
It can be shown that two locally integrable functions f and g
define the same distribution, i.e.

�Tf ,�� � �TK ,�� for all � � �,

if and only if they are equal almost everywhere. The classes of
locally integrable functions modulo this equivalence form a vector
space denoted L1

loc���; each element of L1
loc��� may therefore be

identified with the distribution Tf defined by any one of its
representatives f.

1.3.2.3.7. Support of a distribution

A distribution T � ����� is said to vanish on an open subset � of
� if it vanishes on all functions in ����, i.e. if �T ,�� � 0 whenever
� � ����.

The support of a distribution T, denoted Supp T, is then defined as
the complement of the set-theoretic union of those open subsets �
on which T vanishes; or equivalently as the smallest closed subset of
� outside which T vanishes.

When T � Tf for f � L1
loc���, then Supp T � Supp f , so that the

two notions coincide. Clearly, if Supp T and Supp � are disjoint
subsets of �, then �T ,�� � 0.

It can be shown that any distribution T � �� with compact
support may be extended from � to � while remaining continuous,
so that T � � �; and that conversely, if S � � �, then its restriction T to
� is a distribution with compact support. Thus, the topological dual
� � of � consists of those distributions in �� which have compact
support. This is intuitively clear since, if the condition of having
compact support is fulfilled by T, it needs no longer be required of
�, which may then roam through � rather than �.

1.3.2.3.8. Convergence of distributions

A sequence �Tj� of distributions will be said to converge in �� to
a distribution T as j �	 if, for any given � � �, the sequence of
complex numbers ��Tj,��� converges in � to the complex number
�T ,��.

A series
�	

j�0Tj of distributions will be said to converge in ��
and to have distribution S as its sum if the sequence of partial sums
Sk �

�k
j�0 converges to S.

These definitions of convergence in �� assume that the limits T
and S are known in advance, and are distributions. This raises the
question of the completeness of ��: if a sequence �Tj� in �� is such
that the sequence ��Tj,��� has a limit in � for all � � �, does the
map

� 
�� lim
j�	

�Tj,��

define a distribution T � ��? In other words, does the limiting
process preserve continuity with respect to �? It is a remarkable
theorem that, because of the strong topology on �, this is actually
the case. An analogous statement holds for series. This notion of
convergence does not coincide with any of the classical notions
used for ordinary functions: for example, the sequence ���� with
���x� � cos �x converges to 0 in �����, but fails to do so by any of
the standard criteria.

An example of convergent sequences of distributions is provided
by sequences which converge to �. If � f�� is a sequence of locally
summable functions on �n such that

(i)
�
�x�� b f��x� dnx � 1 as � �	 for all b � 0;

(ii)
�

a
�x�
1�a� f��x�� dnx � 0 as � �	 for all 0 � a � 1;
(iii) there exists d � 0 and M � 0 such that

�
�x�� d � f��x�� dnx �

M for all �;
then the sequence �Tf� � of distributions converges to � in ����n�.

1.3.2.3.9. Operations on distributions

As a general rule, the definitions are chosen so that the operations
coincide with those on functions whenever a distribution is
associated to a function.

Most definitions consist in transferring to a distribution T an
operation which is well defined on � � � by ‘transposing’ it in the
duality product �T ,��; this procedure will map T to a new
distribution provided the original operation maps � continuously
into itself.

1.3.2.3.9.1. Differentiation

(a) Definition and elementary properties
If T is a distribution on �n, its partial derivative �iT with respect

to xi is defined by

��iT ,�� � ��T , �i��
for all � � �. This does define a distribution, because the partial

differentiations � 
�� �i� are continuous for the topology of �.
Suppose that T � Tf with f a locally integrable function such that

�i f exists and is almost everywhere continuous. Then integration
by parts along the xi axis gives
�

�n

�i f �xl, � � � , xi, � � � , xn���xl, � � � , xi, � � � , xn� dxi

� � f ���xl, � � � , �	, � � � , xn� � � f ���xl, � � � , �	, � � � , xn�
� �

�n

f �xl, � � � , xi, � � � , xn��i��xl, � � � , xi, � � � , xn� dxi;

the integrated term vanishes, since � has compact support, showing
that �iTf � T�i f .

