) of representatives

'

'
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of the distinct orbits for the action of G in X may be obtained in the
form

Dk � X1 � � � �� Xk
1 � �x�k�ik �ik�Ik
� Xk	1 � � � �� Xn

for each k � 1, 2, � � � , n, i.e. by taking a fundamental domain in Xk
and all the elements in Xj with j �� k. The action of G on each Dk
does indeed generate the whole of X: given an arbitrary element
y � �y1, y2, � � � , yn� of X, there is an index ik � Ik such that yk �
Gx�k�ik and a coset of G

x�k�ik

in G such that yk � �x�k�ik for any
representative � of that coset; then

y � ���
1y1, � � � , �
1yk
1, x�k�ik , �
1yk	1, � � � , �
1yn�

which is of the form y � �dk with dk � Dk .
The various Dk are related in a simple manner by ‘transposition’

or ‘orbit exchange’ (the latter name is due to J. W. Cooley). For
instance, Dj may be obtained from Dk� j �� k� as follows: for each
yj � Xj there exists g�yj� � G and ij�yj� � Ij such that
yj � g�yj�x�j�ij�yj�; therefore

Dj �
�

yj�Xj

�g�yj��
1Dk ,

since the fundamental domain of Xk is thus expanded to the whole
of Xk , while Xj is reduced to its fundamental domain. In other
words: orbits are simultaneously collapsed in the jth factor and
expanded in the kth.

When G operates without fixed points in each Xk (i.e. Gxk � �e�
for all xk � Xk), then each Dk is a fundamental domain for the action
of G in X. The existence of fixed points in some or all of the Xk
complicates the situation in that for each k and each xk � Xk such
that Gxk �� �e� the action of G�Gxk on the other factors must be
examined. Shenefelt (1988) has made a systematic study of orbit
exchange for space group P622 and its subgroups.

Orbit exchange will be encountered, in a great diversity of forms,
as the basic mechanism by which intermediate results may be
rearranged between the successive stages of the computation of
crystallographic Fourier transforms (Section 1.3.4.3).

1.3.4.2.2.3. Classification of crystallographic groups
Let � be a crystallographic group, 
 the normal subgroup of its

lattice translations, and G the finite factor group ��
. Then G acts
on 
 by conjugation [Section 1.3.4.2.2.2(d)] and this action, being a
mapping of a lattice into itself, is representable by matrices with
integer entries.

The classification of crystallographic groups proceeds from this
observation in the following three steps:

Step 1: find all possible finite abstract groups G which can be
represented by 3� 3 integer matrices.

Step 2: for each such G find all its inequivalent representations by
3� 3 integer matrices, equivalence being defined by a change of
primitive lattice basis (i.e. conjugation by a 3� 3 integer matrix
with determinant  1).

Step 3: for each G and each equivalence class of integral
representations of G, find all inequivalent extensions of the action of
G from 
 to T�3�, equivalence being defined by an affine coordinate
change [i.e. conjugation by an element of A�3�].

Step 1 leads to the following groups, listed in association with the
crystal system to which they later give rise:

��2� monoclinic

��2�( ��2� orthorhombic

��3�, ���3�� ��� trigonal

��4�, ���4�� ��� tetragonal

��6�, ���6�� ��� hexagonal

���2�( ��2�� �S3� cubic

and the extension of these groups by a centre of inversion. In this list
denotes a semi-direct product [Section 1.3.4.2.2.2(d)], �

denotes the automorphism g �
� g
1, and S3 (the group of
permutations on three letters) operates by permuting the copies of
��2� (using the subgroup A3 of cyclic permutations gives the
tetrahedral subsystem).

Step 2 leads to a list of 73 equivalence classes called arithmetic
classes of representations g �
� Rg, where Rg is a 3� 3 integer
matrix, with Rg1g2 � Rg1 Rg2 and Re � I3. This enumeration is more
familiar if equivalence is relaxed so as to allow conjugation by
rational 3� 3 matrices with determinant  1: this leads to the 32
crystal classes. The difference between an arithmetic class and its
rational class resides in the choice of a lattice mode
�P, A�B�C, I , F or R�. Arithmetic classes always refer to a
primitive lattice, but may use inequivalent integral representations
for a given geometric symmetry element; while crystallographers
prefer to change over to a non-primitive lattice, if necessary, in
order to preserve the same integral representation for a given
geometric symmetry element. The matrices P and Q � P
1

describing the changes of basis between primitive and centred
lattices are listed in Table 5.1 and illustrated in Figs. 5.3 to 5.9, pp.
76–79, of Volume A of International Tables (Arnold, 1995).

Step 3 gives rise to a system of congruences for the systems of
non-primitive translations �tg�g�G which may be associated to the
matrices �Rg�g�G of a given arithmetic class, namely:

tg1g2 � Rg1 tg2 	 tg1 mod 
,

first derived by Frobenius (1911). If equivalence under the action of
A�3� is taken into account, 219 classes are found. If equivalence is
defined with respect to the action of the subgroup A	�3� of A�3�
consisting only of transformations with determinant +1, then 230
classes called space-group types are obtained. In particular,
associating to each of the 73 arithmetic classes a trivial set of
non-primitive translations �tg � 0 for all g � G� yields the 73
symmorphic space groups. This third step may also be treated as
an abstract problem concerning group extensions, using cohomo-
logical methods [Ascher & Janner (1965); see Janssen (1973) for a
summary]; the connection with Frobenius’s approach, as general-
ized by Zassenhaus (1948), is examined in Ascher & Janner (1968).

The finiteness of the number of space-group types in dimension 3
was shown by Bieberbach (1912) to be the case in arbitrary
dimension. The reader interested in N-dimensional space-group
theory for N 
 3 may consult Brown (1969), Brown et al. (1978),
Schwarzenberger (1980), and Engel (1986). The standard reference
for integral representation theory is Curtis & Reiner (1962).

All three-dimensional space groups G have the property of being
solvable, i.e. that there exists a chain of subgroups

G � Gr 
 Gr
1 
 � � � 
 G1 
 G0 � �e�,
where each Gi
1 is a normal subgroup of G1 and the factor group
Gi�Gi
1 is a cyclic group of some order mi �1 � i � r�. This
property may be established by inspection, or deduced from a
famous theorem of Burnside [see Burnside (1911), pp. 322–323]
according to which any group G such that �G� � p�q�, with p and q
distinct primes, is solvable; in the case at hand, p � 2 and q � 3.

'
'
'
'

'
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The whole classification of 3D space groups can be performed
swiftly by a judicious use of the solvability property (L. Auslander,
personal communication).

Solvability facilitates the indexing of elements of G in terms of
generators and relations (Coxeter & Moser, 1972; Magnus et al.,
1976) for the purpose of calculation. By definition of solvability,
elements g1, g2, � � � , gr may be chosen in such a way that the cyclic
factor group Gi�Gi
1 is generated by the coset giGi
1. The set
�g1, g2, � � � , gr� is then a system of generators for G such that the
defining relations [see Brown et al. (1978), pp. 26–27] have the
particularly simple form

gm1
1 � e,

gmi
i � ga�i� i
1�

i
1 ga�i� i
2�
i
2 � � � ga�i� 1�

1 for 2 � i � r,

g
1
i g
1

j gigj � gb�i� j� j
1�
j
1 gb�i� j� j
2�

j
2 � � � gb�i� j� 1�
1 for 1 � i � j � r,

with 0 � a�i, h� � mh and 0 � b�i, j, h� � mh. Each element g of G
may then be obtained uniquely as an ‘ordered word’:

g � gkr
r gkr
1

r
1 � � � g
k1
1 ,

with 0 � ki � mi for all i � 1, � � � , r, using the algorithm of
Jürgensen (1970). Such generating sets and defining relations are
tabulated in Brown et al. (1978, pp. 61–76). An alternative list is
given in Janssen (1973, Table 4.3, pp. 121–123, and Appendix D,
pp. 262–271).

1.3.4.2.2.4. Crystallographic group action in real space
The action of a crystallographic group � may be written in terms

of standard coordinates in �3��3 as

�g, x� �
� Sg�x� � Rgx	 tg mod 
, g � G,

with

Sg1g2 � Sg1 Sg2 �

An important characteristic of the representation � � g �
� Sg is
its reducibility, i.e. whether or not it has invariant subspaces other
than �0� and the whole of �3��3. For triclinic, monoclinic and
orthorhombic space groups, � is reducible to a direct sum of three
one-dimensional representations:

Rg �
R�1�g 0 0

0 R�2�g 0
0 0 R�3�g

�
��

�
	
;

for trigonal, tetragonal and hexagonal groups, it is reducible to a
direct sum of two representations, of dimension 2 and 1,
respectively; while for tetrahedral and cubic groups, it is
irreducible.

By Schur’s lemma (see e.g. Ledermann, 1987), any matrix which
commutes with all the matrices Rg for g � G must be a scalar
multiple of the identity in each invariant subspace.

In the reducible cases, the reductions involve changes of basis
which will be rational, not integral, for those arithmetic classes
corresponding to non-primitive lattices. Thus the simplification of
having maximally reduced representation has as its counterpart the
use of non-primitive lattices.

The notions of orbit, isotropy subgroup and fundamental domain
(or asymmetric unit) for the action of G on �3��3 are inherited
directly from the general setting of Section 1.3.4.2.2.2. Points x for
which Gx �� �e� are called special positions, and the various types
of isotropy subgroups which may be encountered in crystal-
lographic groups have been labelled by means of Wyckoff symbols.
The representation operators S�

g in L��3��3� have the form:

�S�
g f ��x� � f �S
1

g �x�� � f �R
1
g �x
 tg���

The operators R�
g associated to the purely rotational part of each

transformation Sg will also be used. Note the relation: S�
g � �tg R�

g �
Let a crystal structure be described by the list of the atoms in its

unit cell, indexed by k � K. Let the electron-density distribution
about the centre of mass of atom k be described by �
k with respect to
the standard coordinates x. Then the motif �
0 may be written as a
sum of translates:

�
0 � �
k�K

�xk�
k

and the crystal electron density is �
� r��
0.
Suppose that �
is invariant under �. If xk1 and xk2 are in the same

orbit, say xk2 � Sg�xk1�, then

�xk2
�
k2 � S�

g ��xk1
�
k1��

Therefore if xk is a special position and thus Gxk �� �e�, then

S�
g ��xk�
k� � �xk�
k for all g � Gxk �

This identity implies that

Rgxk 	 tg � xk mod 


(the special position condition), and that

�
k � R�
g �
k ,

i.e. that �
k must be invariant by the pure rotational part of Gxk .
Trueblood (1956) investigated the consequences of this invariance
on the thermal vibration tensor of an atom in a special position (see
Section 1.3.4.2.2.6 below).

Let J be a subset of K such that �xj�j�J contains exactly one atom
from each orbit. An orbit decomposition yields an expression for �
0

in terms of symmetry-unique atoms:

�
0 ��
j�J

�
�j�G�Gxj

S�
�j
��xj�
j�

�
�

�



or equivalently

�
0�x� ��
j�J

�
�j�G�Gxj

�
j�R
1
�j
�x
 t�j� 
 xj�

 !
"

#$
%�

If the atoms are assumed to be Gaussian, write

�j�X� � Zj

�det �Uj�1�2

� exp�
1
2X

T U
1
j X� in Cartesian A

�
coordinates,

where Zj is the total number of electrons, and where the matrix Uj
combines the Gaussian spread of the electrons in atom j at rest with
the covariance matrix of the random positional fluctuations of atom
j caused by thermal agitation.

In crystallographic coordinates:

�
j�x� � Zj

�det �Qj�1�2

� exp�
1
2x

T Q
1
j x� with Qj � A
1Uj�A
1�T �

If atom k is in a special position xk , then the matrix Qk must
satisfy the identity

RgQkR
1
g � Qk
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for all g in the isotropy subgroup of xk . This condition may also be
written in Cartesian coordinates as

TgUkT
1
g � Uk ,

where

Tg � ARgA
1�

This is a condensed form of the symmetry properties derived by
Trueblood (1956).

1.3.4.2.2.5. Crystallographic group action in reciprocal
space

An elementary discussion of this topic may be found in Chapter
1.4 of this volume.

Having established that the symmetry of a crystal may be most
conveniently stated and handled via the left representation g �
� S�

g
of G given by its action on electron-density distributions, it is
natural to transpose this action by the identity of Section 1.3.2.5.5:

�	 �S�
g T �� � �	 ��tg �R�

g T���
� exp�2�i� � tg���R
1

g �T� �	 �T ���
for any tempered distribution T, i.e.

�	 �S�
g T ��� � � exp�2�i� � tg� �	 �T ��RT

g ��
whenever the transforms are functions.

Putting T � �
, a �3-periodic distribution, this relation defines a
left action S�g of G on L��3� given by

�S�gF��h� � exp�2�i� � tg�F�RT
g h�

which is conjugate to the action S�
g in the sense that

�	 �S�
g �
� � S�g �	 ��
�, i�e� S�g � �	 S�

g
�	 �

The identity S�
g �
� �
 expressing the G-invariance of �
 is then

equivalent to the identity S�gF � F between its structure factors, i.e.
(Waser, 1955a)

F�h� � exp�2�ih � tg�F�RT
g h��

If G is made to act on �3 via

�� � �g, h� �
� �R
1
g �T h,

the usual notions of orbit, isotropy subgroup (denoted Gh) and
fundamental domain may be attached to this action. The above
relation then shows that the spectrum �F�h��h��3 is entirely known
if it is specified on a fundamental domain D� containing one
reciprocal-lattice point from each orbit of this action.

A reflection h is called special if Gh �� �e�. Then for any g � Gh
we have RT

g h � h, and hence

F�h� � exp�2�ih � tg�F�h�,
implying that F�h� � 0 unless h � tg � 0 mod 1. Special reflections
h for which h � tg �� 0 mod 1 for some g � Gh are thus system-
atically absent. This phenomenon is an instance of the duality
between periodization and decimation of Section 1.3.2.7.2: if
tg �� 0, the projection of �
 on the direction of h has period
�tg � h���h � h� � 1, hence its transform (which is the portion of F
supported by the central line through h) will be decimated, giving
rise to the above condition.

A reflection h is called centric if Gh � G�
h�, i.e. if the orbit of
h contains 
h. Then RT

�h � 
h for some coset � in G�Gh, so that
the following relation must hold:

�F�h�� exp�i�h� � exp�2�ih � t���F�
h�� exp�i�
h��

In the absence of dispersion, Friedel’s law gives rise to the phase
restriction:

�h � �h � t� mod ��

The value of the restricted phase is independent of the choice of
coset representative �. Indeed, if �� is another choice, then �� � g�
with g � Gh and by the Frobenius congruences t�� � Rgt� 	 tg, so
that

h � t�� � �RT
g h� � t� 	 h � tg mod 1�

Since g � Gh, RT
g h � h and h � tg � 0 mod 1 if h is not a

systematic absence: thus

�h � t� � �h � t� mod ��

The treatment of centred lattices may be viewed as another
instance of the duality between periodization and decimation
(Section 1.3.2.7.2): the periodization of the electron density by
the non-primitive lattice translations has as its counterpart in
reciprocal space the decimation of the transform by the ‘reflection
conditions’ describing the allowed reflections, the decimation and
periodization matrices being each other’s contragredient.

The reader may consult the papers by Bienenstock & Ewald
(1962) and Wells (1965) for earlier approaches to this material.

1.3.4.2.2.6. Structure-factor calculation
Structure factors may be calculated from a list of symmetry-

unique atoms by Fourier transformation of the orbit decomposition
formula for the motif �
0 given in Section 1.3.4.2.2.4:

F�h� � �	 ��
0��h�

� �	
�
j�J

�
�j�G�Gxj

S�
�j
��xj�
j�

�
�

�



&
'

(
)�h�

��
j�J

�
�j�G�Gxj

�	 ��t�j
R�

�j
�xj�
j��h�

��
j�J

�
�j�G�Gxj

exp�2�ih � t�j�

� ��R
1
�j
�T� �exp�2�i� � xj� �	 ��
j�� ���h�

��
j�J

�
�j�G�Gxj

exp�2�ih � t�j�

� exp�2�i�RT
�j

h� � xj� �	 ��
j��RT
�j

h�;
i.e. finally:

F�h� ��
j�J

�
�j�G�Gxj

exp�2�ih � �S�j�xj��� �	 ��
j��RT
�j

h��

In the case of Gaussian atoms, the atomic transforms are

�	 ��
j��h� � Zj exp�
1
2h

T�4�2Qj�h�
or equivalently

�	 ��j��H� � Zj exp�
1
2H

T �4�2Uj�H��
Two common forms of equivalent temperature factors (incorpor-

ating both atomic form and thermal motion) are
(i) isotropic B:

�	 ��
j��h� � Zj exp�
1
4BjHT H�,

so that Uj � �Bj�8�2�I, or Qj � �Bj�8�2�A
1�A
1�T ;
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(ii) anisotropic �’s:
�	 ��
j��h� � Zj exp�
hT� jh�,

so that � j � 2�2Qj � 2�2A
1Uj�A
1�T , or Uj � �1�2�2�A�jAT .
In the first case, �	 ��
j��RT

�j
h� does not depend on �j, and

therefore:

F�h� ��
j�J

Zj exp�
1
4BjhT �A
1�A
1�T �h�

� �
�j�G�Gxj

exp�2�ih � �S�j�xj����

In the second case, however, no such simplification can occur:

F�h� ��
j�J

Zj
�

�j�G�Gxj

exp�
hT�R�j� jR
T
�j
�h�

� exp�2�ih � �S�j�xj����
These formulae, or special cases of them, were derived by Rollett &
Davies (1955), Waser (1955b), and Trueblood (1956).

The computation of structure factors by applying the discrete
Fourier transform to a set of electron-density values calculated on a
grid will be examined in Section 1.3.4.4.5.

1.3.4.2.2.7. Electron-density calculations
A formula for the Fourier synthesis of electron-density maps

from symmetry-unique structure factors is readily obtained by orbit
decomposition:

�
�x� � �
h��3

F�h� exp�
2�ih � x�

��
l�L

�
�l�G�Ghl

F�RT
�l

hl� exp�
2�i�RT
�l

hl� � x�
� �

��
l�L

F�hl�
�

�l�G�Ghl

exp�
2�ihl � �S�l �x���
� �

,

where L is a subset of �3 such that �hl�l�L contains exactly one
point of each orbit for the action �� � �g, h� �
� �R
1

g �T h of G on
�3. The physical electron density per cubic ångström is then

��X� � 1
V
�
�Ax�

with V in A
� 3

.
In the absence of anomalous scatterers in the crystal and of a

centre of inversion 
I in �, the spectrum �F�h��h��3 has an extra
symmetry, namely the Hermitian symmetry expressing Friedel’s
law (Section 1.3.4.2.1.4). The action of a centre of inversion may be
added to that of � to obtain further simplification in the above
formula: under this extra action, an orbit Ghl with hl �� 0 is either
mapped into itself or into the disjoint orbit G�
hl�; the terms
corresponding to 	hl and 
hl may then be grouped within the
common orbit in the first case, and between the two orbits in the
second case.

Case 1: G�
hl� � Ghl, hl is centric. The cosets in G�Ghl may be
partitioned into two disjoint classes by picking one coset in each of
the two-coset orbits of the action of 
I. Let �G�Ghl�	 denote one
such class: then the reduced orbit

�RT
�l

hl��l � �G�Ghl�	�
contains exactly once the Friedel-unique half of the full orbit Ghl,
and thus

��G�Ghl �	� � 1
2�G�Ghl ��

Grouping the summands for 	hl and 
hl yields a real-valued
summand

2F�hl�
�

�l��G�Ghl
�	

cos�2�hl � �S�l�x�� 
 �hl��

Case 2: G�
hl� �� Ghl, hl is acentric. The two orbits are then
disjoint, and the summands corresponding to 	hl and 
hl may be
grouped together into a single real-valued summand

2F�hl�
�

�l�G�Ghl

cos�2�hl � �S�l�x�� 
 �hl ��

In order to reindex the collection of all summands of �
, put

L � Lc ) La,

where Lc labels the Friedel-unique centric reflections in L and La the
acentric ones, and let L	a stand for a subset of La containing a unique
element of each pair �	hl, 
 hl� for l � La. Then

�
�x� � F�0�

	 �
c�Lc

2F�hc�
�

�c��G�Ghc �	
cos�2�hc � �S�c�x�� 
 �hc �

� �

	 �
a�L	a

2F�ha�
�

�a�G�Gha

cos�2�ha � �S�a�x�� 
 �ha �
� �

�

1.3.4.2.2.8. Parseval’s theorem with crystallographic
symmetry

The general statement of Parseval’s theorem given in Section
1.3.4.2.1.5 may be rewritten in terms of symmetry-unique structure
factors and electron densities by means of orbit decomposition.

In reciprocal space,�
h��3

F1�h�F2�h� �
�
l�L

�
�l�G�Ghl

F1�RT
�l

hl�F2�RT
�l

hl�;

for each l, the summands corresponding to the various �l are equal,
so that the left-hand side is equal to

F1�0�F2�0�
	 �

c�Lc

2��G�Ghc�	�F1�hc��F2�hc�� cos��1�hc� 
 �2�hc��

	 �
a�L	a

2�G�Gha�F1�ha��F2�ha�� cos��1�ha� 
 �2�ha���

In real space, the triple integral may be rewritten as�
�3��3

�
1�x��
2�x� d3x � �G��
D
�
1�x��
2�x� d3x

(where D is the asymmetric unit) if �
1 and �
2 are smooth densities,
since the set of special positions has measure zero. If, however, the
integral is approximated as a sum over a G-invariant grid defined by
decimation matrix N, special positions on this grid must be taken
into account:

1
�N�

�
k��3�N�3

�
1�x��
2�x�

� 1
�N�
�
x�D

�G � Gx��
1�x��
2�x�

� �G��N�
�
x�D

1
�Gx� �
1�x��
2�x�,

where the discrete asymmetric unit D contains exactly one point in
each orbit of G in �3�N�3.
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1.3.4.2.2.9. Convolution theorems with crystallographic
symmetry

The standard convolution theorems derived in the absence of
symmetry are readily seen to follow from simple properties of
functions e �h, x� � exp� 2�ih � x� (denoted simply e in formulae
which are valid for both signs), namely:

�i� e�h, x� � e�k, x� � e�h	 k, x�,
�ii� e�h, x� � e�h, y� � e�h, x	 y��

These relations imply that the families of functions

�x �
� e�h, x��h��3 in real space

and

�h �
� e�h, x��x��3��3 in reciprocal space

both generate an algebra of functions, i.e. a vector space endowed
with an internal multiplication, since (i) and (ii) show how to
‘linearize products’.

Friedel’s law (when applicable) on the one hand, and the Fourier
relation between intensities and the Patterson function on the other
hand, both follow from the property

�iii� e�h, x� � e�
h, x� � e�h, 
 x��
When crystallographic symmetry is present, the convolution

theorems remain valid in their original form if written out in terms
of ‘expanded’ data, but acquire a different form when rewritten in
terms of symmetry-unique data only. This rewriting is made
possible by the extra relation (Section 1.3.4.2.2.5)

�iv� S�
g
1 e�h, x� � e�h, Sg�x�� � e�h, tg�e�RT

g h, x�
or equivalently

�iv�� S�
g e�h, x� � e�h, S
1

g �x��
� e��
R
1

g �T h, tg�e��R
1
g �T h, x��

The kernels of symmetrized Fourier transforms are not the
functions e but rather the symmetrized sums

� �h, x� � �
g�G

e �h, Sg�x�� �
�
g�G

e �h, S
1
g �x��

for which the linearization formulae are readily obtained using (i),
(ii) and (iv) as

�i�G � �h, x�� �k, x� � �
g�G

e �k, tg�� �h	 RT
g k, x�,

�ii�G � �h, x�� �h, y� � �
g�G

� �h, x	 Sg�y��,

where the choice of sign in  must be the same throughout each
formula.

