1. GENERAL RELATIONSHIPS AND TECHNIQUES

and let $\lambda_0 \in \Lambda$ be given parameter value. Suppose that, as λ runs through a small enough neighbourhood of λ_0 ,

(i) all the φ_{λ} have their supports in a fixed compact subset *K* of \mathbb{R}^{n} ;

(ii) all the derivatives $D^{\mathbf{p}}\varphi_{\lambda}$ have a partial derivative with respect to λ which is continuous with respect to \mathbf{x} and λ .

Under these hypotheses, $I(\lambda)$ is differentiable (in the usual sense) with respect to λ near λ_0 , and its derivative may be obtained by 'differentiation under the \langle, \rangle sign':

$$\frac{\mathrm{d}I}{\mathrm{d}\lambda} = \langle T, \partial_\lambda \varphi_\lambda \rangle.$$

(c) Effect of discontinuities

When a function f or its derivatives are no longer continuous, the derivatives $D^{\mathbf{p}}T_f$ of the associated distribution T_f may no longer coincide with the distributions associated to the functions $D^{\mathbf{p}}f$.

In dimension 1, the simplest example is Heaviside's unit step function Y[Y(x) = 0 for x < 0, Y(x) = 1 for $x \ge 0$]:

$$\langle (T_Y)', \varphi \rangle = - \langle (T_Y), \varphi' \rangle = - \int_0^{+\infty} \varphi'(x) \, \mathrm{d}x = \varphi(0) = \langle \delta, \varphi \rangle.$$

Hence $(T_Y)' = \delta$, a result long used 'heuristically' by electrical engineers [see also Dirac (1958)].

Let *f* be infinitely differentiable for x < 0 and x > 0 but have discontinuous derivatives $f^{(m)}$ at x = 0 [$f^{(0)}$ being *f* itself] with jumps $\sigma_m = f^{(m)}(0+) - f^{(m)}(0-)$. Consider the functions:

The g_k are continuous, their derivatives g'_k are continuous almost everywhere [which implies that $(T_{g_k})' = T_{g'_k}$ and $g'_k = f^{(k+1)}$ almost everywhere]. This yields immediately:

Thus the 'distributional derivatives' $(T_f)^{(m)}$ differ from the usual functional derivatives $T_{f^{(m)}}$ by singular terms associated with discontinuities.

In dimension *n*, let *f* be infinitely differentiable everywhere except on a smooth hypersurface *S*, across which its partial derivatives show discontinuities. Let σ_0 and σ_{ν} denote the discontinuities of *f* and its normal derivative $\partial_{\nu}\varphi$ across *S* (both σ_0 and σ_{ν} are functions of position on *S*), and let $\delta_{(S)}$ and $\partial_{\nu}\delta_{(S)}$ be defined by

$$egin{aligned} &\langle \delta_{(S)}, arphi
angle &= \int\limits_{S} arphi \; \mathrm{d}^{n-1}S \ &\langle \partial_
u \delta_{(S)}, arphi
angle &= -\int\limits_{S} \partial_
u arphi \; \mathrm{d}^{n-1}S \end{aligned}$$

Integration by parts shows that

$$\partial_i T_f = T_{\partial_i f} + \sigma_0 \cos \theta_i \delta_{(S)},$$

where θ_i is the angle between the x_i axis and the normal to S along which the jump σ_0 occurs, and that the Laplacian of T_f is given by

$$\Delta(T_f) = T_{\Delta f} + \sigma_{\nu} \delta_{(S)} + \partial_{\nu} [\sigma_0 \delta_{(S)}].$$

The latter result is a statement of Green's theorem in terms of distributions. It will be used in Section 1.3.4.4.3.5 to calculate the Fourier transform of the indicator function of a molecular envelope.

1.3.2.3.9.2. Integration of distributions in dimension 1

The reverse operation from differentiation, namely calculating the 'indefinite integral' of a distribution *S*, consists in finding a distribution *T* such that T' = S.

For all $\chi \in \mathscr{D}$ such that $\chi = \psi'$ with $\psi \in \mathscr{D}$, we must have

$$\langle T, \chi \rangle = -\langle S, \psi \rangle.$$

This condition defines T in a 'hyperplane' \mathcal{H} of \mathcal{D} , whose equation

$$\langle 1, \chi \rangle \equiv \langle 1, \psi' \rangle = 0$$

reflects the fact that ψ has compact support.

To specify T in the whole of \mathcal{D} , it suffices to specify the value of $\langle T, \varphi_0 \rangle$ where $\varphi_0 \in \mathcal{D}$ is such that $\langle 1, \varphi_0 \rangle = 1$: then any $\varphi \in \mathcal{D}$ may be written uniquely as

$$\varphi = \lambda \varphi_0 + \psi'$$

with

$$\lambda = \langle 1, \varphi \rangle, \qquad \chi = \varphi - \lambda \varphi_0, \qquad \psi(x) = \int_0^x \chi(t) \, \mathrm{d}t,$$

and T is defined by

$$\langle T, \varphi \rangle = \lambda \langle T, \varphi_0 \rangle - \langle S, \psi \rangle.$$

The freedom in the choice of φ_0 means that *T* is defined up to an additive constant.

1.3.2.3.9.3. *Multiplication of distributions by functions* The product αT of a distribution T on \mathbb{R}^n by a function α over \mathbb{R}^n will be defined by transposition:

$$\langle \alpha T, \varphi \rangle = \langle T, \alpha \varphi \rangle$$
 for all $\varphi \in \mathcal{D}$.

In order that αT be a distribution, the mapping $\varphi \mapsto \alpha \varphi$ must send $\mathscr{D}(\mathbb{R}^n)$ continuously into itself; hence *the multipliers* α *must be infinitely differentiable*. The product of two general distributions cannot be defined. The need for a careful treatment of multipliers of distributions will become clear when it is later shown (Section 1.3.2.5.8) that the Fourier transformation turns convolutions into multiplications and vice versa.

If *T* is a distribution of order *m*, then α needs only have continuous derivatives up to order *m*. For instance, δ is a distribution of order zero, and $\alpha \delta = \alpha(\mathbf{0})\delta$ is a distribution provided α is continuous; this relation is of fundamental importance in the theory of sampling and of the properties of the Fourier transformation related to sampling (Sections 1.3.2.6.4, 1.3.2.6.6). More generally, $D^{\mathbf{p}}\delta$ is a distribution of order $|\mathbf{p}|$, and the following formula holds for all $\alpha \in \mathcal{D}^{(m)}$ with $m = |\mathbf{p}|$:

$$\alpha(D^{\mathbf{p}}\delta) = \sum_{\mathbf{q}\leq\mathbf{p}} (-1)^{|\mathbf{p}-\mathbf{q}|} \begin{pmatrix} \mathbf{p} \\ \mathbf{q} \end{pmatrix} (D^{\mathbf{p}-\mathbf{q}}\alpha)(\mathbf{0}) D^{\mathbf{q}}\delta.$$

The derivative of a product is easily shown to be

$$\partial_i(\alpha T) = (\partial_i \alpha)T + \alpha(\partial_i T)$$

and generally for any multi-index **p**

$$D^{\mathbf{p}}(\alpha T) = \sum_{\mathbf{q} \leq \mathbf{p}} \begin{pmatrix} \mathbf{p} \\ \mathbf{q} \end{pmatrix} (D^{\mathbf{p}-\mathbf{q}}\alpha)(\mathbf{0}) D^{\mathbf{q}}T.$$