1. GENERAL RELATIONSHIPS AND TECHNIQUES

fundamental system S of neighbourhoods of the origin in $\mathscr{E}(\Omega)$ is given by subsets of $\mathscr{E}(\Omega)$ of the form

$$V(m,\varepsilon,K) = \{\varphi \in \mathscr{E}(\Omega) ||\mathbf{p}| \le m \Rightarrow \sigma_{\mathbf{p},K}(\varphi) < \varepsilon\}$$

for all natural integers *m*, positive real ε , and compact subset *K* of Ω . Since a *countable* family of compact subsets *K* suffices to cover Ω , and since restricted values of ε of the form $\varepsilon = 1/N$ lead to the same topology, *S* is equivalent to a *countable* system of neighbourhoods and hence $\mathscr{E}(\Omega)$ is metrizable.

Convergence in \mathscr{E} may thus be defined by means of sequences. A sequence (φ_{ν}) in \mathscr{E} will be said to converge to 0 if for any given $V(m, \varepsilon, K)$ there exists ν_0 such that $\varphi_{\nu} \in V(m, \varepsilon, K)$ whenever $\nu > \nu_0$; in other words, if the φ_{ν} and all their derivatives $D^{\mathbf{p}}\varphi_{\nu}$ converge to 0 uniformly on any given compact K in Ω .

1.3.2.3.3.2. Topology on $\mathcal{D}_k(\Omega)$

It is defined by the family of semi-norms

$$\varphi \in \mathscr{D}_K(\Omega) \longmapsto \sigma_{\mathbf{p}}(\varphi) = \sup_{\mathbf{x} \in K} |D^{\mathbf{p}}\varphi(\mathbf{x})|,$$

where K is now fixed. The fundamental system S of neighbourhoods of the origin in \mathcal{D}_K is given by sets of the form

$$V(m,\varepsilon) = \{\varphi \in \mathscr{D}_{K}(\Omega) ||\mathbf{p}| \le m \Rightarrow \sigma_{\mathbf{p}}(\varphi) < \varepsilon\}$$

It is equivalent to the countable subsystem of the V(m, 1/N), hence $\mathscr{D}_{K}(\Omega)$ is metrizable.

Convergence in \mathscr{D}_K may thus be defined by means of sequences. A sequence (φ_{ν}) in \mathscr{D}_K will be said to converge to 0 if for any given $V(m, \varepsilon)$ there exists ν_0 such that $\varphi_{\nu} \in V(m, \varepsilon)$ whenever $\nu > \nu_0$; in other words, if the φ_{ν} and all their derivatives $D^{\mathbf{p}}\varphi_{\nu}$ converge to 0 uniformly in K.

1.3.2.3.3.3. Topology on $\mathcal{D}(\Omega)$

It is defined by the fundamental system of neighbourhoods of the origin consisting of sets of the form

$$V((m), (\varepsilon)) = \left\{ \varphi \in \mathscr{D}(\Omega) ||\mathbf{p}| \le m_{\nu} \Rightarrow \sup_{\|\mathbf{x}\| \le \nu} |D^{\mathbf{p}}\varphi(\mathbf{x})| < \varepsilon_{\nu} \text{ for all } \nu \right\},\$$

where (*m*) is an increasing sequence (m_{ν}) of integers tending to $+\infty$ and (ε) is a decreasing sequence (ε_{ν}) of positive reals tending to 0, as $\nu \to \infty$.

This topology is *not metrizable*, because the sets of sequences (m) and (ε) are essentially uncountable. It can, however, be shown to be the *inductive limit* of the topology of the subspaces \mathscr{D}_K , in the following sense: V is a neighbourhood of the origin in \mathscr{D} if and only if its intersection with \mathscr{D}_K is a neighbourhood of the origin in \mathscr{D}_K for any given compact K in Ω .

A sequence (φ_{ν}) in \mathcal{D} will thus be said to converge to 0 in \mathcal{D} if all the φ_{ν} belong to some \mathcal{D}_{K} (with K a compact subset of Ω independent of ν) and if (φ_{ν}) converges to 0 in \mathcal{D}_{K} .

As a result, a complex-valued functional T on \mathscr{D} will be said to be continuous for the topology of \mathscr{D} if and only if, for any given compact K in Ω , its restriction to \mathscr{D}_K is continuous for the topology of \mathscr{D}_K , *i.e.* maps convergent sequences in \mathscr{D}_K to convergent sequences in \mathbb{C} .

This property of \mathcal{D} , *i.e.* having a non-metrizable topology which is the inductive limit of metrizable topologies in its subspaces \mathcal{D}_K , conditions the whole structure of distribution theory and dictates that of many of its proofs.

1.3.2.3.3.4. Topologies on $\mathscr{E}^{(m)}, \mathscr{D}_{k}^{(m)}, \mathscr{D}^{(m)}$

These are defined similarly, but only involve conditions on derivatives up to order m.