The test functions � � � are infinitely differentiable. Therefore,
transpositions like that used to define �iT may be repeated, so that
any distribution is infinitely differentiable. For instance,

��2
ijT ,�� � ���jT , �i�� � �T , �2

ij��,
�DpT ,�� � ��1��p��T , Dp��,

��T ,�� � �T ,���,
where � is the Laplacian operator. The derivatives of Dirac’s �
distribution are

�Dp�,�� � ��1��p���, Dp�� � ��1��p�Dp��0�	
It is remarkable that differentiation is a continuous operation for

the topology on ��: if a sequence �Tj� of distributions converges to
distribution T, then the sequence �DpTj� of derivatives converges to
DpT for any multi-index p, since as j �	
�DpTj,�� � ��1��p��Tj, Dp�� � ��1��p��T , Dp�� � �DpT ,��	

An analogous statement holds for series: any convergent series of
distributions may be differentiated termwise to all orders. This
illustrates how ‘robust’ the constructs of distribution theory are in
comparison with those of ordinary function theory, where similar
statements are notoriously untrue.

(b) Differentiation under the duality bracket
Limiting processes and differentiation may also be carried out

under the duality bracket �, � as under the integral sign with ordinary
functions. Let the function � � ��x,
� depend on a parameter 
 �
� and a vector x � �n in such a way that all functions

�
 � x 
�� ��x,
�
be in ���n� for all 
 � �. Let T � ����n� be a distribution, let

I�
� � �T ,�
�
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and let 
0 � � be given parameter value. Suppose that, as 
 runs
through a small enough neighbourhood of 
0,

(i) all the �
 have their supports in a fixed compact subset K of
�n;

(ii) all the derivatives Dp�
 have a partial derivative with
respect to 
 which is continuous with respect to x and 
.

Under these hypotheses, I�
� is differentiable (in the usual sense)
with respect to 
 near 
0, and its derivative may be obtained by
‘differentiation under the �, � sign’:

dI
d


� �T , �
�
�	

(c) Effect of discontinuities
When a function f or its derivatives are no longer continuous, the

derivatives DpTf of the associated distribution Tf may no longer
coincide with the distributions associated to the functions Dpf .

In dimension 1, the simplest example is Heaviside’s unit step
function Y �Y�x� � 0 for x � 0, Y�x� � 1 for x � 0�:

��TY ��,�� � ���TY �,��� � � ��	

0
���x� dx � ��0� � ��,��	

Hence �TY �� � �, a result long used ‘heuristically’ by electrical
engineers [see also Dirac (1958)].

Let f be infinitely differentiable for x � 0 and x � 0 but have
discontinuous derivatives f �m� at x � 0 [ f �0� being f itself] with
jumps �m � f �m��0�� � f �m��0��. Consider the functions:

g0 � f � �0Y

g1 � g�0 � �1Y

����������
gk � g�k�1 � �kY 	

The gk are continuous, their derivatives g�k are continuous almost
everywhere [which implies that �Tgk �� � Tg�k

and g�k � f �k�1� almost
everywhere]. This yields immediately:

�Tf �� � Tf � � �0�

�Tf ��� � Tf �� � �0�
� � �1�

������������������
�Tf ��m� � Tf �m� � �0�

�m�1� � � � �� �m�1�	

������������������
Thus the ‘distributional derivatives’ �Tf ��m� differ from the usual
functional derivatives Tf �m� by singular terms associated with
discontinuities.

In dimension n, let f be infinitely differentiable everywhere
except on a smooth hypersurface S, across which its partial
derivatives show discontinuities. Let �0 and �� denote the
discontinuities of f and its normal derivative ��� across S (both
�0 and �� are functions of position on S), and let ��S� and ����S� be
defined by

���S�,�� �
�

S
� dn�1S

�����S�,�� � ��
S
��� dn�1S	

Integration by parts shows that

�iTf � T�i f � �0 cos �i��S�,

where �i is the angle between the xi axis and the normal to S along
which the jump �0 occurs, and that the Laplacian of Tf is given by

��Tf � � T�f � ����S� � ����0��S��	
The latter result is a statement of Green’s theorem in terms of
distributions. It will be used in Section 1.3.4.4.3.5 to calculate the
Fourier transform of the indicator function of a molecular envelope.

1.3.2.3.9.2. Integration of distributions in dimension 1
The reverse operation from differentiation, namely calculating

the ‘indefinite integral’ of a distribution S, consists in finding a
distribution T such that T � � S.