Formulae (i)G defining the ‘structure-factor algebra’ associated
to G were derived by Bertaut (1955c, 1956b,c, 1959a,b) and Bertaut
& Waser (1957) in another context.

The forward convolution theorem (in discrete form) then follows.
Let

F1�h� �
�
y�D

1
�Gy� �
1�y��	�h, y�,

F2�h� �
�
z�D

1
�Gz� �
2�z��	�h, z�,

then

F1�h�F2�h� �
�
x�D

1
�Gx� �
�x��

	�h, x�

with

�
�x� � 1
�N�
�
z�D

�
g�G

�Gx�
�Gx
Sg�z�� � �Gz� �
1�x
 Sg�z���
2�z��

The backward convolution theorem is derived similarly. Let

�
1�x� �
�
k�D�

1
�Gk�F1�k��
�k, x�,

�
2�x� �
�
l�D�

1
�Gl�F2�l��
�l, x�,

then

�
1�x��
2�x� �
�
h�D�

1
�Gh�F�h��


�h, x�

with

F�h� �
�
l�D�

�
g�G

�Gh�
�Gh
RT

g �l�� � �Gl� e

�l, tg�F1�h
 RT

g l�F2�l��

Both formulae are simply orbit decompositions of their symmetry-
free counterparts.

1.3.4.2.2.10. Correlation and Patterson functions
Consider two model electron densities �
1 and �
2 with the same

period lattice �3 and the same space group G. Write their motifs in
terms of atomic electron densities (Section 1.3.4.2.2.4) as

�
0
1 �

�
j1�J1

�
�j1
�G�G

�1�
xj1

S�
�j1
��x�1�j1

�
�1�j1 �

�
��

�
	
,

�
0
2 �

�
j2�J2

�
�j2�G�G�2�xj2

S�
�j2
��x�2�j2

�
�2�j2 �

�
��

�
	
,

where J1 and J2 label the symmetry-unique atoms placed at
positions �x�1�j1 �j1�J1

and �x�2�j2 �j2�J2
, respectively.

To calculate the correlation between �
1 and �
2 we need the
following preliminary formulae, which are easily established: if
S�x� � Rx	 t and f is an arbitrary function on �3, then

�R�f ��� R��f , ��x f ��� �
x
�f , R���x f � � �Rx f ,

hence

S���x f � � �S�x�R�f and �S���x f ���� �
S�x�R��f ;

and

S�
1 f1 � S�

2 f2 � S�
1 � f1 � �S
1

1 S2��f2� � S�
2 ��S
1

2 S1��f1 � f2��
The cross correlation ��
0

1 � �
0
2 between motifs is therefore

��
0
1 � �
0

2 �
�
j1

�
j2

�
�j1

�
�j2

�S�
�j1
��x�1�j1

�
�1�j1 ���� �S�
�j2
��x�2�j2

�
�2�j2 ��

��
j1

�
j2

�
�j1

�
�j2

�
S�j2

�x�2�j2
�
S�j1

�x�1�j1
���R�

�j1
��
�1�j1 � � �R�

�j2
�
�2�j2 ��

which contains a peak of shape �R�
�j1
��
�1�j1 � � �R�

�j2
�
�2�j2 � at the

interatomic vector S�j2
�x�2�j2 � 
 S�j1

�x�1�j1 � for each j1 � J1, j2 � J2,
�j1 � G�Gx�1�j1

, �j2 � G�Gx�2�j2

.
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The cross-correlation r � ��
0
1 � �
0

2 between the original electron
densities is then obtained by further periodizing by �3.

Note that these expressions are valid for any choice of ‘atomic’
density functions �
�1�j1 and �
�2�j2 , which may be taken as molecular
fragments if desired (see Section 1.3.4.4.8).

If G contains elements g such that Rg has an eigenspace E1 with
eigenvalue 1 and an invariant complementary subspace E2, while tg
has a non-zero component t�1�g in E1, then the Patterson function
r � ��
0 � �
0 will contain Harker peaks (Harker, 1936) of the form

Sg�x� 
 x � t�1�g ( �S�2�g �x� 
 x�
[where S�s�g represent the action of g in E2] in the translate of E1 by
t�1�g .

1.3.4.3. Crystallographic discrete Fourier transform
algorithms

1.3.4.3.1. Historical introduction

In 1929, W. L. Bragg demonstrated the practical usefulness of the
Fourier transform relation between electron density and structure
factors by determining the structure of diopside from three principal
projections calculated numerically by 2D Fourier summation
(Bragg, 1929). It was immediately realized that the systematic use
of this powerful method, and of its extension to three dimensions,
would entail considerable amounts of numerical computation which
had to be organized efficiently. As no other branch of applied
science had yet needed this type of computation, crystallographers
had to invent their own techniques.

The first step was taken by Beevers & Lipson (1934) who pointed
out that a 2D summation could be factored into successive 1D
summations. This is essentially the tensor product property of the
Fourier transform (Sections 1.3.2.4.2.4, 1.3.3.3.1), although its
aspect is rendered somewhat complicated by the use of sines and
cosines instead of complex exponentials. Computation is econo-
mized to the extent that the cost of an N � N transform grows with
N as 2N3 rather than N4. Generalization to 3D is immediate,
reducing computation size from N6 to 3N4 for an N � N � N
transform. The complication introduced by using expressions in
terms of sines and cosines is turned to advantage when symmetry is
present, as certain families of terms are systematically absent or are
simply related to each other; multiplicity corrections must,
however, be introduced. The necessary information was tabulated
for each space group by Lonsdale (1936), and was later
incorporated into Volume I of International Tables.

The second step was taken by Beevers & Lipson (1936) and
Lipson & Beevers (1936) in the form of the invention of the
‘Beevers–Lipson strips’, a practical device which was to assist a
whole generation of crystallographers in the numerical computation
of crystallographic Fourier sums. The strips comprise a set of
‘cosine strips’ tabulating the functions

A cos
2�hm

60

� �
�A � 1, 2, � � � , 99; h � 1, 2, � � � , 99�

and a set of ‘sine strips’ tabulating the functions

B sin
2�hm

60

� �
�B � 1, 2, � � � , 99; h � 1, 2, � � � , 99�

for the 16 arguments m � 0, 1, � � � , 15. Function values are rounded
to the nearest integer, and those for other arguments m may be
obtained by using the symmetry properties of the sine and cosine
functions. A Fourier summation of the form

Y�m� �
�n

j�1

Aj cos
2�hjm

60

� �
	 Bj sin

2�hjm
60

� �� �

is then performed by selecting the n cosine strips labelled �Aj, hj�
and the n sine strips labelled �Bj, hj�, placing them in register, and
adding the tabulated values columnwise. The number 60 was
chosen as the l.c.m. of 12 (itself the l.c.m. of the orders of all
possible non-primitive translations) and of 10 (for decimal
convenience). The limited accuracy imposed by the two-digit
tabulation was later improved by Robertson’s sorting board
(Robertson, 1936a,b) or by the use of separate strips for each
decimal digit of the amplitude (Booth, 1948b), which allowed three-
digit tabulation while keeping the set of strips within manageable
size. Cochran (1948a) found that, for most structures under study at
the time, the numerical inaccuracies of the method were less than
the level of error in the experimental data. The sampling rate was
subsequently increased from 60 to 120 (Beevers, 1952) to cope with
larger unit cells.

Further gains in speed and accuracy were sought through the
construction of special-purpose mechanical, electro-mechanical,
electronic or optical devices. Two striking examples are the
mechanical computer RUFUS built by Robertson (1954, 1955,
1961) on the principle of previous strip methods (see also
Robertson, 1932) and the electronic analogue computer X-RAC
built by Pepinsky, capable of real-time calculation and display of
2D and 3D Fourier syntheses (Pepinsky, 1947; Pepinsky & Sayre,
1948; Pepinsky et al., 1961; see also Suryan, 1957). The optical
methods of Lipson & Taylor (1951, 1958) also deserve mention.
Many other ingenious devices were invented, whose descriptions
may be found in Booth (1948b), Niggli (1961), and Lipson &
Cochran (1968).

Later, commercial punched-card machines were programmed to
carry out Fourier summations or structure-factor calculations
(Shaffer et al., 1946a,b; Cox et al., 1947, 1949; Cox & Jeffrey,
1949; Donohue & Schomaker, 1949; Grems & Kasper, 1949;
Hodgson et al., 1949; Greenhalgh & Jeffrey, 1950; Kitz &
Marchington, 1953).

The modern era of digital electronic computation of Fourier
series was initiated by the work of Bennett & Kendrew (1952),
Mayer & Trueblood (1953), Ahmed & Cruickshank (1953b), Sparks
et al. (1956) and Fowweather (1955). Their Fourier-synthesis
programs used Beevers–Lipson factorization, the program by
Sparks et al. being the first 3D Fourier program useable for all
space groups (although these were treated as P1 or P�1 by data
expansion). Ahmed & Barnes (1958) then proposed a general
programming technique to allow full use of symmetry elements
(orthorhombic or lower) in the 3D Beevers–Lipson factorization
process, including multiplicity corrections. Their method was later
adopted by Shoemaker & Sly (1961), and by crystallographic
program writers at large.

The discovery of the FFT algorithm by Cooley & Tukey in 1965,
which instantly transformed electrical engineering and several other
disciplines, paradoxically failed to have an immediate impact on
crystallographic computing. A plausible explanation is that the
calculation of large 3D Fourier maps was a relatively infrequent
task which was not thought to constitute a bottleneck, as
crystallographers had learned to settle most structural questions
by means of cheaper 2D sections or projections. It is significant in
this respect that the first use of the FFT in crystallography by Barrett
& Zwick (1971) should have occurred as part of an iterative scheme
for improving protein phases by density modification in real space,
which required a much greater number of Fourier transformations
than any previous method. Independently, Bondot (1971) had
attracted attention to the merits of the FFT algorithm.

The FFT program used by Barrett & Zwick had been written for
signal-processing applications. It was restricted to sampling rates of
the form 2n, and was not designed to take advantage of
crystallographic symmetry at any stage of the calculation; Bantz
& Zwick (1974) later improved this situation somewhat.
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It was the work of Ten Eyck (1973) and Immirzi (1973, 1976)
which led to the general adoption of the FFT in crystallographic
computing. Immirzi treated all space groups as P1 by data
expansion. Ten Eyck based his program on a versatile multi-radix
FFT routine (Gentleman & Sande, 1966) coupled with a flexible
indexing scheme for dealing efficiently with multidimensional
transforms. He also addressed the problems of incorporating
symmetry elements of order 2 into the factorization of 1D
transforms, and of transposing intermediate results by other
symmetry elements. He was thus able to show that in a large
number of space groups (including the 74 space groups having
orthorhombic or lower symmetry) it is possible to calculate only the
unique results from the unique data within the logic of the FFT
algorithm. Ten Eyck wrote and circulated a package of programs for
computing Fourier maps and re-analysing them into structure
factors in some simple space groups (P1, P1, P2, P2/m, P21, P222,
P212121, Pmmm). This package was later augmented by a handful of
new space-group-specific programs contributed by other crystal-
lographers (P21212, I222, P3121, P41212). The writing of such
programs is an undertaking of substantial complexity, which has
deterred all but the bravest: the usual practice is now to expand data
for a high-symmetry space group to the largest subgroup for which a
specific FFT program exists in the package, rather than attempt to
write a new program. Attempts have been made to introduce more
modern approaches to the calculation of crystallographic Fourier
transforms (Auslander, Feig & Winograd, 1982; Auslander &
Shenefelt, 1987; Auslander et al., 1988) but have not gone beyond
the stage of preliminary studies.

The task of fully exploiting the FFT algorithm in crystallographic
computations is therefore still unfinished, and it is the purpose of
this section to provide a systematic treatment such as that (say) of
Ahmed & Barnes (1958) for the Beevers–Lipson algorithm.

Ten Eyck’s approach, based on the reducibility of certain space
groups, is extended by the derivation of a universal transposition
formula for intermediate results. It is then shown that space groups
which are not completely reducible may nevertheless be treated by
three-dimensional Cooley–Tukey factorization in such a way that
their symmetry may be fully exploited, whatever the shape of their
asymmetric unit. Finally, new factorization methods with built-in
symmetries are presented. The unifying concept throughout this
presentation is that of ‘group action’ on indexing sets, and of ‘orbit
exchange’ when this action has a composite structure; it affords new
ways of rationalizing the use of symmetry, or of improving
computational speed, or both.

1.3.4.3.2. Defining relations and symmetry considerations

A finite set of reflections �Fhl�l�L can be periodized without
aliasing by the translations of a suitable sublattice NT
� of the
reciprocal lattice 
�; the converse operation in real space is the
sampling of � at points X of a grid of the form N
1
 (Section
1.3.2.7.3). In standard coordinates, �Fhl�l�L is periodized by NT�3,
and �
 is sampled at points x � N
1�3.

In the absence of symmetry, the unique data are
– the Fh indexed by h � �3�NT�3 in reciprocal space;
– the �
x indexed by x � �N
1�3���3; or equivalently the �
m

indexed by m � �3�N�3, where x � N
1m.
They are connected by the ordinary DFT relations:

Fh � 1
�det N�

�
x��N
1�3���3

�
x exp�2�ih � x�

or

Fh � 1
�det N�

�
m��3�N�3

�
m exp�2�ih � �N
1m��

and

�
x �
�

h��3�NT�3

Fh exp�
2�ih � x�

or

�
m �
�

h��3�NT�3

Fh exp�
2�ih � �N
1m���

In the presence of symmetry, the unique data are
– ��
x�x�D or ��
m�m�D in real space (by abuse of notation, D will

denote an asymmetric unit for x or for m indifferently);
– �Fh�h�D� in reciprocal space.
The previous summations may then be subjected to orbital

decomposition, to yield the following ‘crystallographic DFT’
(CDFT) defining relations:

Fh � 1
�det N�

�
x�D

�
x
�

��G�Gx

exp�2�ih � �S��x���
� �

� 1
�det N�

�
x�D

�
x
1
�Gx�

�
g�G

exp�2�ih � �Sg�x���
� �

,

�
x �
�

h�D�
Fh

�
��G�Gh

exp�
2�ih � �S��x���
� �

� �
h�D�

Fh
1
�Gh�

�
g�G

exp�
2�ih � �Sg�x���
� �

,

with the obvious alternatives in terms of �
m, m � Nx. Our problem
is to evaluate the CDFT for a given space group as efficiently as
possible, in spite of the fact that the group action has spoilt the
simple tensor-product structure of the ordinary three-dimensional
DFT (Section 1.3.3.3.1).

Two procedures are available to carry out the 3D summations
involved as a succession of smaller summations:

(1) decomposition into successive transforms of fewer dimen-
sions but on the same number of points along these dimensions. This
possibility depends on the reducibility of the space group, as defined
in Section 1.3.4.2.2.4, and simply invokes the tensor product
property of the DFT;

(2) factorization of the transform into transforms of the same
number of dimensions as the original one, but on fewer points along
each dimension. This possibility depends on the arithmetic
factorability of the decimation matrix N, as described in Section
1.3.3.3.2.

Clearly, a symmetry expansion to the largest fully reducible
subgroup of the space group will give maximal decomposability,
but will require computing more than the unique results from more
than the unique data. Economy will follow from factoring the
transforms in the subspaces within which the space group acts
irreducibly.

For irreducible subspaces of dimension 1, the group action is
readily incorporated into the factorization of the transform, as first
shown by Ten Eyck (1973).

For irreducible subspaces of dimension 2 or 3, the ease of
incorporation of symmetry into the factorization depends on the
type of factorization method used. The multidimensional Cooley–
Tukey method (Section 1.3.3.3.1) is rather complicated; the
multidimensional Good method (Section 1.3.3.3.2.2) is somewhat
simpler; and the Rader/Winograd factorization admits a general-
ization, based on the arithmetic of certain rings of algebraic
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integers, which accommodates 2D crystallographic symmetries in a
most powerful and pleasing fashion.

At each stage of the calculation, it is necessary to keep track of
the definition of the asymmetric unit and of the symmetry properties
of the numbers being manipulated. This requirement applies not
only to the initial data and to the final results, where these are
familiar; but also to all the intermediate quantities produced by
partial transforms (on subsets of factors, or subsets of dimensions,
or both), where they are less familiar. Here, the general formalism
of transposition (or ‘orbit exchange’) described in Section
1.3.4.2.2.2 plays a central role.

1.3.4.3.3. Interaction between symmetry and
decomposition

Suppose that the space-group action is reducible, i.e. that for each
g � G

Rg � R�g 0
0 R��g

� �
, tg �

t�g
t��g

� �
;

by Schur’s lemma, the decimation matrix must then be of the form

N � N� 0
0 N��

� �
if it is to commute with all the Rg.

Putting x � x�

x��

� �
and h � h�

h��

� �
, we may define

S�g�x�� � R�gx� 	 t�g,

S��g �x��� � R��gx�� 	 t��g ,

and write Sg � S�g ( S��g (direct sum) as a shorthand for Sg�x� �
S�g�x��
S��g �x���

� �
�

We may also define the representation operators S
��
g and S

���
g

acting on functions of x� and x��, respectively (as in Section
1.3.4.2.2.4), and the operators S

��
g and S

���
g acting on functions of h�

and h��, respectively (as in Section 1.3.4.2.2.5). Then we may write

S�
g � �S�g�� ( �S��g ��

and

S�g � �S�g�� ( �S��g ��

in the sense that g acts on f �x� � f �x�, x��� by

�S�
g f ��x�, x��� � f ��S�g�
1�x��, �S��g �
1�x����

and on 
�h� � 
�h�, h��� by

�S�g
��h�, h��� � exp�2�ih� � t�g� exp�2�ih�� � t��g�
� 
�R�T

g h�, R
��T
g h����

Thus equipped we may now derive concisely a general identity
describing the symmetry properties of intermediate quantities of the
form

T�x�, h��� �
�

h�
F�h�, h��� exp�
2�ih� � x��

� 1
�det N��

�
x��

�
�x�, x��� exp�	2�ih�� � x���,

which arise through partial transformation of F on h� or of �
on x��.
The action of g � G on these quantities will be

(i) through �S�g�� on the function x� �
� T�x�, h���,
(ii) through �S��g �� on the function h�� �
� T�x�, h���,

and hence the symmetry properties of T are expressed by the
identity

T � ��S�g�� ( �S��g ���T �
Applying this relation not to T but to ��S�g
1�� ( �S��e ���T gives

��S�g
1�� ( �S��e ���T � ��S�e�� ( �S��g ���T ,

i.e.

T�S�g�x��, h��� � exp�2�ih�� � t��g�T�x�, R
��T
g h����

If the unique F�h� � F�h�, h��� were initially indexed by

�all h�� � �unique h���
(see Section 1.3.4.2.2.2), this formula allows the reindexing of the
intermediate results T�x�, h��� from the initial form

�all x�� � �unique h���
to the final form

�unique x�� � �all h���,
on which the second transform (on h��) may now be performed,
giving the final results �
�x�, x��� indexed by

�unique x�� � �all x���,
which is an asymmetric unit. An analogous interpretation holds if
one is going from �
 to F.

The above formula solves the general problem of transposing
from one invariant subspace to another, and is the main device for
decomposing the CDFT. Particular instances of this formula were
derived and used by Ten Eyck (1973); it is useful for orthorhombic
groups, and for dihedral groups containing screw axes nm with g.c.d.
�m, n� � 1. For comparison with later uses of orbit exchange, it
should be noted that the type of intermediate results just dealt with
is obtained after transforming on all factors in one summand.

A central piece of information for driving such a decomposition
is the definition of the full asymmetric unit in terms of the
asymmetric units in the invariant subspaces. As indicated at the end
of Section 1.3.4.2.2.2, this is straightforward when G acts without
fixed points, but becomes more involved if fixed points do exist. To
this day, no systematic ‘calculus of asymmetric units’ exists which
can automatically generate a complete description of the asym-
metric unit of an arbitrary space group in a form suitable for
directing the orbit exchange process, although Shenefelt (1988) has
outlined a procedure for dealing with space group P622 and its
subgroups. The asymmetric unit definitions given in Volume A of
International Tables are incomplete in this respect, in that they do
not specify the possible residual symmetries which may exist on the
boundaries of the domains.

1.3.4.3.4. Interaction between symmetry and factorization

Methods for factoring the DFT in the absence of symmetry were
examined in Sections 1.3.3.2 and 1.3.3.3. They are based on the
observation that the finite sets which index both data and results are
endowed with certain algebraic structures (e.g. are Abelian groups,
or rings), and that subsets of indices may be found which are not
merely subsets but substructures (e.g. subgroups or subrings).
Summation over these substructures leads to partial transforms, and
the way in which substructures fit into the global structure indicates
how to reassemble the partial results into the final results. As a rule,
the richer the algebraic structure which is identified in the indexing
set, the more powerful the factoring method.
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The ability of a given factoring method to accommodate
crystallographic symmetry will thus be determined by the extent
to which the crystallographic group action respects (or fails to
respect) the partitioning of the index set into the substructures
pertaining to that method. This remark justifies trying to gain an
overall view of the algebraic structures involved, and of the
possibilities of a crystallographic group acting ‘naturally’ on them.

The index sets �m�m � �3�N�3� and �h�h � �3�NT�3� are
finite Abelian groups under component-wise addition. If an iterated
addition is viewed as an action of an integer scalar n � � via

nh � h	 h	 � � �	 h �n times� for n 
 0,

� 0 for n � 0,

� 
�h	 h	 � � �	 h� ��n� times� for n � 0,

then an Abelian group becomes a module over the ring � (or, for
short, a �-module), a module being analogous to a vector space but
with scalars drawn from a ring rather than a field. The left actions of
a crystallographic group G by

g � m �
� Rgm	 Ntg mod N�3

and by

g � h �
� �R
1
g �T h mod NT�3

can be combined with this � action as follows:�
g�G

ngg � m �
� �
g�G

ng�Rgm	 Ntg� mod N�3,

�
g�G

ngg � h �
� �
g�G

ng��R
1
g �T h� mod NT�3�

This provides a left action, on the indexing sets, of the set

�G � �
g�G

ngg
��ng � � for each g � G

� �

of symbolic linear combinations of elements of G with integral
coefficients. If addition and multiplication are defined in �G by

�
g1�G

ag1 g1

� 

	 �

g2�G
bg2 g2

� 

� �

g�G
�ag 	 bg�g

and

�
g1�G

ag1 g1

� 

� �

g2�G
bg2 g2

� 

� �

g�G
cgg,

with

cg �
�

g��G
ag�b�g��
1 g,

then �G is a ring, and the action defined above makes the indexing
sets into �G-modules. The ring �G is called the integral group ring
of G (Curtis & Reiner, 1962, p. 44).