1.3.2.3.4. Definition of distributions

A distribution T on Ω is a linear form over $\mathscr{D}(\Omega)$, i.e. a map

$$T: \varphi \longmapsto \langle T, \varphi \rangle$$

which associates linearly a complex number $\langle T, \varphi \rangle$ to any $\varphi \in \mathscr{D}(\Omega)$, and which is *continuous* for the topology of that space. In the terminology of Section 1.3.2.2.6.2, *T* is an element of $\mathscr{D}'(\Omega)$, the *topological dual* of $\mathscr{D}(\Omega)$.

Continuity over \mathcal{D} is equivalent to continuity over \mathcal{D}_K for all compact *K* contained in Ω , and hence to the condition that for any sequence (φ_{ν}) in \mathcal{D} such that

(i) Supp φ_{ν} is contained in some compact *K* independent of ν , (ii) the sequences $(|D^{\mathbf{p}}\varphi_{\nu}|)$ converge uniformly to 0 on *K* for all multi-indices **p**;

then the sequence of complex numbers $\langle T, \varphi_{\nu} \rangle$ converges to 0 in \mathbb{C} .

If the continuity of a distribution T requires (ii) for $|\mathbf{p}| \leq m$ only, T may be defined over $\mathcal{D}^{(m)}$ and thus $T \in \mathcal{D}^{\prime(m)}$; T is said to be a *distribution of finite order* m. In particular, for m = 0, $\mathcal{D}^{(0)}$ is the space of continuous functions with compact support, and a distribution $T \in \mathcal{Q}^{\prime(0)}$ is a (Radon) *measure* as used in the theory of integration. Thus measures are particular cases of distributions.

Generally speaking, the *larger* a space of test functions, the *smaller* its topological dual:

$$m < n \Rightarrow \mathscr{D}^{(m)} \supset \mathscr{D}^{(n)} \Rightarrow \mathscr{D}^{(m)} \supset \mathscr{D}^{(m)}.$$

This clearly results from the observation that if the φ 's are allowed to be less regular, then less wildness can be accommodated in *T* if the continuity of the map $\varphi \mapsto \langle T, \varphi \rangle$ with respect to φ is to be preserved.

1.3.2.3.5. First examples of distributions

(i) The linear map $\varphi \mapsto \langle \delta, \varphi \rangle = \varphi(\mathbf{0})$ is a measure (*i.e.* a zeroth-order distribution) called Dirac's measure or (improperly) Dirac's ' δ -function'.

(ii) The linear map $\varphi \mapsto \langle \delta_{(\mathbf{a})}, \varphi \rangle = \varphi(\mathbf{a})$ is called Dirac's measure at point $\mathbf{a} \in \mathbb{R}^n$.

(iii) The linear map $\varphi \mapsto (-1)^{\mathbf{p}} D^{\mathbf{p}} \varphi(\mathbf{a})$ is a distribution of order $m = |\mathbf{p}| > 0$, and hence is not a measure.

(iv) The linear map $\varphi \mapsto \sum_{\nu>0} \varphi^{(\nu)}(\nu)$ is a distribution of infinite order on \mathbb{R} : the order of differentiation is bounded for each φ (because φ has compact support) but is not as φ varies.

(v) If (\mathbf{p}_{ν}) is a sequence of multi-indices $\mathbf{p}_{\nu} = (p_{1\nu}, \ldots, p_{n\nu})$ such that $|\mathbf{p}_{\nu}| \to \infty$ as $\nu \to \infty$, then the linear map $\varphi \longmapsto \sum_{\nu>0} (D^{\mathbf{p}_{\nu}}\varphi)(\mathbf{p}_{\nu})$ is a distribution of infinite order on \mathbb{R}^{n} .

1.3.2.3.6. Distributions associated to locally integrable functions

Let f be a complex-valued function over Ω such that $\int_{K} |f(\mathbf{x})| d^{n}\mathbf{x}$ exists for any given compact K in Ω ; f is then called *locally integrable*.

The linear mapping from $\mathscr{D}(\Omega)$ to \mathbb{C} defined by

$$\varphi \longmapsto \int_{\Omega} f(\mathbf{x}) \varphi(\mathbf{x}) \, \mathrm{d}^n \mathbf{x}$$

may then be shown to be continuous over $\mathscr{D}(\Omega)$. It thus defines a *distribution* $T_f \in \mathscr{D}'(\Omega)$:

$$\langle T_f, \varphi \rangle = \int_{\Omega} f(\mathbf{x}) \varphi(\mathbf{x}) \, \mathrm{d}^n \mathbf{x}.$$

As the continuity of T_f only requires that $\varphi \in \mathscr{D}^{(0)}(\Omega)$, T_f is actually a Radon measure.