For all 
 � � such that 
 � �� with � � �, we must have

�T ,
� � ��S,��	
This condition defines T in a ‘hyperplane’ � of �, whose equation

�1,
� � �1,��� � 0

reflects the fact that � has compact support.
To specify T in the whole of �, it suffices to specify the value of

�T ,�0� where �0 � � is such that �1,�0� � 1: then any � � � may
be written uniquely as

� � 
�0 � ��

with


 � �1,��, 
 � �� 
�0, ��x� � �x

0

�t� dt,

and T is defined by

�T ,�� � 
�T ,�0� � �S,��	
The freedom in the choice of �0 means that T is defined up to an
additive constant.

1.3.2.3.9.3. Multiplication of distributions by functions
The product �T of a distribution T on �n by a function � over �n

will be defined by transposition:

��T ,�� � �T ,��� for all � � �	

In order that �T be a distribution, the mapping � 
�� �� must send
���n� continuously into itself; hence the multipliers � must be
infinitely differentiable. The product of two general distributions
cannot be defined. The need for a careful treatment of multipliers of
distributions will become clear when it is later shown (Section
1.3.2.5.8) that the Fourier transformation turns convolutions into
multiplications and vice versa.

If T is a distribution of order m, then � needs only have
continuous derivatives up to order m. For instance, � is a distribution
of order zero, and �� � ��0�� is a distribution provided � is
continuous; this relation is of fundamental importance in the theory
of sampling and of the properties of the Fourier transformation
related to sampling (Sections 1.3.2.6.4, 1.3.2.6.6). More generally,
Dp� is a distribution of order �p�, and the following formula holds
for all � � ��m� with m � �p�:

��Dp�� �
�

q
p

��1��p�q� p
q

� �

�Dp�q���0�Dq�	

The derivative of a product is easily shown to be

�i��T� � ��i��T � ���iT�
and generally for any multi-index p

Dp��T� �
�

q
p

p
q

� �

�Dp�q���0�DqT 	
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1.3.2.3.9.4. Division of distributions by functions
Given a distribution S on �n and an infinitely differentiable

multiplier function �, the division problem consists in finding a
distribution T such that �T � S.

If � never vanishes, T � S�� is the unique answer. If n � 1, and
if � has only isolated zeros of finite order, it can be reduced to a
collection of cases where the multiplier is xm, for which the general
solution can be shown to be of the form

T � U � �m�1

i�0
ci�

�i�,

where U is a particular solution of the division problem xmU � S
and the ci are arbitrary constants.

In dimension n � 1, the problem is much more difficult, but is of
fundamental importance in the theory of linear partial differential
equations, since the Fourier transformation turns the problem of
solving these into a division problem for distributions [see
Hörmander (1963)].

1.3.2.3.9.5. Transformation of coordinates
Let � be a smooth non-singular change of variables in �n, i.e. an

infinitely differentiable mapping from an open subset � of �n to ��
in �n, whose Jacobian

J��� � det
���x�
�x

� �

vanishes nowhere in �. By the implicit function theorem, the
inverse mapping ��1 from �� to � is well defined.

If f is a locally summable function on �, then the function ��f
defined by

���f ��x� � f ���1�x��
is a locally summable function on ��, and for any � � ����� we
may write:
�

��
���f ��x���x� dnx � �

��
f ���1�x����x� dnx

� �

��
f �y�����y���J���� dny by x � ��y�	

In terms of the associated distributions

�T��f ,�� � �Tf , �J�������1����	
This operation can be extended to an arbitrary distribution T by

defining its image ��T under coordinate transformation � through

���T ,�� � �T , �J�������1����,
which is well defined provided that � is proper, i.e. that ��1�K� is
compact whenever K is compact.

For instance, if � � x 
�� x� a is a translation by a vector a in
�n, then �J���� � 1; �� is denoted by �a, and the translate �aT of a
distribution T is defined by

��aT ,�� � �T , ��a��	
Let A � x 
�� Ax be a linear transformation defined by a non-

singular matrix A. Then J�A� � det A, and

�A�T ,�� � �det A��T , �A�1����	
This formula will be shown later (Sections 1.3.2.6.5, 1.3.4.2.1.1) to
be the basis for the definition of the reciprocal lattice.