From the algebraic standpoint, therefore, the interaction between
symmetry and factorization can be expected to be favourable
whenever the indexing sets of partial transforms are �G-
submodules of the main �G-modules.

1.3.4.3.4.1. Multidimensional Cooley–Tukey factorization
Suppose, as in Section 1.3.3.3.2.1, that the decimation matrix N

may be factored as N1N2. Then any grid point index m � �3�N�3

in real space may be written

m � m1 	 N1m2

with m1 � �3�N1�
3 and m2 � �3�N2�

3 determined by

m1 � m mod N1�
3,

m2 � N
1
1 �m
m1� mod N2�

3�

These relations establish a one-to-one correspondence m $
�m1, m2� between I � �3�N�3 and the Cartesian product I1 � I2
of I1 � �3�N1�

3 and I2 � �3�N2�
3, and hence I # I1 � I2 as a set.

However I �# I1 � I2 as an Abelian group, since in general m	
m� �*��m1 	m�

1, m2 	m�
2� because there can be a ‘carry’ from the

addition of the first components into the second components;
therefore, I �# I1 � I2 as a �G-module, which shows that the
incorporation of symmetry into the Cooley–Tukey algorithm is not
a trivial matter.

Let g � G act on I through

g � m �
� Sg�m� � Rgm	 Ntg mod N�3

and suppose that N ‘integerizes’ all the non-primitive translations tg
so that we may write

Ntg � t�1�g 	 N1t�2�g ,

with t�1�g � I1 and t�2�g � I2 determined as above. Suppose further
that N, N1 and N2 commute with Rg for all g � G, i.e. (by Schur’s
lemma, Section 1.3.4.2.2.4) that these matrices are integer multiples
of the identity in each G-invariant subspace. The action of g on
m � Nx mod N�3 leads to

Sg�m� � N�Rg�N
1m� 	 Ntg� mod N�3

� NRgN
1�m1 	 N1m2� 	 t�1�g 	 N1t�2�g mod N�3

� Rgm1 	 t�1�g 	 N1�Rgm2 	 t�2�g � mod N�3,

which we may decompose as

Sg�m� � �Sg�m��1 	 N1�Sg�m��2
with

�Sg�m��1 � Sg�m� mod N1�
3

and

�Sg�m��2 � N
1
1 �Sg�m� 
 �Sg�m��1� mod N2�

3�

Introducing the notation

S�1�g �m1� � Rgm1 	 t�1�g mod N1�
3,

S�2�g �m2� � Rgm2 	 t�2�g mod N2�
3,

the two components of Sg�m� may be written

�Sg�m��1 � S�1�g �m1�,
�Sg�m��2 � S�2�g �m2� 	 �2�g, m1� mod N2�

3,

with

�2�g, m1� � N
1
1 ��Rgm1 	 t�1�g � 
 �Sg�m1��1� mod N2�

3�

The term �2 is the geometric equivalent of a carry or borrow: it
arises because Rgm1 	 t�1�g , calculated as a vector in �3�N�3, may
be outside the unit cell N1�0, 1�3, and may need to be brought back
into it by a ‘large’ translation with a non-zero component in the m2
space; equivalently, the action of g may need to be applied around
different permissible origins for different values of m1, so as to map
the unit cell into itself without any recourse to lattice translations.
[Readers familiar with the cohomology of groups (see e.g. Hall,
1959; MacLane, 1963) will recognize �2 as the cocycle of the
extension of �G-modules described by the exact sequence
0 � I2 � I � I1 � 0.]
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Thus G acts on I in a rather complicated fashion: although
g �
� S�1�g does define a left action in I1 alone, no action can be
defined in I2 alone because �2 depends on m1. However, because
Sg, S�1�g and S�2�g are left actions, it follows that �2 satisfies the
identity

�2�gg�, m1� � S�2�g ��2�g�, m1�� 	 �2�g, S�1�g �m1�� mod N2�
3

for all g, g� in G and all m1 in I1. In particular, �2�e, m1� � 0 for all
m1, and

�2�g
1, m1� � 
S�2�g
1��2�g, S�1�g
1�m1��� mod N2�
3�

This action will now be used to achieve optimal use of symmetry
in the multidimensional Cooley–Tukey algorithm of Section
1.3.3.3.2.1. Let us form an array Y according to

Y�m1, m2� � ��m1 	 N1m2�
for all m2 � I2 but only for the unique m1 under the action S�1�g of G
in I1. Except in special cases which will be examined later, these
vectors contain essentially an asymmetric unit of electron-density
data, up to some redundancies on boundaries. We may then
compute the partial transform on m2:

Y ��m1, h2� � 1
�det N2�

�
m2�I2

Y�m1, m2�e�h2 � �N
1
2 m2���

Using the symmetry of �
 in the form �
� S�
g �
 yields by the

procedure of Section 1.3.3.3.2 the transposition formula

Y ��S�1�g �m1�, h2� � e�h2 � �N
1
2 �t�2�g 	 �2�g, m1����

� Y ��m1, �R�2�g �T h2��
By means of this identity we can transpose intermediate results

Y � initially indexed by

�unique m1� � �all h2�,
so as to have them indexed by

�all m1� � �unique h2��
We may then apply twiddle factors to get

Z�m1, h2� � e�h2 � �N
1m1��Y ��m1, h2�
and carry out the second transform

Z��h1, h2� � 1
�det N1�

�
m1�I1

Z�m1, h2�e�h1 � �N
1
1 m1���

The final results are indexed by

�all h1� � �unique h2�,
which yield essentially an asymmetric unit of structure factors after
unscrambling by:

F�h2 	 NT
2 h1� � Z��h1, h2��

The transposition formula above applies to intermediate results
when going backwards from F to �
, provided these results are
considered after the twiddle-factor stage. A transposition formula
applicable before that stage can be obtained by characterizing the
action of G on h (including the effects of periodization by NT�3) in
a manner similar to that used for m.

Let

h � h2 	 NT
2 h1,

with

h2 � h mod NT
2�

3,

h1 � �N
1
2 �T�h
 h2� mod NT

1�
3�

We may then write

RT
g h � �RT

g h�2 	 NT
2 �RT

g h�1,

with

�RT
g h�2 � �R�2�g �T h2 mod NT

2�
3,

�RT
g h�1 � �R�1�g �T h1 	 �1�g, h2� mod NT

1�
3�

Here �R�2�g �T , �R�1�g �T and �1 are defined by

�R�2�g �T h2 � RT
g h mod NT

2�
3,

�R�1�g �T h1 � RT
g h mod NT

1�
3

and

�1�g, h2� � �N
1
2 �T �RT

g h2 
 �R�2�g �T h2� mod NT
1�

3�

Let us then form an array Z� according to

Z��h�1, h�2� � F�h�2 	 NT
2 h�1�

for all h�1 but only for the unique h�2 under the action of G in
�3�NT

2�
3, and transform on h�1 to obtain

Z�m1, h2� �
�

h�1��3�NT
1 �

3

Z��h�1, h�2�e�
h�1 � �N
1
1 m1���

Putting h� � RT
g h and using the symmetry of F in the form

F�h�� � F�h� exp�
2�ih � tg�,
where

h � tg � �hT
2 	 hT

1 N2��N
1
2 N
1

1 ��t�1�g 	 N1t�2�g �
� h2 � tg 	 h2 � �N
1

1 t�1�g � mod 1

yields by a straightforward rearrangement

Z�m1, �R�2�g �T h2� � e�
�h2 � tg 	 �1�g, h2� � �N
1
1 m1���

� Z�S�1�g �m1�, h2��
This formula allows the transposition of intermediate results Z

from an indexing by

�all m1� � �unique h2�
to an indexing by

�unique m1� � �all h2��
We may then apply the twiddle factors to obtain

Y ��m1, h2� � e�
h2 � �N
1m1��Z�m1, h2�
and carry out the second transform on h2

Y�m1, m2� �
�

h2��3�NT
2 �

3

Y ��m1, h2�e�
h2 � �N
1
2 m2���

The results, indexed by

�unique m1� � �all m2�
yield essentially an asymmetric unit of electron densities by the
rearrangement

�
�m1 	 N1m2� � Y�m1, m2��
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The equivalence of the two transposition formulae up to the
intervening twiddle factors is readily established, using the relation

h2 � �N
1
2 �2�g, m1�� � �1�g, h2� � �N
1

1 m1� mod 1

which is itself a straightforward consequence of the identity

h � �N
1Sg�m�� � h � tg 	 �RT
g h� � �N
1m��

To complete the characterization of the effect of symmetry on the
Cooley–Tukey factorization, and of the economy of computation it
allows, it remains to consider the possibility that some values of m1
may be invariant under some transformations g � G under the
action m1 �
� S�1�g �m1�.

Suppose that m1 has a non-trivial isotropy subgroup Gm1 , and let
g � Gm1 . Then each subarray Ym1 defined by

Ym1�m2� � Y�m1, m2� � ��m1 	 N1m2�
satisfies the identity

Ym1�m2� � Y
S�1�g �m1��S

�2�
g �m2� 	 �2�g, m1��

� Ym1 �S�2�g �m2� 	 �2�g, m1��
so that the data for the transform on m2 have residual symmetry
properties. In this case the identity satisfied by �2 simplifies to

�2�gg�, m1� � S�2�g ��2�g�, m1�� 	 �2�g, m1� mod N2�
3,

which shows that the mapping g �
� �2�g, m1� satisfies the
Frobenius congruences (Section 1.3.4.2.2.3). Thus the internal
symmetry of subarray Ym1 with respect to the action of G on m2 is
given by Gm1 acting on �3�N2�

3 via

m2 �
� S�2�g �m2� 	 �2�g, m1� mod N2�
3�

The transform on m2 needs only be performed for one out of
�G � Gm1 � distinct arrays Ym1 (results for the others being obtainable
by the transposition formula), and this transforms is Gm1 -
symmetric. In other words, the following cases occur:

�i� Gm1 � �e� maximum saving in computation
�by �G��;
m2-transform has no symmetry�

�ii� Gm1 � G� � G saving in computation by a factor
of �G � G��;
m2-transform is G�-symmetric�

�iii� Gm1 � G no saving in computation;
m2-transform is G-symmetric�

The symmetry properties of the m2-transform may themselves be
exploited in a similar way if N2 can be factored as a product of
smaller decimation matrices; otherwise, an appropriate symme-
trized DFT routine may be provided, using for instance the idea of
‘multiplexing/demultiplexing’ (Section 1.3.4.3.5). We thus have a
recursive descent procedure, in which the deeper stages of the
recursion deal with transforms on fewer points, or of lower
symmetry (usually both).

The same analysis applies to the h1-transforms on the subarrays
Z�h2

, and leads to a similar descent procedure.
In conclusion, crystallographic symmetry can be fully exploited

to reduce the amount of computation to the minimum required to
obtain the unique results from the unique data. No such analysis was
so far available in cases where the asymmetric units in real and
reciprocal space are not parallelepipeds. An example of this
procedure will be given in Section 1.3.4.3.6.5.

1.3.4.3.4.2. Multidimensional Good factorization
This procedure was described in Section 1.3.3.3.2.2. The main

difference with the Cooley–Tukey factorization is that if
N � N1N2 � � �Nd
1Nd , where the different factors are pairwise
coprime, then the Chinese remainder theorem reindexing makes
�3�N�3 isomorphic to a direct sum.

�3�N�3 # ��3�N1�
3� ( � � �( ��3�Nd�

3�,
where each p-primary piece is endowed with an induced �G-
module structure by letting G operate in the usual way but with the
corresponding modular arithmetic. The situation is thus more
favourable than with the Cooley–Tukey method, since there is no
interference between the factors (no ‘carry’). In the terminology of
Section 1.3.4.2.2.2, G acts diagonally on this direct sum, and results
of a partial transform may be transposed by orbit exchange as in
Section 1.3.4.3.4.1 but without the extra terms � or �. The analysis
of the symmetry properties of partial transforms also carries over,
again without the extra terms. Further simplification occurs for all
p-primary pieces with p other than 2 or 3, since all non-primitive
translations (including those associated to lattice centring)
disappear modulo p.

Thus the cost of the CRT reindexing is compensated by the
computational savings due to the absence of twiddle factors and of
other phase shifts associated with non-primitive translations and
with geometric ‘carries’.

Within each p-primary piece, however, higher powers of p may
need to be split up by a Cooley–Tukey factorization, or carried out
directly by a suitably adapted Winograd algorithm.

1.3.4.3.4.3. Crystallographic extension of the Rader/
Winograd factorization

As was the case in the absence of symmetry, the two previous
classes of algorithms can only factor the global transform into
partial transforms on prime numbers of points, but cannot break the
latter down any further. Rader’s idea of using the action of the group
of units U�p� to obtain further factorization of a p-primary
transform has been used in ‘scalar’ form by Auslander & Shenefelt
(1987), Shenefelt (1988), and Auslander et al. (1988). It will be
shown here that it can be adapted to the crystallographic case so as
to take advantage also of the possible existence of n-fold cyclic
symmetry elements �n � 3, 4, 6� in a two-dimensional transform
(Bricogne & Tolimieri, 1990). This adaptation entails the use of
certain rings of algebraic integers rather than ordinary integers,
whose connection with the handling of cyclic symmetry will now be
examined.

Let G be the group associated with a threefold axis of symmetry:
G � �e, g, g2� with g3 � e. In a standard trigonal basis, G has
matrix representation

Re � 1 0
0 1

� �
� I, Rg � 0 
1

1 
1

� �
, Rg2 � 
1 1


1 0

� �

in real space,

R�e �
1 0
0 1

� �
� I, R�g �


1 
1
1 0

� �
, R�g2 � 0 1


1 
1

� �

in reciprocal space. Note that

R�g2 � �R
1
g2 �T � RT

g ,

and that

RT
g � J
1RgJ, where J � 1 0

0 
1

� �

so that Rg and RT
g are conjugate in the group of 2� 2 unimodular
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integer matrices. The group ring �G is commutative, and has the
structure of the polynomial ring ��X � with the single relation X 2 	
X 	 1 � 0 corresponding to the minimal polynomial of Rg. In the
terminology of Section 1.3.3.2.4, the ring structure of �G is
obtained from that of ��X � by carrying out polynomial addition and
multiplication modulo X 2 	 X 	 1, then replacing X by any
generator of G. This type of construction forms the very basis of
algebraic number theory [see Artin (1944, Section IIc) for an
illustration of this viewpoint], and �G as just defined is isomorphic
to the ring ���� of algebraic integers of the form a	 b� �a, b �
�,� � exp�2�i�3�� under the identification X $ �. Addition in
this ring is defined component-wise, while multiplication is defined
by

�a1 	 b1�� � �a2 	 b2�� � �a1a2 
 b1b2�
	 ��a1 
 b1�b2 	 b1a2���

In the case of a fourfold axis, G � �e, g, g2, g3� with g4 � e, and

Rg � 0 
1
1 0

� �
� R�g, with again RT

g � J
1RgJ�

�G is obtained from ��X � by carrying out polynomial arithmetic
modulo X 2 	 1. This identifies �G with the ring ��i� of Gaussian
integers of the form a	 bi, in which addition takes place
component-wise while multiplication is defined by

�a1 	 b1i� � �a2 	 b2i� � �a1a2 
 b1b2� 	 �a1b2 	 b1a2�i�
In the case of a sixfold axis, G � �e, g, g2, g3, g4, g5� with

g6 � e, and

Rg � 1 
1
1 0

� �
, R�g �

0 
1
1 1

� �
, RT

g � J
1RgJ�

�G is isomorphic to ���� under the mapping g $ 1	 � since
�1	 ��6 � 1.

Thus in all cases �G # ��X ��P�X � where P�X � is an irreducible
quadratic polynomial with integer coefficients.

The actions of G on lattices in real and reciprocal space (Sections
1.3.4.2.2.4, 1.3.4.2.2.5) extend naturally to actions of �G on �2 in
which an element z � a	 bg of �G acts via

m � m1

m2

� �
�
� zm � �aI	 bRg� m1

m2

� �

in real space, and via

h � h1

h2

� �
�
� zh � �aI	 bRT

g �
h1

h2

� �

in reciprocal space. These two actions are related by conjugation,
since

�aI	 bRT
g � � J
1�aI	 bRg�J

and the following identity (which is fundamental in the sequel)
holds:

�zh� �m � h � �zm� for all m, h � �2�

Let us now consider the calculation of a p� p two-dimensional
DFT with n-fold cyclic symmetry �n � 3, 4, 6� for an odd prime
p � 5. Denote ��p� by �p. Both the data and the results of the DFT
are indexed by �p � �p: hence the action of �G on these indices is
in fact an action of �pG, the latter being obtained from �G by
carrying out all integer arithmetic in �G modulo p. The algebraic
structure of �pG combines the symmetry-carrying ring structure of
�G with the finite field structure of �p used in Section 1.3.3.2.3.1,
and holds the key to a symmetry-adapted factorization of the DFT at
hand.

The structure of �pG depends on whether P�X � remains
irreducible when considered as a polynomial over �p. Thus two
cases arise:

(1) P�X � remains irreducible mod p, i.e. there is no nth root of
unity in �p;

(2) P�X � factors as �X 
 u��X 
 v�, i.e. there are nth roots of
unity in �p.

These two cases require different developments.
Case 1. �pG is a finite field with p2 elements. There is essentially

(i.e. up to isomorphism) only one such field, denoted GF�p2�, and
its group of units is a cyclic group with p2 
 1 elements. If � is a
generator of this group of units, the input data �m with m �� 0 may
be reordered as

m0, �m0, �2m0, �3m0, � � � , �p2
2m0

by the real-space action of �; while the results Fh with h �� 0 may
be reordered as

h0, �h0, �2h0, �3h0, � � � , �p2
2h0

by the reciprocal-space action of �, where m0 and h0 are arbitrary
non-zero indices.

The core Cp�p of the DFT matrix, defined by

Fp�p �
1 1 � � � 1
1
��
�

Cp�p

1

�
���

�
		
,

will then have a skew-circulant structure (Section 1.3.3.2.3.1) since

�Cp�p�jk � e
�� jh0� � ��km0�

p

� �
� e

h0 � �� j	km0�
p

� �

depends only on j	 k. Multiplication by Cp�p may then be turned
into a cyclic convolution of length p2 
 1, which may be factored
by two DFTs (Section 1.3.3.2.3.1) or by Winograd’s techniques
(Section 1.3.3.2.4). The latter factorization is always favourable, as
it is easily shown that p2 
 1 is divisible by 24 for any odd prime
p � 5. This procedure is applicable even if no symmetry is present
in the data.

Assume now that cyclic symmetry of order n � 3, 4 or 6 is
present. Since n divides 24 hence divides p2 
 1, the generator g of
this symmetry is representable as ��p

2
1��n for a suitable generator �
of the group of units. The reordered data will then be �p2 
 1��n-
periodic rather than simply �p2 
 1�-periodic; hence the reindexed
results will be n-decimated (Section 1.3.2.7.2), and the �p2 
 1��n
non-zero results can be calculated by applying the DFT to the �p2 

1��n unique input data. In this way, the n-fold symmetry can be
used in full to calculate the core contributions from the unique data
to the unique results by a DFT of length �p2 
 1��n.

It is a simple matter to incorporate non-primitive translations into
this scheme. For example, when going from structure factors to
electron densities, reordered data items separated by �p2 
 1��n are
not equal but differ by a phase shift proportional to their index mod
p, whose effect is simply to shift the origin of the n-decimated
transformed sequence. The same economy of computation can
therefore be achieved as in the purely cyclic case.

Dihedral symmetry elements, which map g to g
1 (Section
1.3.4.2.2.3), induce extra one-dimensional symmetries of order 2 in
the reordered data which can also be fully exploited to reduce
computation.

Case 2. If p � 5, it can be shown that the two roots u and v are
always distinct. Then, by the Chinese remainder theorem (CRT) for
polynomials (Section 1.3.3.2.4) we have a ring isomorphism

�p�X ��P�X � # ��p�X ���X 
 u�� � ��p�X ���X 
 v��
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defined by sending a polynomial Q�X � from the left-hand-side ring
to its two residue classes modulo X 
 u and X 
 v, respectively.
Since the latter are simply the constants Q�u� and Q�v�, the CRT
reindexing has the particularly simple form

a	 bX �
� �a	 bu, a	 bv� � ��, ��

or equivalently

a
b

� �
�
� �

�

� �
� M

a
b

� �
mod p, with M � 1 u

1 v

� �
�

The CRT reconstruction formula similarly simplifies to

�

�

� �
�
� a

b

� �
� M
1 �

�

� �
mod p,

with M
1 � 1
v
 u

v 
u


1 1

� �
�

The use of the CRT therefore amounts to the simultaneous
diagonalization (by M) of all the matrices representing the elements
of �pG in the basis (1, X).

A first consequence of this diagonalization is that the internal
structure of �pG becomes clearly visible. Indeed, �pG is mapped
isomorphically to a direct product of two copies of �p, in which
arithmetic is carried out component-wise between eigenvalues �
and �. Thus if

z � a	 bX*�CRT ��, ��,
z� � a� 	 b�X*�CRT ���, ���,

then

z	 z�*�CRT ��	 ��,� 	 ���,
zz�*�CRT ����,�����

Taking in particular

z*�CRT ��, 0� �� �0, 0�,
z�*�CRT �0,�� �� �0, 0�,

we have zz� � 0, so that �pG contains zero divisors; therefore �pG
is not a field. On the other hand, if z*�CRT ��,�� with � �� 0 and
� �� 0, then � and � belong to the group of units U�p� (Section
1.3.3.2.3.1) and hence have inverses �
1 and �
1; it follows that z is
a unit in �pG, with inverse z
1*�CRT ��
1, �
1�. Therefore, �pG
consists of four distinct pieces:

0*�CRT ��0, 0��,
D1*�CRT ���, 0��� � U�p�� # U�p�,
D2*�CRT ��0,���� � U�p�� # U�p�,
U*�CRT ���,���� � U�p�, � � U�p�� # U�p� � U�p��

A second consequence of this diagonalization is that the actions
of �pG on indices m and h can themselves be brought to diagonal
form by basis changes:

m �
� �aI	 bRg�m

becomes � �
� � 0

0 �

� �
� with � � Mm,

h �
� �aI	 bRT
g �h

becomes � �
� � 0

0 �

� �
� with � � MJh�

Thus the sets of indices � and � can be split into four pieces as �pG
itself, according as these indices have none, one or two of their
coordinates in U�p�. These pieces will be labelled by the same
symbols – 0, D1, D2 and U – as those of �pG.

The scalar product h �m may be written in terms of � and � as

h �m � �� � ��M
1�T JM
1���,
and an elementary calculation shows that the matrix �
�M
1�T JM
1 is diagonal by virtue of the relation

uv � constant term in P�X � � 1�

Therefore, h �m � 0 if h � D1 and � � D2 or vice versa.
We are now in a position to rearrange the DFT matrix Fp�p.

Clearly, the structure of Fp�p is more complex than in case 1, as
there are three types of ‘core’ matrices:

type 1: D� D �with D � D1 or D2�;
type 2: D� U or U � D;

type 3: U � U �

(Submatrices of type D1 � D2 and D2 � D1 have all their elements
equal to 1 by the previous remark.)

