
1.3. Fourier transforms in crystallography: theory, algorithms and applications
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1.3.1. General introduction

Since the publication of Volume II of International Tables, most
aspects of the theory, computation and applications of Fourier
transforms have undergone considerable development, often to the
point of being hardly recognizable.

The mathematical analysis of the Fourier transformation has
been extensively reformulated within the framework of distribution
theory, following Schwartz’s work in the early 1950s.

The computation of Fourier transforms has been revolutionized
by the advent of digital computers and of the Cooley–Tukey
algorithm, and progress has been made at an ever-accelerating pace
in the design of new types of algorithms and in optimizing their
interplay with machine architecture.

These advances have transformed both theory and practice in
several fields which rely heavily on Fourier methods; much of
electrical engineering, for instance, has become digital signal
processing.

By contrast, crystallography has remained relatively unaffected
by these developments. From the conceptual point of view, old-
fashioned Fourier series are still adequate for the quantitative
description of X-ray diffraction, as this rarely entails consideration
of molecular transforms between reciprocal-lattice points. From the
practical point of view, three-dimensional Fourier transforms have
mostly been used as a tool for visualizing electron-density maps, so
that only moderate urgency was given to trying to achieve ultimate
efficiency in these relatively infrequent calculations.

Recent advances in phasing and refinement methods, however,
have placed renewed emphasis on concepts and techniques long
used in digital signal processing, e.g. flexible sampling, Shannon
interpolation, linear filtering, and interchange between convolution
and multiplication. These methods are iterative in nature, and thus
generate a strong incentive to design new crystallographic Fourier
transform algorithms making the fullest possible use of all available
symmetry to save both storage and computation.

As a result, need has arisen for a modern and coherent account of
Fourier transform methods in crystallography which would provide:

(i) a simple and foolproof means of switching between the three
different guises in which the Fourier transformation is encountered
(Fourier transforms, Fourier series and discrete Fourier transforms),
both formally and computationally;

(ii) an up-to-date presentation of the most important algorithms
for the efficient numerical calculation of discrete Fourier trans-
forms;

(iii) a systematic study of the incorporation of symmetry into the
calculation of crystallographic discrete Fourier transforms;

(iv) a survey of the main types of crystallographic computations
based on the Fourier transformation.

The rapid pace of progress in these fields implies that such an
account would be struck by quasi-immediate obsolescence if it were
written solely for the purpose of compiling a catalogue of results
and formulae ‘customized’ for crystallographic use. Instead, the
emphasis has been placed on a mode of presentation in which most
results and formulae are derived rather than listed. This does entail a
substantial mathematical overhead, but has the advantage of
preserving in its ‘native’ form the context within which these
results are obtained. It is this context, rather than any particular set
of results, which constitutes the most fertile source of new ideas and
new applications, and as such can have any hope at all of remaining
useful in the long run.

These conditions have led to the following choices:
(i) the mathematical theory of the Fourier transformation has

been cast in the language of Schwartz’s theory of distributions

which has long been adopted in several applied fields, in particular
electrical engineering, with considerable success; the extra work
involved handsomely pays for itself by allowing the three different
types of Fourier transformations to be treated together, and by
making all properties of the Fourier transform consequences of a
single property (the convolution theorem). This is particularly
useful in all questions related to the sampling theorem;

(ii) the various numerical algorithms have been presented as the
consequences of basic algebraic phenomena involving Abelian
groups, rings and finite fields; this degree of formalization greatly
helps the subsequent incorporation of symmetry;

(iii) the algebraic nature of space groups has been re-
emphasized so as to build up a framework which can accommodate
both the phenomena used to factor the discrete Fourier transform
and those which underlie the existence (and lead to the
classification) of space groups; this common ground is found in
the notion of module over a group ring (i.e. integral representation
theory), which is then applied to the formulation of a large number
of algorithms, many of which are new;

(iv) the survey of the main types of crystallographic computa-
tions has tried to highlight the roles played by various properties of
the Fourier transformation, and the ways in which a better
exploitation of these properties has been the driving force behind
the discovery of more powerful methods.

In keeping with this philosophy, the theory is presented first,
followed by the crystallographic applications. There are ‘forward
references’ from mathematical results to the applications which
later invoke them (thus giving ‘real-life’ examples rather than
artificial ones), and ‘backward references’ as usual. In this way, the
internal logic of the mathematical developments – the surest guide
to future innovations – can be preserved, whereas the alternative
solution of relegating these to appendices tends on the contrary to
obscure that logic by subordinating it to that of the applications.

It is hoped that this attempt at an overall presentation of the main
features of Fourier transforms and of their ubiquitous role in
crystallography will be found useful by scientists both within and
outside the field.

1.3.2. The mathematical theory of the Fourier
transformation

1.3.2.1. Introduction

The Fourier transformation and the practical applications to
which it gives rise occur in three different forms which, although
they display a similar range of phenomena, normally require
distinct formulations and different proof techniques:

(i) Fourier transforms, in which both function and transform
depend on continuous variables;

(ii) Fourier series, which relate a periodic function to a discrete
set of coefficients indexed by n-tuples of integers;

(iii) discrete Fourier transforms, which relate finite-dimensional
vectors by linear operations representable by matrices.

At the same time, the most useful property of the Fourier
transformation – the exchange between multiplication and
convolution – is mathematically the most elusive and the one
which requires the greatest caution in order to avoid writing down
meaningless expressions.

It is the unique merit of Schwartz’s theory of distributions
(Schwartz, 1966) that it affords complete control over all the
troublesome phenomena which had previously forced mathemati-
cians to settle for a piecemeal, fragmented theory of the Fourier
transformation. By its ability to handle rigorously highly ‘singular’
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