In particular, if A � �I, where I is the identity matrix, A is an
inversion through a centre of symmetry at the origin, and denoting
A�� by �� we have:

��T ,�� � �T , ���	

T is called an even distribution if �T � T , an odd distribution if
�T � �T .

If A � 
I with 
 � 0, A is called a dilation and

�A�T ,�� � 
n�T , �A�1����	
Writing symbolically � as ��x� and A�� as ��x�
�, we have:

��x�
� � 
n��x�	
If n � 1 and f is a function with isolated simple zeros xj, then in the
same symbolic notation

�� f �x�� �
�

j

1
� f ��xj�� ��xj�,

where each 
j � 1�� f ��xj�� is analogous to a ‘Lorentz factor’ at zero
xj.

1.3.2.3.9.6. Tensor product of distributions
The purpose of this construction is to extend Fubini’s theorem to

distributions. Following Section 1.3.2.2.5, we may define the tensor
product L1

loc��m� � L1
loc��n� as the vector space of finite linear

combinations of functions of the form

f � g � �x, y� 
�� f �x�g�y�,
where x � �m, y � �n, f � L1

loc��m� and g � L1
loc��n�.

Let Sx and Ty denote the distributions associated to f and g,
respectively, the subscripts x and y acting as mnemonics for �m and
�n. It follows from Fubini’s theorem (Section 1.3.2.2.5) that
f � g � L1

loc��m � �n�, and hence defines a distribution over
�m � �n; the rearrangement of integral signs gives

�Sx � Ty,�x� y� � �Sx, �Ty,�x� y�� � �Ty, �Sx,�x� y��
for all �x� y � ���m � �n�. In particular, if ��x, y� � u�x�v�y�with
u � ���m�, v � ���n�, then

�S � T , u� v� � �S, u��T , v�	
This construction can be extended to general distributions S �

����m� and T � ����n�. Given any test function � � ���m � �n�,
let �x denote the map y 
�� ��x, y�; let �y denote the map
x 
�� ��x, y�; and define the two functions ��x� � �T ,�x� and
��y� � �S,�y�. Then, by the lemma on differentiation under the �, �
sign of Section 1.3.2.3.9.1, � � ���m�,� � ���n�, and there exists
a unique distribution S � T such that

�S � T ,�� � �S, �� � �T ,��	
S � T is called the tensor product of S and T.

With the mnemonic introduced above, this definition reads
identically to that given above for distributions associated to locally
integrable functions:

�Sx � Ty,�x� y� � �Sx, �Ty,�x� y�� � �Ty, �Sx,�x� y��	
The tensor product of distributions is associative:

�R � S� � T � R � �S � T�	
Derivatives may be calculated by

Dp
xDq

y�Sx � Ty� � �Dp
xSx� � �Dq

yTy�	
The support of a tensor product is the Cartesian product of the
supports of the two factors.

1.3.2.3.9.7. Convolution of distributions
The convolution f � g of two functions f and g on �n is defined by

� f � g��x� � �

�n

f �y�g�x� y� dny � �

�n

f �x� y�g�y� dny
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whenever the integral exists. This is the case when f and g are both
in L1��n�; then f � g is also in L1��n�. Let S, T and W denote the
distributions associated to f, g and f � g, respectively: a change of
variable immediately shows that for any � � ���n�,

�W ,�� � �

�n��n

f �x�g�y���x� y� dnx dny	

Introducing the map � from �n � �n to �n defined by
��x, y� � x� y, the latter expression may be written:

�Sx � Ty,� � ��
(where � denotes the composition of mappings) or by a slight abuse
of notation:

�W ,�� � �Sx � Ty,��x� y��	
A difficulty arises in extending this definition to general

distributions S and T because the mapping � is not proper: if K is
compact in �n, then ��1�K� is a cylinder with base K and generator
the ‘second bisector’ x� y � 0 in �n � �n. However, �S � T ,� �
�� is defined whenever the intersection between Supp �S � T� �
�Supp S� � �Supp T� and ��1�Supp �� is compact.

We may therefore define the convolution S � T of two
distributions S and T on �n by

�S � T ,�� � �S � T ,� � �� � �Sx � Ty,��x� y��
whenever the following support condition is fulfilled:

‘the set ��x, y��x � A, y � B, x� y � K� is compact in �n � �n for all K
compact in �n’.