Let � be a generator of U�p�. We may reorder the elements in D1,
D2 and U – and hence the data and results indexed by these elements
– according to powers of �. This requires one exponent in each of
D1 and D2, and two exponents in U. For instance, in the h-index
space:

D1 �
� 0

0 0

� �j �1

0

� �
0

��� j � 1, � � � , p
 1

� �

D2 �
0 0

0 �

� �j 0

�2

� �
0

��� j � 1, � � � , p
 1

� �

U � � 0

0 1

� �j1 1 0

0 �

� �j2 �1

�2

� �
0

��� j1 � 1, � � � , p
 1;

�

j2 � 1, � � � , p
 1

*

and similarly for the � index.
Since the diagonal matrix � commutes with all the matrices

representing the action of �, this rearrangement will induce skew-
circulant structures in all the core matrices. The corresponding
cyclic convolutions may be carried out by Rader’s method, i.e. by
diagonalizing them by means of two (p
 1)-point one-dimensional
DFTs in the D� D pieces and of two �p
 1� � �p
 1�-point two-
dimensional DFTs in the U � U piece (the U � D and D� U
pieces involve extra section and projection operations).

In the absence of symmetry, no computational saving is
achieved, since the same reordering could have been applied to
the initial �p � �p indexing, without the CRT reindexing.

In the presence of n-fold cyclic symmetry, however, the
rearranged Fp�p lends itself to an n-fold reduction in size. The
basic fact is that whenever case 2 occurs, p
 1 is divisible by n (i.e.
p
 1 is divisible by 6 when n � 3 or 6, and by 4 when n � 4), say
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p
 1 � nq. If g is a generator of the cyclic symmetry, the generator
� of U�p�may be chosen in such a way that g � �q. The action of g
is then to increment the j index in D1 and D2 by q, and the �j1, j2�
index in U by (q, q). Since the data items whose indices are related
in this way have identical values, the DFTs used to diagonalize the
Rader cyclic convolutions will operate on periodized data, hence
yield decimated results; and the non-zero results will be obtained
from the unique data by DFTs n times smaller than their
counterparts in the absence of symmetry.

A more thorough analysis is needed to obtain a Winograd
factorization into the normal from CBA in the presence of
symmetry (see Bricogne & Tolimieri, 1990).

Non-primitive translations and dihedral symmetry may also be
accommodated within this framework, as in case 1.

This reindexing by means of algebraic integers yields larger
orbits, hence more efficient algorithms, than that of Auslander et al.
(1988) which only uses ordinary integers acting by scalar dilation.

1.3.4.3.5. Treatment of conjugate and parity-related
symmetry properties

Most crystallographic Fourier syntheses are real-valued and
originate from Hermitian-symmetric collections of Fourier coeffi-
cients. Hermitian symmetry is closely related to the action of a
centre of inversion in reciprocal space, and thus interacts strongly
with all other genuinely crystallographic symmetry elements of
order 2. All these symmetry properties are best treated by factoring
by 2 and reducing the computation of the initial transform to that of
a collection of smaller transforms with less symmetry or none at all.

1.3.4.3.5.1. Hermitian-symmetric or real-valued
transforms

The computation of a DFT with Hermitian-symmetric or real-
valued data can be carried out at a cost of half that of an ordinary
transform, essentially by ‘multiplexing’ pairs of special partial
transforms into general complex transforms, and then ‘demultiplex-
ing’ the results on the basis of their symmetry properties. The
treatment given below is for general dimension n; a subset of cases
for n � 1 was treated by Ten Eyck (1973).

(a) Underlying group action
Hermitian symmetry is not a geometric symmetry, but it is

defined in terms of the action in reciprocal space of point group
G � �1, i.e. G � �e, 
 e�, where e acts as I (the n� n identity
matrix) and 
e acts as 
I.

This group action on �n�N�n with N � N1N2 will now be
characterized by the calculation of the cocycle �1 (Section
1.3.4.3.4.1) under the assumption that N1 and N2 are both diagonal.
For this purpose it is convenient to associate to any integer vector

v �
v1

��
�

vn

�
��

�
	
 in �n the vector 	 �v� whose jth component is

0 if vj � 0
1 if vj �� 0.

+

Let m � m1 	 N1m2, and hence h � h2 	 N2h1. Then


 h2 mod N�n � N	 �h2� 
 h2,


 h2 mod N2�
n � N2	 �h2� 
 h2,

hence

�1�
e, h2� � N
1
2 ��N	 �h2� 
 h2� 
 �N2	 �h2� 
 h2�� mod N1�

n

� 
	 �h2� mod N1�
n�

Therefore 
e acts by

�h2, h1� �
� �N2	 �h2� 
 h2, N1	 �h1� 
 h1 
 	 �h2���
Hermitian symmetry is traditionally dealt with by factoring by 2,

i.e. by assuming N � 2M. If N2 � 2I, then each h2 is invariant
under G, so that each partial vector Z�h2

(Section 1.3.4.3.4.1) inherits
the symmetry internally, with a ‘modulation’ by �1�g, h2�. The
‘multiplexing–demultiplexing’ technique provides an efficient
treatment of this singular case.

(b) Calculation of structure factors
The computation may be summarized as follows:

�
 �
�dec�N1�
Y �
�

�F�N2�
Y� �
�TW

Z �
�
�F�N1�

Z� �
�rev�N2�
F

where dec�N1� is the initial decimation given by
Ym1�m2� � �
�m1 	 N1m2�, TW is the transposition and twiddle-
factor stage, and rev�N2� is the final unscrambling by coset reversal
given by F�h2 	 N2h1� � Z�h2

�h1�.
(i) Decimation in time �N1 � 2I, N2 � M�
The decimated vectors Ym1 are real and hence have Hermitian

transforms Y�m1
. The 2n values of m1 may be grouped into 2n
1 pairs

�m�
1, m��

1� and the vectors corresponding to each pair may be
multiplexed into a general complex vector

Y � Ym�
1
	 iYm��

1
�

The transform Y� � �F�M��Y� can then be resolved into the separate
transforms Y�m�

1
and Y�m��

1
by using the Hermitian symmetry of the

latter, which yields the demultiplexing formulae

Y �m�
1
�h2� 	 iY �m��

1
�h2� � Y ��h2�

Y �m�
1
�h2� 	 iY �m��

1
�h2� � Y ��M	 �h2� 
 h2��

The number of partial transforms �F�M� is thus reduced from 2n to
2n
1. Once this separation has been achieved, the remaining steps
need only be carried out for a unique half of the values of h2.

(ii) Decimation in frequency �N1 � M, N2 � 2I�
Since h2 � �n�2�n we have
h2 � h2 and 	 �h2� � h2 mod 2�n.

The vectors of decimated and scrambled results Z�h2
then obey the

symmetry relations

Z�h2
�h1 
 h2� � Z�h2

�M	 �h1� 
 h1�
which can be used to halve the number of �F�M� necessary to
compute them, as follows.

Having formed the vectors Zh2 given by

Zh2�m1� �
�

m2��n�2�n

�
1�h2�m2

2n
�
�m1 	Mm2�

&
'

(
)e�h2 � �N
1m1��,

we may group the 2n values of h2 into 2n
1 pairs �h�2, h��2� and for
each pair form the multiplexed vector:

Z � Zh�2 	 iZh��2 �

After calculating the 2n
1 transforms Z� � �F�M��Z�, the 2n

individual transforms Z�h�2 and Z�h��2 can be separated by using for
each pair the demultiplexing formulae

Z�h�2�h1� 	 iZ�h��2 �h1� � Z��h1�
Z�h�2�h1 
 h�2� 	 iZ�h��2 �h1 
 h��2� � Z��M	 �h1� 
 h1�

which can be solved recursively. If all pairs are chosen so that they
differ only in the jth coordinate �h2�j, the recursion is along �h1�j
and can be initiated by introducing the (real) values of Z�h�2 and Z�h��2 at
�h1�j � 0 and �h1�j � Mj, accumulated e.g. while forming Z for that
pair. Only points with �h1�j going from 0 to 1

2 Mj need be resolved,
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and they contain the unique half of the Hermitian-symmetric
transform F.

(c) Calculation of electron densities
The computation may be summarized as follows:

F �
�scr�N2�
Z� �
�F�N1�

Z �
�TW
Y� �
�F�N2�

Y �
�nat�N1�
�


where scr�N2� is the decimation with coset reversal given by
Z�h2
�h1� � F�h2 	 N2h1�, TW is the transposition and twiddle-

factor stage, and nat�N1� is the recovery in natural order given by
�
�m1 	 N1m2� � Ym1�m2�.

(i) Decimation in time �N1 � M, N2 � 2I�
The last transformation F�2I� has a real-valued matrix, and the

final result �
 is real-valued. It follows that the vectors Y�m1
of

intermediate results after the twiddle-factor stage are real-valued,
hence lend themselves to multiplexing along the real and imaginary
components of half as many general complex vectors.

Let the 2n initial vectors Z�h2
be multiplexed into 2n
1 vectors

Z� � Z�h�2 	 iZ�h��2

[one for each pair �h�2, h��2�], each of which yields by F(M) a vector

Z � Zh�2 	 iZh��2 �

The real-valuedness of the Y�m1
may be used to recover the separate

result vectors for h�2 and h��2. For this purpose, introduce the
abbreviated notation

e�
h�2 � �N
1m1�� � �c� 	 is���m1�
e�
h��2 � �N
1m1�� � �c�� 	 is����m1�

Rh2�m1� � Y �m1
�h2�

R� � Rh�2 , R�� � Rh��2 �

Then we may write

Z � �c� 	 is��R� 	 i�c�� 	 is���R��
� �c�R� 	 s��R��� 	 i�
s�R� 	 c��R���

or, equivalently, for each m1,

�� Z
�� Z

� �
� c� s��


s� c��

� �
R�

R��

� �
�

Therefore R� and R�� may be retrieved from Z by the ‘demultiplex-
ing’ formula:

R�

R��

� �
� 1

c�c�� 	 s�s��
c�� 
s��

s� c�

� �
�� Z
�� Z

� �

which is valid at all points m1 where c�c�� 	 s�s�� �� 0, i.e. where

cos�2��h�2 
 h��2� � �N
1m1�� �� 0�

Demultiplexing fails when

�h�2 
 h��2� � �N
1m1� � 1
2 mod 1�

If the pairs �h�2, h��2� are chosen so that their members differ only in
one coordinate (the jth, say), then the exceptional points are at
�m1�j � 1

2 Mj and the missing transform values are easily obtained
e.g. by accumulation while forming Z�.

The final stage of the calculation is then

�
�m1 	Mm2� �
�

h2�Zn�2Zn
�
1�h2�m2 Rh2�m1��

(ii) Decimation in frequency �N1 � 2I, N2 � M�
The last transformation F(M) gives the real-valued results �
,

therefore the vectors Y�m1
after the twiddle-factor stage each have

Hermitian symmetry.
A first consequence is that the intermediate vectors Zh2 need only

be computed for the unique half of the values of h2, the other half
being related by the Hermitian symmetry of Y�m1

.
A second consequence is that the 2n vectors Y�m1

may be
condensed into 2n
1 general complex vectors

Y� � Y�m�
1
	 iY�m��

1

[one for each pair �m�
1, m��

1�] to which a general complex F(M) may
be applied to yield

Y � Ym�
1
	 iYm��

1

with Ym�
1

and Ym��
1

real-valued. The final results can therefore be
retrieved by the particularly simple demultiplexing formulae:

�
�m�
1 	 2m2� � �� Y�m2�,

�
�m��
1 	 2m2� � �� Y�m2��

1.3.4.3.5.2. Hermitian-antisymmetric or pure imaginary
transforms

A vector X � �X �k��k � �n�N�n� is said to be Hermitian-
antisymmetric if

X �k� � 
X �
k� for all k�

Its transform X� then satisfies

X ��k�� � 
X ��k�� for all k�,

i.e. is purely imaginary.
If X is Hermitian-antisymmetric, then F �  iX is Hermitian-

symmetric, with �
�  iX� real-valued. The treatment of Section
1.3.4.3.5.1 may therefore be adapted, with trivial factors of i or 
1,
or used as such in conjunction with changes of variable by
multiplication by  i.

1.3.4.3.5.3. Complex symmetric and antisymmetric
transforms

The matrix 
I is its own contragredient, and hence (Section
1.3.2.4.2.2) the transform of a symmetric (respectively antisym-
metric) function is symmetric (respectively antisymmetric). In this
case the group G � �e, 
 e� acts in both real and reciprocal space
as �I, 
 I�. If N � N1N2 with both factors diagonal, then 
e acts
by

�m1, m2� �
� �N1	 �m1� 
m1, N2	 �m2� 
m2 
 	 �m1��,
�h2, h1� �
� �N2	 �h2� 
 h2, N1	 �h1� 
 h1 
 	 �h2��,

i.e.

�2�
e, m1� � 
	 �m1� mod N2�
n,

�1�
e, h2� � 
	 �h2� mod N1�
n�

The symmetry or antisymmetry properties of X may be written

X �
m� � 
�X �m� for all m,

with � � 	1 for symmetry and � � 
1 for antisymmetry.
The computation will be summarized as

X �
�dec�N1�
Y �
�

�F�N2�
Y� �
�TW

Z �
�
�F�N1�

Z� �
�rev�N2�
X�

with the same indexing as that used for structure-factor calculation.
In both cases it will be shown that a transform F�N� with N � 2M
and M diagonal can be computed using only 2n
1 partial transforms
F�M� instead of 2n.
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(i) Decimation in time �N1 � 2I, N2 � M�
Since m1 � �n�2�n we have 
m1 � m1 and 	 �m1� � m1 mod

2�n, so that the symmetry relations for each parity class of data Ym1

read

Ym1 �M	 �m2� 
m2 
m1� � �Ym1�m2�
or equivalently

�m1 Ym1 � ��Ym1 �

Transforming by F�M�, this relation becomes

e�
h2 � �M
1m1��Y�m1
� �Y�m1

�

Each parity class thus obeys a different symmetry relation, so that
we may multiplex them in pairs by forming for each pair �m�

1, m��
1�

the vector

Y � Ym�
1
	 Ym��

1
�

Putting

e�
h2 � �M
1m�
1�� � �c� 	 is���h2�

e�
h2 � �M
1m��
1�� � �c�� 	 is����h2�

we then have the demultiplexing relations for each h2:

Y �m�
1
�h2� 	 Y �m��

1
�h2� � Y ��h2�

�c� 	 is���h2�Y �m�
1
�h2� 	 �c�� 	 is����h2�Y �m��

1
�h2�

� �Y ��M	 �h2� 
 h2�
which can be solved recursively. Transform values at the
exceptional points h2 where demultiplexing fails (i.e. where
c� 	 is� � c�� 	 is��) can be accumulated while forming Y.

Only the unique half of the values of h2 need to be considered at
the demultiplexing stage and at the subsequent TW and F(2I)
stages.

(ii) Decimation in frequency �N1 � M, N2 � 2I�
The vectors of final results Z�h2

for each parity class h2 obey the
symmetry relations

�h2 Z�h2
� ��Z�h2

,

which are different for each h2. The vectors Zh2 of intermediate
results after the twiddle-factor stage may then be multiplexed in
pairs as

Z � Zh�2 	 Zh��2 �

After transforming by F�M�, the results Z� may be demulti-
plexed by using the relations

Z�h�2�h1� 	 Z�h��2 �h1� � Z��h1�
Z�h�2�h1 
 h�2� 	 Z�h��2 �h1 
 h��2� � �Z��M	 �h1� 
 h1�

which can be solved recursively as in Section 1.3.4.3.5.1(b)(ii).

1.3.4.3.5.4. Real symmetric transforms
Conjugate symmetric (Section 1.3.2.4.2.3) implies that if the data

X are real and symmetric [i.e. X �k� � X �k� and X �
k� � X �k�],
then so are the results X�. Thus if �
contains a centre of symmetry, F
is real symmetric. There is no distinction (other than notation)
between structure-factor and electron-density calculation; the
algorithms will be described in terms of the former. It will be
shown that if N � 2M, a real symmetric transform can be computed
with only 2n
2 partial transforms F�M� instead of 2n.

(i) Decimation in time �N1 � 2I, N2 � M�
Since m1 � �n�2�n we have 
m1 � m1 and 	 �m1� �

m1 mod 2�n. The decimated vectors Ym1 are not only real, but

have an internal symmetry expressed by

Ym1 �M	 �m2� 
m2 
m1� � �Ym1�m2��
This symmetry, however, is different for each m1 so that we may
multiplex two such vectors Ym�

1
and Ym��

1
into a general real vector

Y � Ym�
1
	 Ym��

1
,

for each of the 2n
1 pairs �m�
1, m��

1�. The 2n
1 Hermitian-symmetric
transform vectors

Y� � Y�m�
1
	 Y�m��

1

can then be evaluated by the methods of Section 1.3.4.3.5.1(b) at the
cost of only 2n
2 general complex F�M�.

The demultiplexing relations by which the separate vectors Y�m�
1

and Y�m��
1

may be recovered are most simply obtained by observing
that the vectors Z after the twiddle-factor stage are real-valued since
F(2I) has a real matrix. Thus, as in Section 1.3.4.3.5.1(c)(i),

Y�m�
1
� �c� 
 is��R�

Y�m��
1
� �c�� 
 is���R��,

where R� and R�� are real vectors and where the multipliers �c� 
 is��
and �c�� 
 is��� are the inverse twiddle factors. Therefore,

Y� � �c� 
 is��R� 	 �c�� 
 is���R��
� �c�R� 	 c��R��� 
 i�s�R� 	 s��R���

and hence the demultiplexing relation for each h2:

R�

R��

� �
� 1

c�s�� 
 s�c��
s�� 
c��


s� c�

� �
�� Y �


�� Y �

� �
�

The values of R�h2
and R��h2

at those points h2 where c�s�� 
 s�c�� � 0
can be evaluated directly while forming Y. This demultiplexing and
the final stage of the calculation, namely

F�h2 	Mh1� � 1
2n

�
m1�Zn�2Zn

�
1�h1�m1 Rm1�h2�

need only be carried out for the unique half of the range of h2.
(ii) Decimation in frequency �N1 � M, N2 � 2I�
Similarly, the vectors Z�h2

of decimated and scrambled results are
real and obey internal symmetries

�h2 Z�h2
� ��Z�h2

which are different for each h2. For each of the 2n
1 pairs �h�2, h��2�
the multiplexed vector

Z � Zh�2 	 Zh��2

is a Hermitian-symmetric vector without internal symmetry, and the
2n
1 real vectors

Z� � Z�h�2 	 Z�h��2

may be evaluated at the cost of only 2n
2 general complex F�M� by
the methods of Section 1.3.4.3.5.1(c). The individual transforms Zh�2
and Zh��2 may then be retrieved via the demultiplexing relations

Z�h�2�h1� 	 Z�h��2 �h1� � Z��h1�
Z�h�2�h1 
 h�2� 	 Z�h��2 �h1 
 h��2� � Z��M	 �h1� 
 h1�

which can be solved recursively as described in Section
1.3.4.3.5.1(b)(ii). This yields the unique half of the real symmetric
results F.
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1.3.4.3.5.5. Real antisymmetric transforms
If X is real antisymmetric, then its transform X� is purely

imaginary and antisymmetric. The double-multiplexing techniques
used for real symmetric transforms may therefore be adapted with
only minor changes involving signs and factors of i.

1.3.4.3.5.6. Generalized multiplexing
So far the multiplexing technique has been applied to pairs of

vectors with similar types of parity-related and/or conjugate
symmetry properties, in particular the same value of �.

It can be generalized so as to accommodate mixtures of vectors
with different symmetry characteristics. For example if X1 is
Hermitian-symmetric and X2 is Hermitian-antisymmetric, so that
X�1 is real-valued while X�2 has purely imaginary values, the
multiplexing process should obviously form X � X1 	 X2 (instead
of X � X1 	 iX2 if both had the same type of symmetry), and
demultiplexing consists in separating

X�1 � �� X�

X�2 � i�� X��

The general multiplexing formula for pairs of vectors may
therefore be written

X � X1 	 �X2,

where � is a phase factor (e.g. 1 or i) chosen in such a way that all
non-exceptional components of X1 and X2 (or X�1 and X�2) be
embedded in the complex plane � along linearly independent
directions, thus making multiplexing possible.

It is possible to develop a more general form of multiplexing/
demultiplexing for more than two vectors, which can be used to deal
with symmetry elements of order 3, 4 or 6. It is based on the theory
of group characters (Ledermann, 1987).

1.3.4.3.6. Global crystallographic algorithms

All the necessary ingredients are now available for calculating
the CDFT for any given space group.

1.3.4.3.6.1. Triclinic groups
Space group P1 is dealt with by the methods of Section

1.3.4.3.5.1 and P�1 by those of Section 1.3.4.3.5.4.

1.3.4.3.6.2. Monoclinic groups
A general monoclinic transformation is of the form

Sg � x �
� Rgx	 tg

with Rg a diagonal matrix whose entries are 	1 or 
1, and tg a
vector whose entries are 0 or 1

2. We may thus decompose both real
and reciprocal space into a direct sum of a subspace �n	 where Rg
acts as the identity, and a subspace �n
 where Rg acts as minus the
identity, with n	 	 n
 � n � 3. All usual entities may be
correspondingly written as direct sums, for instance:

Rg � R	g ( R
g , N � N	 ( N
, M � M	 (M
,

tg � t	g ( t
g , t�1�g � t�1�	g ( t�1�
g , t�2�g � t�2�	g ( t�2�
g ,

m � m	 (m
, m1 � m	
1 (m


1 , m2 � m	
2 (m


2 ,

h � h	 ( h
, h1 � h	1 ( h
1 , h2 � h	2 ( h
2 �

We will use factoring by 2, with decimation in frequency when
computing structure factors, and decimation in time when
computing electron densities; this corresponds to N � N1N2 with
N1 � M, N2 � 2I. The non-primitive translation vector Ntg then
belongs to M�n, and thus

t�1�g � 0 mod M�n, t�2�g � �n�2�n�

The symmetry relations obeyed by �
 and F are as follows: for
electron densities

�
�m	, m
� � �
�m	 	 N	t	g , 
m
 
 N
t
g �
or, after factoring by 2,

�
�m	
1 , m	

2 , m

1 , m


2 �
� �
�m	

1 , m	
2 	 t�2�	g , M
	 �m


1 � 
m

1 
m


2 , m

2 	 t�2�
g �;

while for structure factors

F�h	, h
� � exp�2�i�h	 � t	g 	 h
 � t
g ��F�h	, 
 h
�
with its Friedel counterpart

F�h	, h
� � exp�2�i�h	 � t	g 	 h
 � t
g ��F�
h	, h
�
or, after factoring by 2,

F�h	1 , h	2 , h
1 , h
2 � � �
1�h	2 �t�2�	g 	h
2 �t�2�
g

� F�h	1 , h	2 , M
	 �h
1 � 
 h
1 
 h
2 , h
2 �
with Friedel counterpart

F�h	1 , h	2 , h
1 , h
2 �
� �
1�h	2 �t�2�	g 	h
2 �t�2�
g F�M		 �h	1 � 
 h	1 
 h	2 , h	2 , h
1 , h
2 ��

When calculating electron densities, two methods may be used.
(i) Transform on h
 first.
The partial vectors defined by Xh	� h
2

� F�h	, h
1 , h
2 � obey
symmetry relations of the form

X �h
1 
 h
2 � � �X �M
	 �h
1 � 
 h
1 �
with � �  1 independent of h
1 . This is the same relation as for the
same parity class of data for a (complex or real) symmetric �� �
	1� or antisymmetric �� � 
1� transform. The same techniques
can be used to decrease the number of F�M
� by multiplexing pairs
of such vectors and demultiplexing their transforms. Partial vectors
with different values of � may be mixed in this way (Section
1.3.4.3.5.6).

Once F�N
� is completed, its results have Hermitian symmetry
with respect to h	, and the methods of Section 1.3.4.3.5.1 may be
used to obtain the unique electron densities.

(ii) Transform on h	 first.
The partial vectors defined by Xh
� h	2

� F�h	1 , h	2 , h
� obey
symmetry relations of the form

X �h	1 
 h	2 � � �X �M		 �h	1 � 
 h	1 �
with � �  1 independent of h	1 . This is the same relation as for the
same parity class of data for a Hermitian symmetric �� � 	1� or
antisymmetric �� � 
1� transform. The same techniques may be
used to decrease the number of F�M	�. This generalizes the
procedure described by Ten Eyck (1973) for treating dyad axes, i.e.
for the case n	 � 1, t�2�
g � 0, and t�2�	g � 0 (simple dyad) or
t�2�	g �� 0 (screw dyad).

Once F�N	� is completed, its results have Hermitian symmetry
properties with respect to h
 which can be used to obtain the unique
electron densities.

Structure factors may be computed by applying the reverse
procedures in the reverse order.

1.3.4.3.6.3. Orthorhombic groups
Almost all orthorhombic space groups are generated by two

monoclinic transformations g1 and g2 of the type described in
Section 1.3.4.3.6.2, with the addition of a centre of inversion 
e for
centrosymmetric groups. The only exceptions are Fdd2 and Fddd
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which contain diamond glides, in which some non-primitive
translations are ‘square roots’ not of primitive lattice translations,
but of centring translations. The generic case will be examined first.

To calculate electron densities, the unique octant of data may first
be transformed on h	 (respectively h
) as in Section 1.3.4.3.6.2
using the symmetry pertaining to generator g1. These intermediate
results may then be expanded by generator g2 by the formula of
Section 1.3.4.3.3 prior to the final transform on h
 (respectively
h	). To calculate structure factors, the reverse operations are
applied in the reverse order.

The two exceptional groups Fdd2 and Fddd only require a small
modification. The F-centring causes the systematic absence of
parity classes with mixed parities, leaving only (000) and (111). For
the former, the phase factors exp�2�i�h	 � t	g 	 h
 � t
g �� in the
symmetry relations of Section 1.3.4.3.6.2 become powers of (
1)
so that one is back to the generic case. For the latter, these phase
factors are odd powers of i which it is a simple matter to incorporate
into a modified multiplexing/demultiplexing procedure.

1.3.4.3.6.4. Trigonal, tetragonal and hexagonal groups
All the symmetries in this class of groups can be handled by the

generalized Rader/Winograd algorithms of Section 1.3.4.3.4.3, but
no implementation of these is yet available.

In groups containing axes of the form nm with g.c.d. �m, n� �
1 �i�e� 31, 32, 41, 43, 61, 65� along the c direction, the following
procedure may be used (Ten Eyck, 1973):

(i) to calculate electron densities, the unique structure factors
indexed by

�unique �h, k�� � �all l�
are transformed on l; the results are rearranged by the transposition
formula of Section 1.3.4.3.3 so as to be indexed by

�all �h, k�� � unique
1
n

� �
th of z

� �

and are finally transformed on (h, k) to produce an asymmetric unit.
For a dihedral group, the extra twofold axis may be used in the
transposition to produce a unique �1�2n�th of z.

(ii) to calculate structure factors, the unique densities in �1�n�th
of z [or �1�2n�th for a dihedral group] are first transformed on x and
y, then transposed by the formula of Section 1.3.4.3.3 to reindex the
intermediate results by

�unique �h, k�� � �all z�;
the last transform on z is then carried out.

1.3.4.3.6.5. Cubic groups
These are usually treated as their orthorhombic or tetragonal

subgroups, as the body-diagonal threefold axis cannot be handled
by ordinary methods of decomposition.

The three-dimensional factorization technique of Section
1.3.4.3.4.1 allows a complete treatment of cubic symmetry.
Factoring by 2 along all three dimensions gives four types (i.e.
orbits) of parity classes:

�000� with residual threefold symmetry,

�100�, �010�, �001� related by threefold axis,

�110�, �101�, �011� related by threefold axis,

�111� with residual threefold symmetry.

Orbit exchange using the threefold axis thus allows one to reduce
the number of partial transforms from 8 to 4 (one per orbit).
Factoring by 3 leads to a reduction from 27 to 11 (in this case,
further reduction to 9 can be gained by multiplexing the three

diagonal classes with residual threefold symmetry into a single
class; see Section 1.3.4.3.5.6). More generally, factoring by q leads
to a reduction from q3 to 1

3 �q3 
 q� 
 q. Each of the remaining
transforms then has a symmetry induced from the orthorhombic or
tetragonal subgroup, which can be treated as above.

No implementation of this procedure is yet available.

1.3.4.3.6.6. Treatment of centred lattices
Lattice centring is an instance of the duality between period-

ization and decimation: the extra translational periodicity of �
induces a decimation of F � �Fh� described by the ‘reflection
conditions’ on h. As was pointed out in Section 1.3.4.2.2.3, non-
primitive lattices are introduced in order to retain the same matrix
representation for a given geometric symmetry operation in all the
arithmetic classes in which it occurs. From the computational point
of view, therefore, the main advantage in using centred lattices is
that it maximizes decomposability (Section 1.3.4.2.2.4); reindexing
to a primitive lattice would for instance often destroy the diagonal
character of the matrix representing a dyad.

In the usual procedure involving three successive one-dimen-
sional transforms, the loss of efficiency caused by the duplication of
densities or the systematic vanishing of certain classes of structure
factors may be avoided by using a multiplexing/demultiplexing
technique (Ten Eyck, 1973):

(i) for base-centred or body-centred lattices, two successive
planes of structure factors may be overlaid into a single plane; after
transformation, the results belonging to each plane may be
separated by parity considerations;

(ii) for face-centred lattices the same method applies, using four
successive planes (the third and fourth with an origin translation);

(iii) for rhombohedral lattices in hexagonal coordinates, three
successive planes may be overlaid, and the results may be separated
by linear combinations involving cube roots of unity.

The three-dimensional factorization technique of Section
1.3.4.3.4.1 is particularly well suited to the treatment of centred
lattices: if the decimation matrix of N contains as a factor N1 a
matrix which ‘integerizes’ all the non-primitive lattice vectors, then
centring is reflected by the systematic vanishing of certain classes of
vectors of decimated data or results, which can simply be omitted
from the calculation. An alternative possibly is to reindex on a
primitive lattice and use different representative matrices for the
symmetry operations: the loss of decomposability is of little
consequence in this three-dimensional scheme, although it
substantially complicates the definition of the cocycles �2 and �1.

1.3.4.3.6.7. Programming considerations
The preceding sections have been devoted to showing how the

raw computational efficiency of a crystallographic Fourier trans-
form algorithm can be maximized. This section will briefly discuss
another characteristic (besides speed) which a crystallographic
Fourier transform program may be required to possess if it is to be
useful in various applications: a convenient and versatile mode of
presentation of input data or output results.

The standard crystallographic FFT programs (Ten Eyck, 1973,
1985) are rather rigid in this respect, and use rather rudimentary
data structures (lists of structure-factor values, and two-dimensional
arrays containing successive sections of electron-density maps). It
is frequently the case that considerable reformatting of these data or
results must be carried out before they can be used in other
computations; for instance, maps have to be converted from 2D
sections to 3D ‘bricks’ before they can be inspected on a computer
graphics display.

The explicitly three-dimensional approach to the factorization of
the DFT and the use of symmetry offers the possibility of richer and
more versatile data structures. For instance, the use of ‘decimation
in frequency’ in real space and of ‘decimation in time’ in reciprocal
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space leads to data structures in which real-space coordinates are
handled by blocks (thus preserving, at least locally, the three-
dimensional topological connectivity of the maps) while reciprocal-
space indices are handled by parity classes or their generalizations
for factors other than 2 (thus making the treatment of centred
lattices extremely easy). This global three-dimensional indexing
also makes it possible to carry symmetry and multiplicity
characteristics for each subvector of intermediate results for the
purpose of automating the use of the orbit exchange mechanism.

Brünger (1989) has described the use of a similar three-
dimensional factoring technique in the context of structure-factor
calculations for the refinement of macromolecular structures.

1.3.4.4. Basic crystallographic computations

1.3.4.4.1. Introduction

Fourier transform (FT) calculations play an indispensable role in
crystallography, because the Fourier transformation is inherent in
the diffraction phenomenon itself.

Besides this obligatory use, the FT has numerous other
applications, motivated more often by its mathematical properties
than by direct physical reasoning (although the latter can be
supplied after the fact). Typically, many crystallographic computa-
tions turn out to be convolutions in disguise, which can be speeded
up by orders of magnitude through a judicious use of the FT.
Several recent advances in crystallographic computation have been
based on this kind of observation.

1.3.4.4.2. Fourier synthesis of electron-density maps

Bragg (1929) was the first to use this type of calculation to assist
structure determination. Progress in computing techniques since
that time was reviewed in Section 1.3.4.3.1.

The usefulness of the maps thus obtained can be adversely
affected by three main factors:

(i) limited resolution;
(ii) errors in the data;
(iii) computational errors.
Limited resolution causes ‘series-termination errors’ first

investigated by Bragg & West (1930), who used an optical analogy
with the numerical aperture of a microscope. James (1948b) gave a
quantitative description of this phenomenon as a convolution with
the ‘spherical Dirichlet kernel’ (Section 1.3.4.2.1.3), which reflects
the truncation of the Fourier spectrum by multiplication with the
indicator function of the limiting resolution sphere. Bragg & West
(1930) suggested that the resulting ripples might be diminished by
applying an artificial temperature factor to the data, which performs
a further convolution with a Gaussian point-spread function. When
the electron-density map is to be used for model refinement, van
Reijen (1942) suggested using Fourier coefficients calculated from
the model when no observation is available, as a means of
combating series-termination effects.

Errors in the data introduce errors in the electron-density maps,
with the same mean-square value by virtue of Parseval’s theorem.
Special positions accrue larger errors (Cruickshank & Rollett, 1953;
Cruickshank, 1965a). To minimize the mean-square electron-
density error due to large phase uncertainties, Blow & Crick
(1959) introduced the ‘best Fourier’ which uses centroid Fourier
coefficients; the associated error level in the electron-density map
was evaluated by Blow & Crick (1959) and Dickerson et al.
(1961a,b).

Computational errors used to be a serious concern when
Beevers–Lipson strips were used, and Cochran (1948a) carried
out a critical evaluation of the accuracy limitations imposed by strip
methods. Nowadays, the FFT algorithm implemented on digital
computers with a word size of at least 32 bits gives results accurate

to six decimal places or better in most applications (see Gentleman
& Sande, 1966).

1.3.4.4.3. Fourier analysis of modified electron-density
maps

Various approaches to the phase problem are based on certain
modifications of the electron-density map, followed by Fourier
analysis of the modified map and extraction of phase information
from the resulting Fourier coefficients.

1.3.4.4.3.1. Squaring
Sayre (1952a) derived his ‘squaring method equation’ for

structures consisting of equal, resolved and spherically symmetric
atoms by observing that squaring such an electron density is
equivalent merely to sharpening each atom into its square. Thus

Fh � �h
�
k

FkFh
k,

where �h � f �h��f sq�h� is the ratio between the form factor f �h�
common to all the atoms and the form factor f sq�h� for the squared
version of that atom.

Most of the central results of direct methods, such as the tangent
formula, are an immediate consequence of Sayre’s equation. Phase
refinement for a macromolecule by enforcement of the squaring
method equation was demonstrated by Sayre (1972, 1974).

1.3.4.4.3.2. Other non-linear operations
A category of phase improvement procedures known as ‘density

modification’ is based on the pointwise application of various
quadratic or cubic ‘filters’ to electron-density maps after removal of
negative regions (Hoppe & Gassmann, 1968; Hoppe et al., 1970;
Barrett & Zwick, 1971; Gassmann & Zechmeister, 1972; Collins,
1975; Collins et al., 1976; Gassmann, 1976). These operations are
claimed to be equivalent to reciprocal-space phase-refinement
techniques such as those based on the tangent formula. Indeed the
replacement of

�
�x� ��
h

Fh exp�
2�ih � x�

by P��
�x��, where P is a polynomial

P��
� � a0 	 a1�
	 a2�
2 	 a3�
3 	 � � �

yields

P��
�x�� � a0 	
�
h

a1Fh 	 a2
�
k

FkFh
k

�

	 a3
�
k

�
l

FkFlFh
k
l 	 � � �

�
exp�
2�ih � x�

and hence gives rise to the convolution-like families of terms
encountered in direct methods. This equivalence, however, has been
shown to be rather superficial (Bricogne, 1982) because the
‘uncertainty principle’ embodied in Heisenberg’s inequality
(Section 1.3.2.4.4.3) imposes severe limitations on the effectiveness
of any procedure which operates pointwise in both real and
reciprocal space.

In applying such methods, sampling considerations must be
given close attention. If the spectrum of �
 extends to resolution 	
and if the pointwise non-linear filter involves a polynomial P of
degree n, then P(�
) should be sampled at intervals of at most 	�2n
to accommodate the full bandwidth of its spectrum.

1.3.4.4.3.3. Solvent flattening
Crystals of proteins and nucleic acids contain large amounts of

mother liquor, often in excess of 50% of the unit-cell volume,

84

1. GENERAL RELATIONSHIPS AND TECHNIQUES



occupying connected channels. The well ordered electron density
�
M �x� corresponding to the macromolecule thus occupies only a
periodic subregion � of the crystal. Thus

�
M � �� � �
M ,

implying the convolution identity between structure factors (Main
& Woolfson, 1963):

FM �h� �
�

k

�	
1
�

��

� �
�h
 k�FM �k�

which is a form of the Shannon interpolation formula (Sections
1.3.2.7.1, 1.3.4.2.1.7; Bricogne, 1974; Colman, 1974).

It is often possible to obtain an approximate ‘molecular
envelope’ � from a poor electron-density map �
, either inter-
actively by computer graphics (Bricogne, 1976) or automatically by
calculating a moving average of the electron density within a small
sphere S. The latter procedure can be implemented in real space
(Wang, 1985). However, as it is a convolution of �
with �S , it can be
speeded up considerably (Leslie, 1987) by computing the moving
average �
mav as

�
mav�x� � 	 � �	 ��
� � �	 ��S ���x��
This remark is identical in substance to Booth’s method of

computation of ‘bounded projections’ (Booth, 1945a) described in
Section 1.3.4.2.1.8, except that the summation is kept three-
dimensional.

The iterative use of the estimated envelope � for the purpose of
phase improvement (Wang, 1985) is a submethod of the previously
developed method of molecular averaging, which is described
below. Sampling rules for the Fourier analysis of envelope-
truncated maps will be given there.

1.3.4.4.3.4. Molecular averaging by noncrystallographic
symmetries

Macromolecules and macromolecular assemblies frequently
crystallize with several identical subunits in the asymmetric metric
unit, or in several crystal forms containing the same molecule in
different arrangements. Rossmann & Blow (1963) recognized that
intensity data collected from such structures are redundant (Sayre,
1952b) and that their redundancy could be a source of phase
information.

The phase constraints implied by the consistency of geome-
trically redundant intensities were first derived by Rossmann &
Blow (1963), and were generalized by Main & Rossmann (1966).
Crowther (1967, 1969) reformulated them as linear eigenvalue
equations between structure factors, for which he proposed an
iterative matrix solution method. Although useful in practice (Jack,
1973), this reciprocal-space approach required computations of size
+ N2 for N reflections, so that N could not exceed a few thousands.

The theory was then reformulated in real space (Bricogne, 1974),
showing that the most costly step in Crowther’s procedure could be
carried out much more economically by averaging the electron
densities of all crystallographically independent subunits, then
rebuilding the crystal(s) from this averaged subunit, flattening the
density in the solvent region(s) by resetting it to its average value.
This operation is a projection [by virtue of Section 1.3.4.2.2.2(d)].
The overall complexity was thus reduced from N2 to N log N. The
design and implementation of a general-purpose program package
for averaging, reconstructing and solvent-flattening electron-
density maps (Bricogne, 1976) led rapidly to the first high-
resolution determinations of virus structures (Bloomer et al.,
1978; Harrison et al., 1978), with N , 200 000.

The considerable gain in speed is a consequence of the fact that
the masking operations used to retrieve the various copies of the
common subunit are carried out by simple pointwise multiplication

by an indicator function �U in real space, whereas they involve a
convolution with �	 ��U � in reciprocal space.

The averaging by noncrystallographic symmetries of an electron-
density map calculated by FFT – hence sampled on a grid which is
an integral subdivision of the period lattice – necessarily entails the
interpolation of densities at non-integral points of that grid. The
effect of interpolation on the structure factors recalculated from an
averaged map was examined by Bricogne (1976). This study
showed that, if linear interpolation is used, the initial map should be
calculated on a fine grid, of size 	/5 or 	/6 at resolution 	 (instead
of the previously used value of 	/3). The analysis about to be given
applies to all interpolation schemes which consist in a convolution
of the sampled density with a fixed interpolation kernel function K.

Let �
be a �3-periodic function. Let K be the interpolation kernel
in ‘normalized’ form, i.e. such that

�
�3 K�x� d3x � 1 and scaled so

as to interpolate between sample values given on a unit grid �3; in
the case of linear interpolation, K is the ‘trilinear wedge’

K�x� � W�x�W�y�W �z�,
where

W �t� � 1
 �t� if �t� � 1,

� 0 if �t� � 1�

Let �
 be sampled on a grid �1 � N
1
1 �3, and let IN1�
 denote the

function interpolated from this sampled version of �
. Then:

IN1�
� �
� �
m��3

��N
1
1 m�

� �
� ��N
1

1 ��K�,

where ��N
1
1 ��K��x� � K�N1x�, so that

�	 �IN1�
� � �	 ��
� � �det N1�
�

k1��3

��NT
1 k1�

� �

� 1
�det N1� �N

T
1 �� �	 �K�

� �

� �
k1��3


NT
1 k1

�	 ��
�
� �

� �NT
1 �� �	 �K��

The transform of IN1�
 thus consists of
(i) a ‘main band’ corresponding to k1 � 0, which consists of the

true transform �	 ��
���� attenuated by multiplication by the central
region of �	 �K���N
1�T� �; in the case of linear interpolation, for
example,

�	 �K���, �, �� � sin��
��

� �2 sin��
��

� �2 sin��
��

� �2

;

(ii) a series of ‘ghost bands’ corresponding to k1 �� 0, which
consist of translates of �	 ��
� multiplied by the tail regions of
�NT

1 �� �	 �K�.
Thus IN1�
 is not band-limited even if �
 is. Supposing, however,

that �
 is band-limited and that grid �1 satisfies the Shannon
sampling criterion, we see that there will be no overlap between the
different bands: �	 ��
� may therefore be recovered from the main
band by compensating its attenuation, which is approximately a
temperature-factor correction.

For numerical work, however, IN1�
 must be resampled onto
another grid �2, which causes its transform to become periodized
into

�det N2�
�

k2��3


NT
2 k2

�
k1��3


NT
1 k1

�	 ��
�
� �

�NT
1 �� �	 �K�

� �
�
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This now causes the main band k1 � k2 � 0 to become
contaminated by the ghost bands �k1 �� 0� of the translates �k2 ��
0� of IN1�
.

Aliasing errors may be minimized by increasing the sampling
rate in grid �1 well beyond the Shannon minimum, which rapidly
reduces the r.m.s. content of the ghost bands.

The sampling rate in grid �2 needs only exceed the Shannon
minimum to the extent required to accommodate the increase in
bandwidth due to convolution with �	 ��U �, which is the reciprocal-
space counterpart of envelope truncation (or solvent flattening) in
real space.

1.3.4.4.3.5. Molecular-envelope transforms via Green’s
theorem

Green’s theorem stated in terms of distributions (Section
1.3.2.3.9.1) is particularly well suited to the calculation of the
Fourier transforms �	 ��U � of indicator functions. Let f be the
indicator function �U and let S be the boundary of U (assumed to be
a smooth surface). The jump �0 in the value of f across S along the
outer normal vector is �0 � 
1, the jump �
 in the normal
derivative of f across S is �
 � 0, and the Laplacian of f as a
function is (almost everywhere) 0 so that T	f � 0. Green’s theorem
then reads:

	�Tf � � T	f 	 �
��S� 	 	
��0��S��
� 
	
 ���S���

The function eH�X� � exp�2�iH � X� satisfies the identity
	eH � 
4�2�H�2eH. Therefore, in Cartesian coordinates:
�F��U ��H� � �T�U , eH�

� 
 1

4�2�H�2 �T�U ,	eH�

� 
 1

4�2�H�2 �	�T�U �, eH� �Section 1�3�2�3�9�1�a��

� 
 1

4�2�H�2 �
	
���S��, eH�

� 
 1

4�2�H�2

�
S

	
eH d2S �Section 1�3�2�3�9�1�c��

� 
 1

4�2�H�2

�
S

2�iH � n exp�2�iH � X� d2S,

i.e.

�	 ��U ��H� � 1

2�i�H�2

�
S

H � n exp�2�iH � X� d2S,

where n is the outer normal to S. This formula was used by von Laue
(1936) for a different purpose, namely to calculate the transforms of
crystal shapes (see also Ewald, 1940). If the surface S is given by a
triangulation, the surface integral becomes a sum over all faces,
since n is constant on each face. If U is a solid sphere with radius R,
an integration by parts gives immediately:

1
vol�U�

�	 ��U ��H� � 3
X 3
�sin X 
 X cos X �

with X � 2��H�R�

1.3.4.4.4. Structure factors from model atomic parameters

An atomic model of a crystal structure consists of a list of
symmetry-unique atoms described by their positions, their thermal

agitation and their chemical identity (which can be used as a pointer
to form-factor tables). Form factors are usually parameterized as
sums of Gaussians, and thermal agitation by a Gaussian temperature
factor or tensor. The formulae given in Section 1.3.4.2.2.6 for
Gaussian atoms are therefore adequate for most purposes. High-
resolution electron-density studies use more involved parameteriza-
tions.

Early calculations were carried out by means of Bragg–Lipson
charts (Bragg & Lipson, 1936) which gave a graphical representa-
tion of the symmetrized trigonometric sums � of Section
1.3.4.2.2.9. The approximation of form factors by Gaussians goes
back to the work of Vand et al. (1957) and Forsyth & Wells (1959).
Agarwal (1978) gave simplified expansions suitable for medium-
resolution modelling of macromolecular structures.

This method of calculating structure factors is expensive because
each atom sends contributions of essentially equal magnitude to all
structure factors in a resolution shell. The calculation is therefore of
size + N� for N atoms and � reflections. Since N and � are
roughly proportional at a given resolution, this method is very
costly for large structures.

Two distinct programming strategies are available (Rollett,
1965) according to whether the fast loop is on all atoms for each
reflection, or on all reflections for each atom. The former method
was favoured in the early times when computers were unreliable.
The latter was shown by Burnett & Nordman (1974) to be more
amenable to efficient programming, as no multiplication is required
in calculating the arguments of the sine/cosine terms: these can be
accumulated by integer addition, and used as subscripts in
referencing a trigonometric function table.