The latter condition is met, in particular, if S or T has compact
support. The support of S � T is easily seen to be contained in the
closure of the vector sum

A � B � �x� y�x � A, y � B�	
Convolution by a fixed distribution S is a continuous operation

for the topology on ��: it maps convergent sequences �Tj� to
convergent sequences �S � Tj�. Convolution is commutative:
S � T � T � S.

The convolution of p distributions T1, � � � , Tp with supports
A1, � � � , Ap can be defined by

�T1 � � � � � Tp,�� � ��T1�x1
� � � �� �Tp�xp

,��x1 � � � �� xp��
whenever the following generalized support condition:

‘the set ��x1, � � � , xp��x1 � A1, � � � , xp � Ap, x1 � � � �� xp � K� is com-
pact in ��n�p for all K compact in �n’

is satisfied. It is then associative. Interesting examples of
associativity failure, which can be traced back to violations of the
support condition, may be found in Bracewell (1986, pp. 436–437).

It follows from previous definitions that, for all distributions
T � ��, the following identities hold:

(i) � � T � T : � is the unit convolution;
(ii) ��a� � T � �aT : translation is a convolution with the

corresponding translate of �;
(iii) �Dp�� � T � DpT : differentiation is a convolution with the

corresponding derivative of �;
(iv) translates or derivatives of a convolution may be obtained

by translating or differentiating any one of the factors: convolution
‘commutes’ with translation and differentiation, a property used in
Section 1.3.4.4.7.7 to speed up least-squares model refinement for
macromolecules.

The latter property is frequently used for the purpose of
regularization: if T is a distribution, � an infinitely differentiable
function, and at least one of the two has compact support, then T � �
is an infinitely differentiable ordinary function. Since sequences

���� of such functions � can be constructed which have compact
support and converge to �, it follows that any distribution T can be
obtained as the limit of infinitely differentiable functions T � �� . In
topological jargon: ���n� is ‘everywhere dense’ in ����n�. A
standard function in � which is often used for such proofs is defined
as follows: put

��x� � 1
A

exp � 1
1� x2

� �

for �x� 
 1,

� 0 for �x� � 1,

with

A �
��1

�1

exp � 1
1� x2

� �

dx

(so that � is in � and is normalized), and put

���x� � 1
�
�

x
�

	 

in dimension 1,

���x� �
�n

j�1

���xj� in dimension n	

Another related result, also proved by convolution, is the
structure theorem: the restriction of a distribution T � ����n� to
a bounded open set � in �n is a derivative of finite order of a
continuous function.

Properties (i) to (iv) are the basis of the symbolic or operational
calculus (see Carslaw & Jaeger, 1948; Van der Pol & Bremmer,
1955; Churchill, 1958; Erdélyi, 1962; Moore, 1971) for solving
integro-differential equations with constant coefficients by turning
them into convolution equations, then using factorization methods
for convolution algebras (Schwartz, 1965).

1.3.2.4. Fourier transforms of functions

1.3.2.4.1. Introduction

Given a complex-valued function f on �n subject to suitable
regularity conditions, its Fourier transform � � f � and Fourier
cotransform �� � f � are defined as follows:

� � f ���� � �

�n
f �x� exp��2�i� � x� dnx

�� � f ���� � �

�n

f �x� exp��2�i� � x� dnx,

where � � x ��n
i�1�ixi is the ordinary scalar product. The

terminology and sign conventions given above are the standard
ones in mathematics; those used in crystallography are slightly
different (see Section 1.3.4.2.1.1). These transforms enjoy a number
of remarkable properties, whose natural settings entail different
regularity assumptions on f : for instance, properties relating to
convolution are best treated in L1��n�, while Parseval’s theorem
requires the Hilbert space structure of L2��n�. After a brief review
of these classical properties, the Fourier transformation will be
examined in a space � ��n� particularly well suited to accommodat-
ing the full range of its properties, which will later serve as a space
of test functions to extend the Fourier transformation to
distributions.

There exists an abundant literature on the ‘Fourier integral’. The
books by Carslaw (1930), Wiener (1933), Titchmarsh (1948),
Katznelson (1968), Sneddon (1951, 1972), and Dym & McKean
(1972) are particularly recommended.
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