1.3.4.4.5. Structure factors via model electron-density
maps

Robertson (1936b) recognized the similarity between the
calculation of structure factors by Fourier summation and the
calculation of Fourier syntheses, the main difference being of
course that atomic coordinates do not usually lie exactly on a grid
obtained by integer subdivision of the crystal lattice. He proposed to
address this difficulty by the use of his sorting board, which could
extend the scale of subdivision and thus avoid phase errors. In this
way the calculation of structure factors became amenable to
Beevers–Lipson strip methods, with considerable gain of speed.

Later, Beevers & Lipson (1952) proposed that trigonometric
functions attached to atomic positions falling between the grid
points on which Beevers–Lipson strips were based should be
obtained by linear interpolation from the values found on the strips
for the closest grid points. This amounts (Section 1.3.4.4.3.4) to
using atoms in the shape of a trilinear wedge, whose form factor was
indicated in Section 1.3.4.4.3.4 and gives rise to aliasing effects (see
below) not considered by Beevers & Lipson.

The correct formulation of this idea came with the work of Sayre
(1951), who showed that structure factors could be calculated by
Fourier analysis of a sampled electron-density map previously
generated on a subdivision N
1
 of the crystal lattice 
. When
generating such a map, care must be taken to distribute onto the
sample grid not only the electron densities of all the atoms in the
asymmetric motif, but also those of their images under space-group
symmetries and lattice translations. Considerable savings in
computation occur, especially for large structures, because atoms
are localized: each atom sends contributions to only a few grid
points in real space, rather than to all reciprocal-lattice points. The
generation of the sampled electron-density map is still of complex-
ity + N� for N atoms and � reflections, but the proportionality
constant is smaller than that in Section 1.3.4.4.4 by orders of
magnitude; the extra cost of Fourier analysis, proportional to
� log� , is negligible.
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The idea of approximating a Fourier transform by a discrete
transform on sampled values had already been used by Whittaker
(1948), who tested it on the first three odd Hermite functions and did
not consider the problem of aliasing errors. By contrast, Sayre gave
a lucid analysis of the sampling problems associated to this
technique. If the periodic sampled map is written in the form of a
weighted lattice distribution (as in Section 1.3.2.7.3) as

�
s � �
m��3

�
�N
1m���N
1m�,

then its discrete Fourier transform yields

Fs�h� � �
���3

F�h	 NT��

so that each correct value F�h� is corrupted by its aliases F�h	
NT�� for � �� 0.

To cure this aliasing problem, Sayre used ‘hypothetical atoms’
with form factors equal to those of standard atoms within the
resolution range of interest, but set to zero outside that range. This
amounts to using atomic densities with built-in series-termination
errors, which has the detrimental effect of introducing slowly
decaying ripples around the atom which require incrementing
sample densities at many more grid points per atom.

Sayre considered another cure in the form of an artificial
temperature factor B (Bragg & West, 1930) applied to all atoms.
This spreads each atom on more grid points in real space but speeds
up the decay of its transform in reciprocal space, thus allowing the
use of a coarser sampling grid in real space. He discounted it as
spoiling the agreement with observed data, but Ten Eyck (1977)
pointed out that this agreement could be restored by applying the
negative of the artificial temperature factor to the results. This idea
cannot be carried to extremes: if B is chosen too large, the atoms
will be so spread out in real space as each to occupy a sizeable
fraction of the unit cell and the advantage of atom localization will
be lost; furthermore, the form factors will fall off so rapidly that
round-off error amplification will occur when the results are
sharpened back. Clearly, there exists an optimal combination of B
and sampling rate yielding the most economical computation for a
given accuracy at a given resolution, and a formula will now be
given to calculate it.

Let us make the simplifying assumption that all atoms are
roughly equal and that their common form factor can be represented
by an equivalent temperature factor Beq. Let 	 � 1�d�max be the
resolution to which structure factors are wanted. The Shannon
sampling interval is 	�2 � 1�2d�max. Let � be the oversampling
rate, so that the actual sampling interval in the map is
	�2� � 1�2�d�max: then consecutive copies of the transform are
separated by a distance 2�d�max in reciprocal space. Let the artificial
temperature factor Bextra be added, and let

B � Beq 	 Bextra�

The worst aliasing occurs at the outer resolution limit d�max, where
the ‘signal’ due to an atom is proportional to

exp��
B�4��d�max�2�,
while the ‘noise’ due to the closest alias is proportional to

exp��
B�4���2�
 1�d�max�2��
Thus the signal-to-noise ratio, or quality factor, Q is

exp�B���
 1��d�max�2��
If a certain value of Q is desired (e.g. Q � 100 for 1% accuracy),

then the equation

B � log Q

���
 1��d�max�2

defines B in terms of �, d�max and Q.
The overall cost of the structure-factor calculation from N atoms

is then
(i) C1 � B2�3 � N for density generation,
(ii) C2 � �2�d�max�3 � log��2�d�max�3� for Fourier analysis,

where C1 and C2 are constant depending on the speed of the
computer used. This overall cost may be minimized with respect to
� for given d�max and Q, determining the optimal B (and hence Bextra)
in passing by the above relation.

Sayre (1951) did observe that applying an artificial temperature
factor in real space would not create series-termination ripples: the
resulting atoms would have a smaller effective radius than his
hypothetical atoms, so that step (i) would be faster. This optimality
of Gaussian smearing is ultimately a consequence of Hardy’s
theorem (Section 1.3.2.4.4.3).

1.3.4.4.6. Derivatives for variational phasing techniques

Some methods of phase determination rely on maximizing a
certain global criterion S��
� involving the electron density, of the
form

�
�3��3 K��
�x�� d3x, under constraint of agreement with the

observed structure-factor amplitudes, typically measured by a �2

residual C. Several recently proposed methods use for S��
� various
measures of entropy defined by taking K��
� � 
�
log��
��� or
K��
� � log �
(Bricogne, 1982; Britten & Collins, 1982; Narayan &
Nityananda, 1982; Bryan et al., 1983; Wilkins et al., 1983;
Bricogne, 1984; Navaza, 1985; Livesey & Skilling, 1985). Sayre’s
use of the squaring method to improve protein phases (Sayre, 1974)
also belongs to this category, and is amenable to the same
computational strategies (Sayre, 1980).

These methods differ from the density-modification procedures
of Section 1.3.4.4.3.2 in that they seek an optimal solution by
moving electron densities (or structure factors) jointly rather than
pointwise, i.e. by moving along suitably chosen search directions
vi�x� [or Vi�h�].

For computational purposes, these search directions may be
handled either as column vectors of sample values
�vi�N
1m��m��3�N�3 on a grid in real space, or as column vectors
of Fourier coefficients �Vi�h��h��3�NT�3 in reciprocal space. These
column vectors are the coordinates of the same vector Vi in an
abstract vector space � # L��3�N�3� of dimension � � �det N�
over �, but referred to two different bases which are related by the
DFT and its inverse (Section 1.3.2.7.3).

The problem of finding the optimum of S for a given value of C
amounts to achieving collinearity between the gradients �S and
�C of S and of C in � , the scalar ratio between them being a
Lagrange multiplier. In order to move towards such a solution from
a trial position, the dependence of �S and �C on position in �
must be represented. This involves the � �� Hessian matrices
H(S) and H(C), whose size precludes their use in the whole of � .
Restricting the search to a smaller search subspace of dimension n
spanned by �Vi�i�1, ���, n we may build local quadratic models of S
and C (Bryan & Skilling, 1980; Burch et al., 1983) with respect to n
coordinates X in that subspace:

S�X� � S�X0� 	 ST
0 �X
 X0�

	 1
2�X
 X0�T H0�S��X
 X0�

C�X� � C�X0� 	 CT
0 �X
 X0�

	 1
2�X
 X0�T H0�C��X
 X0��

The coefficients of these linear models are given by scalar products:
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�S0�i � �Vi,�S�
�C0�i � �Vi,�C�

�H0�S��ij � �Vi, H�S�Vj�
�H0�C��ij � �Vi, H�C�Vj�

which, by virtue of Parseval’s theorem, may be evaluated either in
real space or in reciprocal space (Bricogne, 1984). In doing so,
special positions and reflections must be taken into account, as in
Section 1.3.4.2.2.8. Scalar products involving S are best evaluated
by real-space grid summation, because H(S) is diagonal in this
representation; those involving C are best calculated by reciprocal-
space summation, because H(C) is at worst 2� 2 block-diagonal in
this representation. Using these Hessian matrices in the wrong space
would lead to prohibitively expensive convolutions instead of scalar
(or at worst 2� 2 matrix) multiplications.

1.3.4.4.7. Derivatives for model refinement

Since the origins of X-ray crystal structure analysis, the
calculation of crystallographic Fourier series has been closely
associated with the process of refinement. Fourier coefficients with
phases were obtained for all or part of the measured reflections in
the basis of some trial model for all or part of the structure, and
Fourier syntheses were then used to complete and improve this
initial model. This approach is clearly described in the classic paper
by Bragg & West (1929), and was put into practice in the
determination of the structures of topaz (Alston & West, 1929)
and diopside (Warren & Bragg, 1929). Later, more systematic
methods of arriving at a trial model were provided by the Patterson
synthesis (Patterson, 1934, 1935a,b; Harker, 1936) and by
isomorphous replacement (Robertson, 1935, 1936c). The role of
Fourier syntheses, however, remained essentially unchanged [see
Robertson (1937) for a review] until more systematic methods of
structure refinement were introduced in the 1940s. A particularly
good account of the processes of structure completion and
refinement may be found in Chapters 15 and 16 of Stout & Jensen
(1968).

It is beyond the scope of this section to review the vast topic of
refinement methods: rather, it will give an account of those aspects
of their development which have sought improved power by
exploiting properties of the Fourier transformation. It is of more
than historical interest that some recent advances in the crystal-
lographic refinement of macromolecular structures had been
anticipated by Cochran and Cruickshank in the early 1950s.

1.3.4.4.7.1. The method of least squares
Hughes (1941) was the first to use the already well established

multivariate least-squares method (Whittaker & Robinson, 1944) to
refine initial estimates of the parameters describing a model
structure. The method gained general acceptance through the
programming efforts of Friedlander et al. (1955), Sparks et al.
(1956), Busing & Levy (1961), and others.

The Fourier relations between �
 and F (Section 1.3.4.2.2.6) are
used to derive the ‘observational equations’ connecting the structure
parameters �up�p�1, ���, n to the observations ��Fh�obs, ��2

h�obs�h��
comprising the amplitudes and their experimental variances for a set
� of unique reflections.

The normal equations giving the corrections �u to the parameters
are then

�AT WA��u � 
AT W	,

where

Ahp � 	�Fcalc
h �

	up

	h � �Fcalc
h � 
 �Fh�obs

W � diag �Wh� with Wh � 1

��2
h�obs �

To calculate the elements of A, write:

F � �F� exp�i�� � �	 i�;

hence

	�F�
	u

� 	�

	u
cos�	 	�

	u
sin�

� ��
	F
	u

exp�i��
� �

� ��
	F
	u

exp�i��
� �

�

In the simple case of atoms with real-valued form factors and
isotropic thermal agitation in space group P1,

Fcalc
h ��

j�J
gj�h� exp�2�ih � xj�,

where

gj�h� � Zj fj�h� exp�
1
4Bj�d�h�2�,

Zj being a fractional occupancy.
Positional derivatives with respect to xj are given by

	Fcalc
h

	xj
� �2�ih�gj�h� exp�2�ih � xj�

	�Fcalc
h �

	xj
� ����
2�ih�gj�h� exp�
2�ih � xj� exp�i�calc

h ��

so that the corresponding 3� 1 subvector of the right-hand side of
the normal equations reads:



�
h��

Wh
	�Fcalc

h �
	xj

��Fcalc
h � 
 �Fh�obs�

� 
��
�
h��

gj�h��
2�ih�Wh��Fcalc
h � 
 �Fh�obs�

�

� exp�i�calc
h � exp�
2�ih � xj�

,
�

The setting up and solution of the normal equations lends itself
well to computer programming and has the advantage of providing
a thorough analysis of the accuracy of its results (Cruickshank,
1965b, 1970; Rollett, 1970). It is, however, an expensive task, of
complexity + n� �� �2, which is unaffordable for macromolecules.

1.3.4.4.7.2. Booth’s differential Fourier syntheses
It was the use of Fourier syntheses in the completion of trial

structures which provided the incentive to find methods for
computing 2D and 3D syntheses efficiently, and led to the
Beevers–Lipson strips. The limited accuracy of the latter caused
the estimated positions of atoms (identified as peaks in the maps) to
be somewhat in error. Methods were therefore sought to improve
the accuracy with which the coordinates of the electron-density
maxima could be determined. The naive method of peak-shape
analysis from densities recalculated on a 3� 3� 3 grid using high-
accuracy trigonometric tables entailed 27 summations per atom.

Booth (1946a) suggested examining the rapidly varying
derivatives of the electron density rather than its slowly varying
values. If
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�
�x� ��
h

Fh exp�
2�ih � x�

then the gradient vector �x�
of �
at x0

��x�
��x0� ��
h

Fh�
2�ih� exp�
2�ih � x0�

can be calculated by means of three Fourier summations from the
3� 1 vector of Fourier coefficients

�
2�ih�Fh�

Similarly, the Hessian matrix of �
at x0

���x�T
x ��
��x0� ��

h
Fh�
4�2hhT � exp�
2�ih � x0�

can be calculated by six Fourier summations from the unique
elements of the symmetric matrix of Fourier coefficients:


4�2
h2 hk hl
hk k2 kl
hl kl l2

�
�

�

Fh�

The scalar maps giving the components of the gradient and
Hessian matrix of �
will be called differential syntheses of 1st order
and 2nd order respectively. If x0 is approximately but not exactly a
maximum of �
, then the Newton–Raphson estimate of the true
maximum x� is given by:

x� � x0 
 ����x�T
x ��
��x0��
1��x�
�x0���

This calculation requires only nine accurate Fourier summations
(instead of 27), and this number is further reduced to four if the peak
is assumed to be spherically symmetrical.

The resulting positions are affected by series-termination errors
in the differential syntheses. Booth (1945c, 1946c) proposed a
‘back-shift correction’ to eliminate them, and extended this
treatment to the acentric case (Booth, 1946b). He cautioned against
the use of an artificial temperature factor to fight series-termination
errors (Brill et al., 1939), as this could be shown to introduce
coordinate errors by causing overlap between atoms (Booth, 1946c,
1947a,b).

Cruickshank was able to derive estimates for the standard
uncertainties of the atomic coordinates obtained in this way (Cox
& Cruickshank, 1948; Cruickshank, 1949a,b) and to show that they
agreed with those provided by the least-squares method.

The calculation of differential Fourier syntheses was incorpo-
rated into the crystallographic programs of Ahmed & Cruickshank
(1953b) and of Sparks et al. (1956).

1.3.4.4.7.3. Booth’s method of steepest descents
Having defined the now universally adopted R factors (Booth,

1945b) as criteria of agreement between observed and calculated
amplitudes or intensities, Booth proposed that R should be
minimized with respect to the set of atomic coordinates �xj�j�J
by descending along the gradient of R in parameter space (Booth,
1947c,d). This ‘steepest descents’ procedure was compared with
Patterson methods by Cochran (1948d).

When calculating the necessary derivatives, Booth (1948a, 1949)
used the formulae given above in connection with least squares.
This method was implemented by Qurashi (1949) and by Vand
(1948, 1951) with parameter-rescaling modifications which made it
very close to the least-squares method (Cruickshank, 1950; Qurashi
& Vand, 1953; Qurashi, 1953).

1.3.4.4.7.4. Cochran’s Fourier method
Cochran (1948b,c, 1951a) undertook to exploit an algebraic

similarity between the right-hand side of the normal equations in the
least-squares method on the one hand, and the expression for the

coefficients used in Booth’s differential syntheses on the other hand
(see also Booth, 1948a). In doing so he initiated a remarkable
sequence of formal and computational developments which are still
actively pursued today.

Let �
C�x� be the electron-density map corresponding to the
current atomic model, with structure factors �Fcalc

h � exp�i�calc
h �; and

let �
O�x� be the map calculated from observed moduli and
calculated phases, i.e. with coefficients ��Fh�obs exp�i�calc

h ��h�� .
If there are enough data for �
C to have a resolved peak at each
model atomic position xj, then

��x�
C��xj� � 0 for each j � J ;

while if the calculated phases �calc
h are good enough, �
O will also

have peaks at each xj:

��x�
O��xj� � 0 for each j � J �

It follows that

��x��
C 
 �
O���xj� �
�
h
�
2�ih����Fcalc

h � 
 �Fh�obs� exp�i�calc
h ��

� exp�
2�ih � xj�
� 0 for each j � J ,

where the summation is over all reflections in � or related to � by
space-group and Friedel symmetry (overlooking multiplicity
factors!). This relation is less sensitive to series-termination errors
than either of the previous two, since the spectrum of �
O could have
been extrapolated beyond the data in � by using that of �
C [as in
van Reijen (1942)] without changing its right-hand side.

Cochran then used the identity

	Fcalc
h

	xj
� �2�ih�gj�h� exp�2�ih � xj�

in the form

�
2�ih� exp�
2�ih � xj� � 1
gj�h�

	Fcalc
h

	xj

to rewrite the previous relation as

��x��
C 
 �
O���xj�

�
�

h

1
gj�h� ��F

calc
h � 
 �Fh�obs��e

	Fcalc
h

	xj
exp�i�calc

h �
� �

�
�

h

1
gj�h� ��F

calc
h � 
 �Fh�obs� 	�F

calc
h �

	xj

� 0 for each j � J

(the operation �� [] on the first line being neutral because of Friedel
symmetry). This is equivalent to the vanishing of the 3� 1
subvector of the right-hand side of the normal equations associated
to a least-squares refinement in which the weights would be

Wh � 1
gj�h� �

Cochran concluded that, for equal-atom structures with gj�h� �
g�h� for all j, the positions xj obtained by Booth’s method applied to
the difference map �
O 
 �
C are such that they minimize the residual

1
2

�
h

1
g�h� ��F

calc
h � 
 �Fh�obs�2

with respect to the atomic positions. If it is desired to minimize the
residual of the ordinary least-squares method, then the differential
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synthesis method should be applied to the weighted difference map�
h

Wh

g�h� ��F
calc
h � 
 �Fh�obs� exp�i�calc

h ��

He went on to show (Cochran, 1951b) that the refinement of
temperature factors could also be carried out by inspecting
appropriate derivatives of the weighted difference map.

This Fourier method was used by Freer et al. (1976) in
conjunction with a stereochemical regularization procedure to
refine protein structures.

1.3.4.4.7.5. Cruickshank’s modified Fourier method
Cruickshank consolidated and extended Cochran’s derivations in

a series of classic papers (Cruickshank, 1949b , 1950, 1952, 1956).
He was able to show that all the coefficients involved in the right-
hand side and normal matrix of the least-squares method could be
calculated by means of suitable differential Fourier syntheses even
when the atoms overlap. This remarkable achievement lay
essentially dormant until its independent rediscovery by Agarwal
in 1978 (Section 1.3.4.4.7.6).

To ensure rigorous equivalence between the summations over
h � � (in the expressions of least-squares right-hand side and
normal matrix elements) and genuine Fourier summations, multi-
plicity-corrected weights were introduced by:

wh � 1
�Gh�Wh if h � Gh with h � � ,

wh � 0 otherwise,

where Gh denotes the orbit of h and Gh its isotropy subgroup
(Section 1.3.4.2.2.5). Similarly, derivatives with respect to
parameters of symmetry-unique atoms were expressed, via the
chain rule, as sums over the orbits of these atoms.

Let p � 1, � � � , n be the label of a parameter up belonging to
atoms with label j. Then Cruickshank showed that the pth element
of the right-hand side of the normal equations can be obtained as
Dp� j�xj�, where Dp� j is a differential synthesis of the form

Dp� j�x� �
�
h

Pp�h�gj�h�wh��Fcalc
h � 
 �Fh�obs�

� exp�i�calc
h � exp�
2�ih � x�

with Pp�h� a polynomial in (h, k, l) depending on the type of
parameter p. The correspondence between parameter type and the
associated polynomial extends Booth’s original range of differential
syntheses, and is recapitulated in the following table.

Parameter type P�h, k, l�

x coordinate 
 2�ih

y coordinate 
 2�ik

z coordinate 
 2�il

B isotropic 
 1
4�d�h�2

B11 anisotropic 
 h2

B12 anisotropic 
 hk

B13 anisotropic 
 hl

B22 anisotropic 
 k2

B23 anisotropic 
 kl

B33 anisotropic 
 l2�

Unlike Cochran’s original heuristic argument, this result does not
depend on the atoms being resolved.

Cruickshank (1952) also considered the elements of the normal
matrix, of the form

�
h

wh
	�Fcalc

h �
	up

	�Fcalc
h �

	uq

associated with positional parameters. The 3� 3 block for
parameters xj and xk may be written�

h
wh�hhT�����
2�i�gj�h� exp�
2�ih � xj� exp�i�calc

h ��

�����
2�i�gk�h� exp�
2�ih � xk� exp�i�calc
h ��

which, using the identity

���z1����z2� � 1
2����z1z2� 	���z1z2��,

becomes

2�2�
h

wh�hhT�gj�h�gk�h�

� �exp�
2�ih � �xj 
 xk��

 exp�2i�calc

h � exp�
2�ih � �xj 	 xk���
(Friedel’s symmetry makes �� redundant on the last line).
Cruickshank argued that the first term would give a good
approximation to the diagonal blocks of the normal matrix and to
those off-diagonal blocks for which xj and xk are close. On this basis
he was able to justify the ‘n-shift rule’ of Shoemaker et al. (1950).
Cruickshank gave this derivation in a general space group, but using
a very terse notation which somewhat obscures it. Using the
symmetrized trigonometric structure-factor kernel �
 of Section
1.3.4.2.2.9 and its multiplication formula, the above expression is
seen to involve the values of a Fourier synthesis at points of the
form xj  Sg�xk�.

Cruickshank (1956) showed that this analysis could also be
applied to the refinement of temperature factors.

These two results made it possible to obtain all coefficients
involved in the normal equations by looking up the values of certain
differential Fourier syntheses at xj or at xj  Sg�xk�. At the time this
did not confer any superiority over the standard form of the least-
squares procedure, because the accurate computation of Fourier
syntheses was an expensive operation. The modified Fourier
method was used by Truter (1954) and by Ahmed & Cruickshank
(1953a), and was incorporated into the program system described
by Cruickshank et al. (1961). A more recent comparison with the
least-squares method was made by Dietrich (1972).

There persisted, however, some confusion about the nature of the
relationship between Fourier and least-squares methods, caused by
the extra factors gj�h� which make it necessary to compute a
differential synthesis for each type of atom. This led Cruickshank to
conclude that ‘in spite of their remarkable similarities the least-
squares and modified-Fourier methods are fundamentally distinct’.

1.3.4.4.7.6. Agarwal’s FFT implementation of the Fourier
method

Agarwal (1978) rederived and completed Cruickshank’s results
at a time when the availability of the FFT algorithm made the
Fourier method of calculating the coefficients of the normal
equations much more economical than the standard method,
especially for macromolecules.

As obtained by Cruickshank, the modified Fourier method
required a full 3D Fourier synthesis

– for each type of parameter, since this determines [via the
polynomial Pp�h�] the type of differential synthesis to be computed;
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– for each type of atom j � J , since the coefficients of the
differential synthesis must be multiplied by gj�h�.

Agarwal disposed of the latter dependence by pointing out that
the multiplication involved is equivalent to a real-space convolution
between the differential synthesis and �
j�x�, the standard electron
density �
j for atom type j (Section 1.3.4.2.1.2) smeared by the
isotropic thermal agitation of that atom. Since �
j is localized, this
convolution involves only a small number of grid points. The
requirement of a distinct differential synthesis for each parameter
type, however, continued to hold, and created some difficulties at
the FFT level because the symmetries of differential syntheses are
more complex than ordinary space-group symmetries. Jack & Levitt
(1978) sought to avoid the calculation of difference syntheses by
using instead finite differences calculated from ordinary Fourier or
difference Fourier maps.

In spite of its complication, this return to the Fourier
implementation of the least-squares method led to spectacular
increases in speed (Isaacs & Agarwal, 1978; Agarwal, 1980; Baker
& Dodson, 1980) and quickly gained general acceptance (Dodson,
1981; Isaacs, 1982a,b, 1984).

1.3.4.4.7.7. Lifchitz’s reformulation
Lifchitz [see Agarwal et al. (1981), Agarwal (1981)] proposed

that the idea of treating certain multipliers in Cruickshank’s
modified differential Fourier syntheses by means of a convolution
in real space should be applied not only to gj�h�, but also to the
polynomials Pp�h� which determine the type of differential
synthesis being calculated. This leads to convoluting 	�
j�	up
with the same ordinary weighted difference Fourier synthesis, rather
than �
j with the differential synthesis of type p. In this way, a single
Fourier synthesis, with ordinary (scalar) symmetry properties,
needs be computed; the parameter type and atom type both
intervene through the function 	�
j�	up with which it is convoluted.
This approach has been used as the basis of an efficient general-
purpose least-squares refinement program for macromolecular
structures (Tronrud et al., 1987).

This rearrangement amounts to using the fact (Section
1.3.2.3.9.7) that convolution commutes with differentiation. Let

D�x� ��
h

wh��Fcalc
h � 
 �Fh�obs� exp�i�calc

h � exp�
2�ih � x�

be the inverse-variance weighted difference map, and let us assume
that parameter up belongs to atom j. Then the Agarwal form for the
pth component of the right-hand side of the normal equations is

	D
	up

� �
j

� �
�xj�,

while the Lifchitz form is

D � 	�
j

	up

� �
�xj��

1.3.4.4.7.8. A simplified derivation
A very simple derivation of the previous results will now be

given, which suggests the possibility of many generalizations.
The weighted difference map D�x� has coefficients Dh which are

the gradients of the global residual with respect to each Fcalc
h :

Dh � 	R

	Acalc
h
	 i

	R

	Bcalc
h

�

By the chain rule, a variation of each Fcalc
h by �Fcalc

h will result in a
variation of R by �R with

�R �
�

h

	R

	Acalc
h

�Acalc
h 	 	R

	Bcalc
h

�Bcalc
h

� �
� ��

�
h

�Dh�Fcalc
h ��

The �� operation is superfluous because of Friedel symmetry, so
that �R may be simply written in terms of the Hermitian scalar
product in �2��3�:

�R � �D, �Fcalc��
If �
calc is the transform of �Fcalc, we have also by Parseval’s theorem

�R � �D, ��
calc��
We may therefore write

D�x� � 	R
	�
calc�x� ,

which states that D�x� is the functional derivative of R with respect
to �
calc.

The right-hand side of the normal equations has 	R�	up for its
pth element, and this may be written

	R
	up

�
�
�3��3

	R
	�
calc�x�

	�
calc�x�
	up

d2x � D,
	�
calc

	up

� �
�

If up belongs to atom j, then

	�
calc

	up
� 	��xj�j�

	up
� �xj

	�
j

	up

� �
;

hence

	R
	up

� D, �xj

	�
j

	up

� �� �
�

By the identity of Section 1.3.2.4.3.5, this is identical to Lifchitz’s
expression �D � 	�
j�	up��xj�. The present derivation in terms of
scalar products [see Brünger (1989) for another presentation of it] is
conceptually simpler, since it invokes only the chain rule [other uses
of which have been reviewed by Lunin (1985)] and Parseval’s
theorem; economy of computation is obviously related to the good
localization of 	�
calc�	up compared to 	Fcalc�	up. Convolutions,
whose meaning is less clear, are no longer involved; they were a
legacy of having first gone over to reciprocal space via differential
syntheses in the 1940s.

Cast in this form, the calculation of derivatives by FFT methods
appears as a particular instance of the procedure described in
connection with variational techniques (Section 1.3.4.4.6) to
calculate the coefficients of local quadratic models in a search
subspace; this is far from surprising since varying the electron
density through a variation of the parameters of an atomic model is
a particular case of the ‘free’ variations considered by the
variational approach. The latter procedure would accommodate in
a very natural fashion the joint consideration of an energetic (Jack &
Levitt, 1978; Brünger et al., 1987; Brünger, 1988; Brünger et al.,
1989; Kuriyan et al., 1989) or stereochemical (Konnert, 1976;
Sussman et al., 1977; Konnert & Hendrickson, 1980; Hendrickson
& Konnert, 1980; Tronrud et al., 1987) restraint function (which
would play the role of S) and of the crystallographic residual (which
would be C). It would even have over the latter the superiority of
affording a genuine second-order approximation, albeit only in a
subspace, hence the ability of detecting negative curvature and the
resulting bifurcation behaviour (Bricogne, 1984). Current methods
are unable to do this because they use only first-order models, and
this is known to degrade severely the overall efficiency of the
refinement process.
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1.3.4.4.7.9. Discussion of macromolecular refinement
techniques

The impossibility of carrying out a full-matrix least-squares
refinement of a macromolecular crystal structure, caused by
excessive computational cost and by the paucity of observations,
led Diamond (1971) to propose a real-space refinement method in
which stereochemical knowledge was used to keep the number of
free parameters to a minimum. Refinement took place by a least-
squares fit between the ‘observed’ electron-density map and a
model density consisting of Gaussian atoms. This procedure,
coupled to iterative recalculation of the phases, led to the first
highly refined protein structures obtained without using full-matrix
least squares (Huber et al., 1974; Bode & Schwager, 1975;
Deisenhofer & Steigemann, 1975; Takano, 1977a,b).

Real-space refinement takes advantage of the localization of
atoms (each parameter interacts only with the density near the atom
to which it belongs) and gives the most immediate description of
stereochemical constraints. A disadvantage is that fitting the
‘observed’ electron density amounts to treating the phases of the
structure factors as observed quantities, and to ignoring the
experimental error estimates on their moduli. The method is also
much more vulnerable to series-termination errors and accidentally
missing data than the least-squares method. These objections led to
the progressive disuse of Diamond’s method, and to a switch
towards reciprocal-space least squares following Agarwal’s work.

The connection established above between the Cruickshank–
Agarwal modified Fourier method and the simple use of the chain
rule affords a partial refutation to both the premises of Diamond’s
method and to the objections made against it:

(i) it shows that refinement can be performed through localized
computations in real space without having to treat the phases as
observed quantities;

(ii) at the same time, it shows that measurement errors on the
moduli can be fully utilized in real space, via the Fourier synthesis
of the functional derivative 	R�	�
calc�x� or by means of the
coefficients of a quadratic model of R in a search subspace.

1.3.4.4.7.10. Sampling considerations
The calculation of the inner products �D, 	�
calc�	up� from a

sampled gradient map D requires even more caution than that of
structure factors via electron-density maps described in Section
1.3.4.4.5, because the functions 	�
j�	up have transforms which
extend even further in reciprocal space than the �
j themselves.
Analytically, if the �
j are Gaussians, the 	�
j�	up are finite sums of
multivariate Hermite functions (Section 1.3.2.4.4.2) and hence the
same is true of their transforms. The difference map D must
therefore be finely sampled and the relation between error and
sampling rate may be investigated as in Section 1.3.4.4.5. An
examination of the sampling rates commonly used (e.g. one third of
the resolution) shows that they are insufficient. Tronrud et al. (1987)
propose to relax this requirement by applying an artificial
temperature factor to �
j (cf. Section 1.3.4.4.5) and the negative of
that temperature factor to D, a procedure of questionable validity
because the latter ‘sharpening’ operation is ill defined [the function
exp ��x�2� does not define a tempered distribution, so the
associativity properties of convolution may be lost]. A more robust
procedure would be to compute the scalar product by means of a
more sophisticated numerical quadrature formula than a mere grid
sum.

1.3.4.4.8. Miscellaneous correlation functions

Certain correlation functions can be useful to detect the presence
of multiple copies of the same molecule (known or unknown) in the
asymmetric unit of a crystal of unknown structure.

Suppose that a crystal contains one or several copies of a
molecule � in its asymmetric unit. If ��x� is the electron density of
that molecule in some reference position and orientation, then

�
0 ��
j�J

�
g�G

S�
g �T�

j ��
� �

,

where Tj � x �
� Cjx	 dj describes the placement of the jth copy of
the molecule with respect to the reference copy. It is assumed that
each such copy is in a general position, so that there is no isotropy
subgroup.

The methods of Section 1.3.4.2.2.9 (with �
j replaced by C�
j �,

and xj by dj) lead to the following expression for the auto-
correlation of �
0:

��
0 � �
0 ��
j1

�
j2

�
g1

�
g2


Sg2 �dj2 �
sg1 �dj1 �

� ��R�
g1

C�
j1 ��� � �R�

g2
C�

j2 ����
If � is unknown, consider the subfamily � of terms with j1 �

j2 � j and g1 � g2 � g:

� ��
j

�
g

R�
g C�

j ��� � ���

The scalar product ��, R��� in which R is a variable rotation will
have a peak whenever

R � �Rg1 Cj1�
1�Rg2 Cj2�

since two copies of the ‘self-Patterson’ �� � � of the molecule will be
brought into coincidence. If the interference from terms in the
Patterson � � r � ��
0 � �
0 other than those present in � is not too
serious, the ‘self-rotation function’ ��, R��� (Rossmann & Blow,
1962; Crowther, 1972) will show the same peaks, from which the
rotations �Cj�j�J may be determined, either individually or jointly if
for instance they form a group.

If � is known, then its self-Patterson �� � � may be calculated, and
the Cj may be found by examining the ‘cross-rotation function’
��, R���� � ��� which will have peaks at R � RgCj, g � G, j � J .
Once the Cj are known, then the various copies C�

j � of � may be
Fourier-analysed into structure factors:

Mj�h� � �	 �C�
j ���h��

The cross terms with j1 �� j2, g1 �� g2 in ��
0 � �
0 then contain
‘motifs’

�R�
g1

C�
j1 ��� � �R�

g2
C�

j2 ��,

with Fourier coefficients

Mj1�RT
g1

h� �Mj2�RT
g2

h�,

translated by Sg2�dj2� 
 Sg1�dj1�. Therefore the ‘translation func-
tions’ (Crowther & Blow, 1967)

� j1g1, j2g2�s� �
�
h
�Fh�2Mj1�RT

g1
h�

�Mj2�RT
g2

h� exp�
2�ih � s�

will have peaks at s � Sg2�dj2� 
 Sg1�dj1� corresponding to the
detection of these motifs.
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1.3.4.5. Related applications

1.3.4.5.1. Helical diffraction

The theory of diffraction by helical structures (Cochran et al.,
1952; Klug et al., 1958) has played an important part in the study of
polypeptides, of nucleic acids and of tobacco mosaic virus.

1.3.4.5.1.1. Circular harmonic expansions in polar
coordinates

Let f � f �x, y� be a reasonably regular function in two-
dimensional real space. Going over to polar coordinates

x � r cos� y � r sin�

and writing, by slight misuse of notation, f �r,�� for
f �r cos�, r sin�� we may use the periodicity of f with respect to
� to expand it as a Fourier series (Byerly, 1893):

f �r,�� � �
n��

fn�r� exp�in��

with

fn�r� � 1
2�

�2�
0

f �r,�� exp�
in�� d��

Similarly, in reciprocal space, if F � F��, �� and if

� � R cos� � � R sin�

then

F�R,�� � �
n��

inFn�R� exp�in��

with

Fn�R� � 1
2�in

�2�
0

F�R,�� exp�
in�� d�,

where the phase factor in has been introduced for convenience in the
forthcoming step.

1.3.4.5.1.2. The Fourier transform in polar coordinates
The Fourier transform relation between f and F may then be

written in terms of fn’s and Fn’s. Observing that
�x	 �y � Rr cos��
 ��, and that (Watson, 1944)

�2�
0

exp�iX cos �	 in�� d� � 2�inJn�X �,

we obtain:

F�R,�� � �

0

�2�
0

�
n��

fn�r� exp�in��
� �

� exp�2�iRr cos��
 ���r dr d�

� �
n��

in �

0

fn�r�Jn�2�Rr�2�r dr

� �
exp�in��;

hence, by the uniqueness of the Fourier expansion of F:

Fn�R� �
�

0

fn�r�Jn�2�Rr�2�r dr�

The inverse Fourier relationship leads to

fn�r� �
�

0

Fn�R�Jn�2�rR�2�R dR�

The integral transform involved in the previous two equations is

called the Hankel transform (see e.g. Titchmarsh, 1922; Sneddon,
1972) of order n.

1.3.4.5.1.3. The transform of an axially periodic fibre
Let � be the electron-density distribution in a fibre, which is

assumed to have translational periodicity with period 1 along z, and
to have compact support with respect to the (x, y) coordinates. Thus
� may be written

� � �x � �y �
�
k��

��k�

� �
z

� �
� �0,

where �0 � �0�x, y, z� is the motif.
By the tensor product property, the inverse Fourier transform

F � �	 xyz��� may be written

F � 1� � 1� �
�
l��

��l�

� �
�

� �
� �	 ��0�

and hence consists of ‘layers’ labelled by l:

F � �
l��

F��, �, l����l���

with

F��, �, l� � �1
0

�	 xy��0���, �, z� exp�2�ilz� dz�

Changing to polar coordinates in the (x, y) and ��, �� planes
decomposes the calculation of F from � into the following steps:

gnl�r� � 1
2�

�2�
0

�1
0
��r,�, z� exp�i�
n�	 2�lz�� d� dz

Gnl�R� �
�

0

gnl�r�Jn�2�Rr�2�r dr

F�R,�, l� � �
n��

inGnl�R� exp�in��

and the calculation of � from F into:

Gnl�R� � 1
2�in

�2�
0

F�R,�, l� exp�
in�� d�

gnl�r� �
�

0

Gnl�R�Jn�2�rR�2�R dR

��r,�, z� � �
n��

�
l��

gnl�r� exp�i�n�
 2�lz���

These formulae are seen to involve a 2D Fourier series with
respect to the two periodic coordinates � and z, and Hankel
transforms along the radial coordinates. The two periodicities in �
and z are independent, so that all combinations of indices (n, l)
occur in the Fourier summations.

1.3.4.5.1.4. Helical symmetry and associated selection
rules

Helical symmetry involves a ‘clutching’ between the two
(hitherto independent) periodicities in � (period 2�) and z (period
1) which causes a subdivision of the period lattice and hence a
decimation (governed by ‘selection rules’) of the Fourier
coefficients.

Let i and j be the basis vectors along ��2� and z. The integer
lattice with basis (i, j) is a period lattice for the ��, z� dependence of
the electron density � of an axially periodic fibre considered in
Section 1.3.4.5.1.3:
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��r,�	 2�k1, z	 k2� � ��r,�, z��
Suppose the fibre now has helical symmetry, with u copies of the

same molecule in t turns, where g.c.d. �u, t� � 1. Using the
Euclidean algorithm, write u � �t 	 � with � and � positive
integers and � � t. The period lattice for the ��, z� dependence of
� may be defined in terms of the new basis vectors:

I, joining subunit 0 to subunit l in the same turn;
J, joining subunit 0 to subunit � after wrapping around.

In terms of the original basis

I � t
u

i	 1
u

j, J � 
�
u

i	 �

u
j�

If � and � are coordinates along I and J, respectively,

��2�

z

� �
� 1

u
t 
�
1 �

� �
�
�

� �

or equivalently

�
�

� �
� � �


1 t

� �
��2�

z

� �
�

By Fourier transformation,
�

2�
, z

� �
! �
n, l�

��, �� ! �m, p�
with the transformations between indices given by the contra-
gredients of those between coordinates, i.e.

n
l

� �
� 
� 1


� t

� �
m
p

� �

and

m
p

� �
� 1

u

t 1
� �

� �
n
l

� �
�

It follows that

l � tn	 um,

or alternatively that

�n � up
 �l,

which are two equivalent expressions of the selection rules
describing the decimation of the transform. These rules imply that
only certain orders n contribute to a given layer l.

The 2D Fourier analysis may now be performed by analysing a
single subunit referred to coordinates � and � to obtain

hm� p�r� �
�1
0

�1
0
��r,�,�� exp�2�i�m�	 p��� d� d�

and then reindexing to get only the allowed gnl’s by

gnl�r� � uh
�m	p� �m	tp�r��
This is u times faster than analysing u subunits with respect to the
��, z� coordinates.

1.3.4.5.2. Application to probability theory and direct
methods

The Fourier transformation plays a central role in the branch of
probability theory concerned with the limiting behaviour of sums of
large numbers of independent and identically distributed random
variables or random vectors. This privileged role is a consequence
of the convolution theorem and of the ‘moment-generating’

properties which follow from the exchange between differentiation
and multiplication by monomials. When the limit theorems are
applied to the calculation of joint probability distributions of
structure factors, which are themselves closely related to the Fourier
transformation, a remarkable phenomenon occurs, which leads to
the saddlepoint approximation and to the maximum-entropy
method.

1.3.4.5.2.1. Analytical methods of probability theory
The material in this section is not intended as an introduction to

probability theory [for which the reader is referred to Cramér
(1946), Petrov (1975) or Bhattacharya & Rao (1976)], but only as
an illustration of the role played by the Fourier transformation in
certain specific areas which are used in formulating and
implementing direct methods of phase determination.

(a) Convolution of probability densities
The addition of independent random variables or vectors leads to

the convolution of their probability distributions: if X1 and X2 are
two n-dimensional random vectors independently distributed with
probability densities P1 and P2, respectively, then their sum X �
X1 	 X2 has probability density � given by

��X� � �
Rn

P1�X1�P2�X
 X1� dnX1

� �
Rn

P1�X
 X2�P2�X2� dnX2

i.e.

� � P1 � P2�

This result can be extended to the case where P1 and P2 are
singular measures (distributions of order zero, Section 1.3.2.3.4)
and do not have a density with respect to the Lebesgue measure in
�n.

(b) Characteristic functions
This convolution can be turned into a simple multiplication by

considering the Fourier transforms (called the characteristic
functions) of P1, P2 and � , defined with a slightly different
normalization in that there is no factor of 2� in the exponent (see
Section 1.3.2.4.5), e.g.

C�t� � �
Rn

P�X� exp�it � X� dnX�

Then by the convolution theorem

��t� � C1�t� � C2�t�,
so that ��X� may be evaluated by Fourier inversion of its
characteristic function as

��X� � 1
�2��n

�
�n

C1�t�C2�t� exp�
it � X� dnt

(see Section 1.3.2.4.5 for the normalization factors).
It follows from the differentiation theorem that the partial

derivatives of the characteristic function C�t� at t � 0 are related
to the moments of a distribution P by the identities

�r1r2���rn �
�
D

P�X�X r1
1 X r2

2 � � �X rn
n dnX

� i
�r1	���	rn� 	
r1	���	rn C

	tr1
1 � � � 	trn

n

����
t�0

for any n-tuple of non-negative integers �r1, r2, � � � , rn�.
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(c) Moment-generating functions
The above relation can be freed from powers of i by defining (at

least formally) the moment-generating function:

M�t� � �
�n

P�X� exp�t � X� dnX

which is related to C�t� by C�t� � M�it� so that the inversion
formula reads

��X� � 1
�2��n

�
�n

M1�it�M2�it� exp�
it � X� dnt�

The moment-generating function is well defined, in particular, for
any probability distribution with compact support, in which case it
may be continued analytically from a function over �n into an entire
function of n complex variables by virtue of the Paley–Wiener
theorem (Section 1.3.2.4.2.10). Its moment-generating properties
are summed up in the following relations:

�r1r2���rn �
	r1	���	rn M
	tr1

1 � � � 	trn
n

����
t�0

�

(d) Cumulant-generating functions
The multiplication of moment-generating functions may be

further simplified into the addition of their logarithms:

log� � log M1 	 log M2,

or equivalently of the coefficients of their Taylor series at t � 0, viz:

�r1r2���rn �
	r1	���	rn�log M�

	tr1
1 � � � 	trn

n

����
t�0

�

These coefficients are called cumulants, since they add when the
independent random vectors to which they belong are added, and
log M is called the cumulant-generating function. The inversion
formula for � then reads

��X� � 1
�2��n

�
�n

exp�log M1�it� 	 log M2�it� 
 it � X� dnt�

(e) Asymptotic expansions and limit theorems
Consider an n-dimensional random vector X of the form

X � X1 	 X2 	 � � �	 XN ,

where the N summands are independent n-dimensional random
vectors identically distributed with probability density P. Then the
distribution � of X may be written in closed form as a Fourier
transform:

��X� � 1
�2��n

�
�n

MN �it� exp�
it � X� dnt

� 1
�2��n

�
�n

exp�N log M�it� 
 it � X� dnt,

where

M�t� � �
�n

P�Y� exp�t � Y� dnY

is the moment-generating function common to all the summands.
This an exact expression for � , which may be exploited

analytically or numerically in certain favourable cases. Supposing
for instance that P has compact support, then its characteristic
function M�it� can be sampled finely enough to accommodate the
bandwidth of the support of � � P�N (this sampling rate clearly
depends on n) so that the above expression for � can be used for its

numerical evaluation as the discrete Fourier transform of MN �it�.
This exact method is practical only for small values of the
dimension n.

In all other cases some form of approximation must be used in the
Fourier inversion of MN �it�. For this purpose it is customary
(Cramér, 1946) to expand the cumulant-generating function around
t � 0 with respect to the carrying variables t:

log�MN �it�� �
�
r��n

N�r

r�
�it�r,

where r � �r1, r2, � � � , rn� is a multi-index (Section 1.3.2.2.3). The
first-order terms may be eliminated by recentring � around its
vector of first-order cumulants

�X� ��N
j�1
�Xj�,

where ��� denotes the mathematical expectation of a random vector.
The second-order terms may be grouped separately from the terms
of third or higher order to give

MN �it� � exp�
1
2N tU Qt�

� exp
�
�r��3

N�r

r�
�it�r

 !
"

#$
%,

where Q � ��T�log M� is the covariance matrix of the multi-
variate distribution P. Expanding the exponential gives rise to a
series of terms of the form

exp�
1
2N tT Qt� �monomial in t1, t2, � � � , tn,

each of which may now be subjected to a Fourier transformation to
yield a Hermite function of t (Section 1.3.2.4.4.2) with coefficients
involving the cumulants � of P. Taking the transformed terms in
natural order gives an asymptotic expansion of P for large N called
the Gram–Charlier series of � , while grouping the terms according
to increasing powers of 1�

����
N

"
gives another asymptotic expansion

called the Edgeworth series of � . Both expansions comprise a
leading Gaussian term which embodies the central-limit theorem:

��E� � 1��������������������
det �2�Q�- exp�
1

2E
T Q
1E�, where E � X
 �X�����

N
" �

( f ) The saddlepoint approximation
A limitation of the Edgeworth series is that it gives an accurate

estimate of ��X� only in the vicinity of X � �X�, i.e. for small
values of E. These convergence difficulties are easily understood:
one is substituting a local approximation to log M (viz a Taylor-
series expansion valid near t � 0) into an integral, whereas
integration is a global process which consults values of log M far
from t � 0.

It is possible, however, to let the point t where log M is expanded
as a Taylor series depend on the particular value X� of X for which
an accurate evaluation of ��X� is desired. This is the essence of the
saddlepoint method (Fowler, 1936; Khinchin 1949; Daniels, 1954;
de Bruijn, 1970; Bleistein & Handelsman, 1986), which uses an
analytical continuation of M�t� from a function over �n to a
function over �n (see Section 1.3.2.4.2.10). Putting then t � s
 i� ,
the �n version of Cauchy’s theorem (Hörmander, 1973) gives rise
to the identity
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��X�� � exp�

 � X��
�2��n

�
�
�n

exp N log M�
 	 is� 
 is � X
�

N

� �+ *
dns

for any 
 � �n. By a convexity argument involving the positive-
definiteness of covariance matrix Q, there is a unique value of 

such that

��log M��t�0
i
 �
X�

N
�

At the saddlepoint t� � 0
 i
 , the modulus of the integrand above
is a maximum and its phase is stationary with respect to the
integration variable s: as N tends to infinity, all contributions to the
integral cancel because of rapid oscillation, except those coming
from the immediate vicinity of t� where there is no oscillation. A
Taylor expansion of log MN to second order with respect to s at t�
then gives

log MN �
 	 is� - log MN �
� 	 is � X� 
 N
2
�sT Qs�

and hence

� �X�� - exp�log MN �
� 
 
 � X�� 1
�2��n

�
�n

exp�
1
2s

T�s� dns�

The last integral is elementary and gives the ‘saddlepoint
approximation’:

�SP�X�� � exp�����������������������
det �2���- ,

where

� � log MN �
� 
 
 � X�
and where

� � ��T�log MN � � NQ�

This approximation scheme amounts to using the ‘conjugate
distribution’ (Khinchin, 1949)

P
 �Xj� � P�Xj� exp�
 � Xj�
M�
�

instead of the original distribution P�Xj� � P0�Xj� for the common
distribution of all N random vectors Xj. The exponential modulation
results from the analytic continuation of the characteristic (or
moment-generating) function into �n, as in Section 1.3.2.4.2.10.
The saddlepoint approximation �SP is only the leading term of an
asymptotic expansion (called the saddlepoint expansion) for � ,
which is actually the Edgeworth expansion associated with P�N
 .

1.3.4.5.2.2. The statistical theory of phase determination
The methods of probability theory just surveyed were applied to

various problems formally similar to the crystallographic phase
problem [e.g. the ‘problem of the random walk’ of Pearson (1905)]
by Rayleigh (1880, 1899, 1905, 1918, 1919) and Kluyver (1906).
They became the basis of the statistical theory of communication
with the classic papers of Rice (1944, 1945).

The Gram–Charlier and Edgeworth series were introduced into
crystallography by Bertaut (1955a,b,c, 1956a) and by Klug (1958),
respectively, who showed them to constitute the mathematical basis
of numerous formulae derived by Hauptman & Karle (1953). The
saddlepoint approximation was introduced by Bricogne (1984) and
was shown to be related to variational methods involving the

maximization of certain entropy criteria. This connection exhibits
most of the properties of the Fourier transform at play
simultaneously, and will now be described as a final illustration.

(a) Definitions and conventions
Let H be a set of unique non-origin reflections h for a crystal with

lattice 
 and space group G. Let H contain na acentric and nc centric
reflections. Structure-factor values attached to all reflections in H
will comprise n � 2na 	 nc real numbers. For h acentric, �h and �h
will be the real and imaginary parts of the complex structure factor;
for h centric, �h will be the real coordinate of the (possibly
complex) structure factor measured along a real axis rotated by one
of the two angles �h, � apart, to which the phase is restricted modulo
2� (Section 1.3.4.2.2.5). These n real coordinates will be arranged
as a column vector containing the acentric then the centric data, i.e.
in the order

�1, �1,�2,�2, � � � ,�na , �na , �1, �2, � � � , �nc �

(b) Vectors of trigonometric structure-factor expressions
Let � �x� denote the vector of trigonometric structure-factor

expressions associated with x � D, where D denotes the asymmetric
unit. These are defined as follows:

�h�x� 	 i�h�x� � ��h, x� for h acentric

�h�x� � exp�
i�h���h, x� for h centric,

where

��h, x� � 1
�Gx�

�
g�G

exp�2�ih � �Sg�x����

According to the convention above, the coordinates of ��x� in �n

will be arranged in a column vector as follows:

� 2r
1�x� � �hr�x� for r � 1, � � � , na,

� 2r�x� � �hr�x� for r � 1, � � � , na,

� na	r�x� � �hr�x� for r � na 	 1, � � � , na 	 nc�

(c) Distributions of random atoms and moment-generating
functions

Let position x in D now become a random vector with probability
density m�x�. Then � �x� becomes itself a random vector in �n,
whose distribution p�� � is the image of distribution m�x� through
the mapping x � ��x� just defined. The locus of ��x� in �n is a
compact algebraic manifold � (the multidimensional analogue of a
Lissajous curve), so that p is a singular measure (a distribution of
order 0, Section 1.3.2.3.4, concentrated on that manifold) with
compact support. The average with respect to p of any function �
over �n which is infinitely differentiable in a neighbourhood of �
may be calculated as an average with respect to m over D by the
‘induction formula’:

�p,�� � �
D

m�x�����x�� d3x�

In particular, one can calculate the moment-generating function
M for distribution p as

M�t� � �p� , exp�t � ��� � �
D

m�x� exp�t � ��x�� d3x

and hence calculate the moments � (respectively cumulants �) of p
by differentiation of M (respectively log M) at t � 0:
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�r1r2���rn �
�
D

m�x�� r1
1 �x�� r2

2 �x� � � � � rn
n �x� d3x

� 	r1	���	rn�M�
	tr1

1 � � � 	trn
n

�r1r2���rn �
	r1	���	rn�log M�

	tr1
1 � � � 	trn

n
�

The structure-factor algebra for group G (Section 1.3.4.2.2.9) then
allows one to express products of � ’s as linear combinations of
other � ’s, and hence to express all moments and cumulants of
distribution p��� as linear combinations of real and imaginary parts
of Fourier coefficients of the prior distribution of atoms m�x�. This
plays a key role in the use of non-uniform distributions of atoms.

(d) The joint probability distribution of structure factors
In the random-atom model of an equal-atom structure, N atoms

are placed randomly, independently of each other, in the
asymmetric unit D of the crystal with probability density m�x�.
For point atoms of unit weight, the vector F of structure-factor
values for reflections h � H may be written

F � �N
I�1

� �I �,

where the N copies � �I � of random vector � are independent and
have the same distribution p�� �.

The joint probability distribution ��F� is then [Section
1.3.4.5.2.1(e)]

� �X� � 1
�2��n

�
�n

exp�N log M�it� 
 it � X� dnt�

For low dimensionality n it is possible to carry out the Fourier
transformation numerically after discretization, provided M�it� is
sampled sufficiently finely that no aliasing results from taking its
Nth power (Barakat, 1974). This exact approach can also
accommodate heterogeneity, and has been used first in the field of
intensity statistics (Shmueli et al., 1984, 1985; Shmueli & Weiss,
1987, 1988), then in the study of the �1 and �2 relations in triclinic
space groups (Shmueli & Weiss, 1985, 1986). Some of these
applications are described in Chapter 2.1 of this volume. This
method could be extended to the construction of any joint
probability distribution (j.p.d.) in any space group by using the
generic expression for the moment-generating function (m.g.f.)
derived by Bricogne (1984). It is, however, limited to small values
of n by the necessity to carry out n-dimensional FFTs on large
arrays of sample values.

The asymptotic expansions of Gram–Charlier and Edgeworth
have good convergence properties only if Fh lies in the vicinity of
�Fh� � N �	 �m��h� for all h � H . Previous work on the j.p.d. of
structure factors has used for m�x� a uniform distribution, so that
�F� � 0; as a result, the corresponding expansions are accurate only
if all moduli �Fh� are small, in which case the j.p.d. contains little
phase information.

The saddlepoint method [Section 1.3.4.5.2.1( f )] constitutes the
method of choice for evaluating the joint probability ��F�� of
structure factors when some of the moduli in F� are large. As shown
previously, this approximation amounts to using the ‘conjugate
distribution’

p
 �� � � p�� � exp�
 � ��
M�
�

instead of the original distribution p��� � p0��� for the distribution
of random vector �. This conjugate distribution p
 is induced from

the modified distribution of atoms

q
 �x� � m�x� exp�
 � ��x��
M�
� , �SP1�

where, by the induction formula, M�
� may be written as

M�
� � �
D

m�x� exp�
 � ��x�� d3x �SP2�

and where 
 is the unique solution of the saddlepoint equation:

�
 �log MN � � F�� �SP3�
The desired approximation is then

�SP�F�� � exp�����������������������
det �2���- ,

where

� � log MN �
� 
 
 � F�

and where

� � ��T�log MN � � NQ�

Finally, the elements of the Hessian matrix Q � ��T�log M�
are just the trigonometric second-order cumulants of distribution p,
and hence can be calculated via structure-factor algebra from the
Fourier coefficients of q
 �x�. All the quantities involved in the
expression for �SP�F�� are therefore effectively computable from
the initial data m�x� and F�.

(e) Maximum-entropy distributions of atoms
One of the main results in Bricogne (1984) is that the modified

distribution q
 �x� in (SP1) is the unique distribution which has
maximum entropy 
 m�q� relative to m�x�, where


 m�q� � 

�
D

q�x� log
q�x�
m�x�
� �

d3x,

under the constraint that F� be the centroid vector of the
corresponding conjugate distribution � 
 �F�. The traditional
notation of maximum-entropy (ME) theory (Jaynes, 1957, 1968,
1983) is in this case (Bricogne, 1984)

qME�x� � m�x� exp�� � ��x��
Z��� �ME1�

Z��� � �
D

m�x� exp�� � � �x�� d3x �ME2�

���log ZN � � F� �ME3�
so that Z is identical to the m.g.f. M, and the coordinates 
 of the
saddlepoint are the Lagrange multipliers � for the constraints F�.

Jaynes’s ME theory also gives an estimate for ��F��:
�ME�F�� - exp�
 �,

where


 � log ZN 
 � � F� � N
 m�qME�
is the total entropy and is the counterpart to � under the equivalence
just established.

�ME is identical to �SP, but lacks the denominator. The latter,
which is the normalization factor of a multivariate Gaussian with
covariance matrix �, may easily be seen to arise through Szegö’s
theorem (Sections 1.3.2.6.9.4, 1.3.4.2.1.10) from the extra logarith-
mic term in Stirling’s formula

log�q�� - q log q
 q	 1
2 log�2�q�
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(see, for instance, Reif, 1965) beyond the first two terms which
serve to define entropy, since

1
n

log det �2�Q� -
�

�3��3

log 2�qME�x� d3x�

The relative effect of this extra normalization factor depends on the
ratio

n
N
� dimension of F over �

number of atoms
�

The above relation between entropy maximization and the
saddlepoint approximation is the basis of a Bayesian statistical
approach to the phase problem (Bricogne, 1988) where the
assumptions under which joint distributions of structure factors
are sought incorporate many new ingredients (such as molecular
boundaries, isomorphous substitutions, known fragments, noncrys-
tallographic symmetries, multiple crystal forms) besides trial phase
choices for basis reflections. The ME criterion intervenes in the
construction of qME�x� under these assumptions, and the distribu-
tion qME�x� is a very useful computational intermediate in obtaining
the approximate joint probability � SP�F�� and the associated
conditional distributions and likelihood functions.

( f ) Role of the Fourier transformation
The formal developments presented above make use of the

following properties of the Fourier transformation:
(i) the convolution theorem, which turns the convolution of

probability distributions into the multiplication of their character-
istic functions;

(ii) the differentiation property, which confers moment-generat-
ing properties to characteristic functions;

(iii) the reciprocity theorem, which allows the retrieval of a
probability distribution from its characteristic or moment-generat-
ing function;

(iv) the Paley–Wiener theorem, which allows the analytic
continuation of characteristic functions associated to probability

distributions with compact support, and thus gives rise to conjugate
families of distributions;

(v) Bertaut’s structure-factor algebra (a discrete symmetrized
version of the convolution theorem), which allows the calculation of
all necessary moments and cumulants when the dimension n is
small;

(vi) Szegö’s theorem, which provides an asymptotic approxima-
tion of the normalization factor when n is large.

This multi-faceted application seems an appropriate point at
which to end this description of the Fourier transformation and of its
use in crystallography.
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der röntgenographischen Fourieranalyse auf Fragen den
chemischen Bindung. Ann. Phys. (Leipzig), 34, 393–445.

Britten, P. L. & Collins, D. M. (1982). Information theory as a basis
for the maximum determinant. Acta Cryst. A38, 129–132.

Brown, H. (1969). An algorithm for the determination of space
groups. Math. Comput. 23, 499–514.
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Dieudonné, J. (1969). Foundations of modern analysis. New York
and London: Academic Press.

Dieudonné, J. (1970). Treatise on analysis, Vol. II. New York and
London: Academic Press.

Dirac, P. A. M. (1958). The principles of quantum mechanics, 4th ed.
Oxford: Clarendon Press.

Dodson, E. J. (1981). Block diagonal least squares refinement using
fast Fourier techniques. In Refinement of protein structures,
compiled by P. A. Machin J. W. Campbell & M. Elder (ref. DL/
SCI/R16), pp. 29–39. Warrington: SERC Daresbury Laboratory.

Donohue, J. & Schomaker, V. (1949). The use of punched cards in
molecular structure determinations. III. Structure factor calcula-
tions of X-ray crystallography. Acta Cryst. 2, 344–347.

Duane, W. (1925). The calculation of the X-ray diffracting power at
points in a crystal. Proc. Natl Acad. Sci. USA, 11, 489–493.

Dym, H. & McKean, H. P. (1972). Fourier series and integrals. New
York and London: Academic Press.

Eklundh, J. O. (1972). A fast computer method for matrix
transposing. IEEE Trans. C-21, 801–803.

Engel, P. (1986). Geometric crystallography. Dordrecht: Kluwer
Academic Publishers.
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of G. Szegö. Math. USSR Izv. 9, 1323–1332.

Lipson, H. & Beevers, C. A. (1936). An improved numerical method
of two-dimensional Fourier synthesis for crystals. Proc. Phys.
Soc. London, 48, 772–780.

Lipson, H. & Cochran, W. (1953). The determination of crystal
structures. London: Bell.

Lipson, H. & Cochran, W. (1968). The determination of crystal
structures. Revised and enlarged edition. London: G. Bell & Sons.

Lipson, H. & Taylor, C. A. (1951). Optical methods in X-ray
analysis. II. Fourier transforms and crystal-structure determina-
tion. Acta Cryst. 4, 458–462.

Lipson, H. & Taylor, C. A. (1958). Fourier transforms and X-ray
diffraction. London: Bell.

Livesey, A. K. & Skilling, J. (1985). Maximum entropy theory. Acta
Cryst. A41, 113–122.

Lonsdale, K. (1936). Simplified structure factor and electron density
formulae for the 230 space groups of mathematical crystal-
lography. London: Bell.

Lunin, V. Yu. (1985). Use of the fast differentiation algorithm for
phase refinement in protein crystallography. Acta Cryst. A41,
551–556.

McClellan, J. H. & Rader, C. M. (1979). Number theory in digital
signal processing. Englewood Cliffs: Prentice Hall.

MacGillavry, C. H. (1950). On the derivation of Harker–Kasper
inequalities. Acta Cryst. 3, 214–217.

MacLane, S. (1963). Homology. Berlin: Springer-Verlag.
Magnus, W., Karrass, A. & Solitar, D. (1976). Combinatorial group

theory: presentations of groups in terms of generators and
relations, 2nd revised ed. New York: Dover Publications.

Magnus, W., Oberhettinger, F. & Soni, R. P. (1966). Formulas and
theorems for the special functions of mathematical physics.
Berlin: Springer-Verlag.

Main, P. & Rossmann, M. G. (1966). Relationships among structure
factors due to identical molecules in different crystallographic
environments. Acta Cryst. 21, 67–72.

Main, P. & Woolfson, M. M. (1963). Direct determination of phases
by the use of linear equations between structure factors. Acta
Cryst. 16, 1046–1051.

Mayer, S. W. & Trueblood, K. N. (1953). Three-dimensional Fourier
summations on a high-speed digital computer. Acta Cryst. 6, 427.

Mersereau, R. & Speake, T. C. (1981). A unified treatment of
Cooley–Tukey algorithms for the evaluation of the multidimen-
sional DFT. IEEE Trans. Acoust. Speech Signal Process. 29,
1011–1018.

Mersereau, R. M. (1979). The processing of hexagonally sampled
two-dimensional signals. Proc. IEEE, 67, 930–949.

Montroll, E. W., Potts, R. B. & Ward, J. C. (1963). Correlations and
spontaneous magnetization of the two-dimensional Ising model. J.
Math. Phys. 4, 308–322.

Moore, D. H. (1971). Heaviside operational calculus. An elementary
foundation. New York: American Elsevier.

Morris, R. L. (1978). A comparative study of time efficient FFT and
WFTA programs for general purpose computers. IEEE Trans.
Acoust. Speech Signal Process. 26, 141–150.

Narayan, R. & Nityananda, R. (1982). The maximum determinant
method and the maximum entropy method. Acta Cryst. A38, 122–
128.

Natterer, F. (1986). The mathematics of computerized tomography.
New York: John Wiley.

Navaza, J. (1985). On the maximum-entropy estimate of the electron
density function. Acta Cryst. A41, 232–244.

Nawab, H. & McClellan, J. H. (1979). Bounds on the minimum
number of data transfers in WFTA and FFT programs. IEEE
Trans. Acoust. Speech Signal Process. 27, 393–398.

Niggli, A. (1961). Small-scale computers in X-ray crystallography.
In Computing methods and the phase problem, edited by R.
Pepinsky, J. M. Robertson & J. C. Speakman, pp. 12–20. Oxford:
Pergamon Press.

Nussbaumer, H. J. (1981). Fast Fourier transform and convolution
algorithms. Berlin: Springer-Verlag.

Nussbaumer, H. J. & Quandalle, P. (1979). Fast computation of
discrete Fourier transforms using polynomial transforms. IEEE
Trans. Acoust. Speech Signal Process. 27, 169–181.

Onsager, L. (1944). Crystal statistics. I. Two-dimensional model with
an order–disorder transition. Phys. Rev. 65, 117–149.

Paley, R. E. A. C. & Wiener, N. (1934). Fourier transforms in
the complex domain. Providence, RI: American Mathematical
Society.

Patterson, A. L. (1934). A Fourier series method for the determina-
tion of the components of interatomic distances in crystals. Phys.
Rev. 46, 372–376.

Patterson, A. L. (1935a). A direct method for the determination of the
components of interatomic distances in crystals. Z. Kristallogr.
90, 517–542.

Patterson, A. L. (1935b). Tabulated data for the seventeen plane
groups. Z. Kristallogr. 90, 543–554.

Patterson, A. L. (1959). In International tables for X-ray crystal-
lography, Vol. II, pp. 9–10. Erratum, January 1962. Birmingham:
Kynoch Press. (Present distributor Kluwer Academic Publishers,
Dordrecht.)

Pearson, K. (1905). The problem of the random walk. Nature
(London), 72, 294, 342.

Pease, M. C. (1968). An adaptation of the fast Fourier transform for
parallel processing. J. Assoc. Comput. Mach. 15, 252–264.

Pepinsky, R. (1947). An electronic computer for X-ray crystal
structure analyses. J. Appl. Phys. 18, 601–604.

Pepinsky, R. (1952). The use of positive kernels in Fourier syntheses
of crystal structures. In Computing methods and the phase
problem in X-ray crystal analysis, edited by R. Pepinsky, pp. 319–
338. State College: Penn. State College.

Pepinsky, R., van den Hende, J. & Vand, V. (1961). X-RAC and
digital computing methods. In Computing methods and the phase
problem, edited by R. Pepinsky, J. M. Robertson & J. C.
Speakman, pp. 154–160. Oxford: Pergamon Press.

Pepinsky, R. & Sayre, D. (1948). Quantitative electron-density
contour delineation in the electronic Fourier synthesizer for
crystal structure analysis. Nature (London), 162, 22–23.

Petrov, V. V. (1975). Sums of independent random variables. Berlin:
Springer-Verlag.

Pollack, H. O. & Slepian, D. (1961). Prolate spheroidal wave
functions, Fourier analysis and uncertainty (1). Bell Syst. Tech. J.
40, 43–64.

Qurashi, M. M. (1949). Optimal conditions for convergence of
steepest descents as applied to structure determination. Acta
Cryst. 2, 404–409.

Qurashi, M. M. (1953). An analysis of the efficiency of convergence
of different methods of structure determination. I. The methods of
least squares and steepest descents: centrosymmetric case. Acta
Cryst. 6, 577–588.

Qurashi, M. M. & Vand, V. (1953). Weighting of the least-squares
and steepest-descents methods in the initial stages of the crystal-
structure determination. Acta Cryst. 6, 341–349.

Rader, C. M. (1968). Discrete Fourier transforms when the number
of data samples is prime. Proc. IEEE, 56, 1107–1108.

Rayleigh (J. W. Strutt), Lord (1880). On the resultant of a large
number of vibrations of the same pitch and arbitrary phase.
Philos. Mag. 10, 73–78.

Rayleigh (J. W. Strutt), Lord (1899). On James Bernoulli’s theorem
in probabilities. Philos. Mag. 47, 246–251.

1.3 (cont.)

184

1. GENERAL RELATIONSHIPS AND TECHNIQUES



Rayleigh (J. W. Strutt), Lord (1905). The problem of the random
walk. Nature (London), 72, 318.

Rayleigh (J. W. Strutt), Lord (1918). On the light emitted froma random
distribution of luminous sources. Philos. Mag. 36, 429–449.

Rayleigh (J. W. Strutt), Lord (1919). On the problem of random
flights in one, two or three dimensions. Philos. Mag. 37, 321–347.

Reif, F. (1965). Fundamentals of statistical and thermal physics,
Appendix A.6. New York: McGraw-Hill.

Reijen, L. L. van (1942). Diffraction effects in Fourier syntheses and
their elimination in X-ray structure investigations. Physica, 9,
461–480.

Rice, S. O. (1944, 1945). Mathematical analysis of random noise.
Bell Syst. Tech. J. 23, 283–332 (parts I and II); 24, 46–156 (parts
III and IV). [Reprinted in Selected papers on noise and stochastic
processes (1954), edited by N. Wax, pp. 133–294. New York:
Dover Publications.]
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