1.3. FOURIER TRANSFORMS IN CRYSTALLOGRAPHY

1.3.2.4.2. Fourier transforms in L^1

1.3.2.4.2.1. *Linearity*

Both transformations $\widetilde{\mathscr{F}}$ and $\widetilde{\mathscr{F}}$ are obviously linear maps from L^1 to L^∞ when these spaces are viewed as vector spaces over the field $\mathbb C$ of complex numbers.

1.3.2.4.2.2. Effect of affine coordinate transformations \mathscr{F} and $\widetilde{\mathscr{F}}$ turn translations into phase shifts:

$$\mathscr{F}[\tau_{\mathbf{a}} f](\boldsymbol{\xi}) = \exp(-2\pi i \boldsymbol{\xi} \cdot \mathbf{a}) \mathscr{F}[f](\boldsymbol{\xi})$$
$$\bar{\mathscr{F}}[\tau_{\mathbf{a}} f](\boldsymbol{\xi}) = \exp(+2\pi i \boldsymbol{\xi} \cdot \mathbf{a}) \bar{\mathscr{F}}[f](\boldsymbol{\xi}).$$

Under a general linear change of variable $\mathbf{x} \longmapsto \mathbf{A}\mathbf{x}$ with non-singular matrix \mathbf{A} , the transform of $A^{\#}f$ is

$$\mathcal{F}[A^{\#}f](\boldsymbol{\xi}) = \int_{\mathbb{R}^n} f(\mathbf{A}^{-1}\mathbf{x}) \exp(-2\pi i \boldsymbol{\xi} \cdot \mathbf{x}) d^n \mathbf{x}$$
$$= \int_{\mathbb{R}^n} f(\mathbf{y}) \exp(-2\pi i (A^T \boldsymbol{\xi}) \cdot \mathbf{y}) |\det \mathbf{A}| d^n \mathbf{y}$$
by $\mathbf{x} = \mathbf{A}\mathbf{y}$

$$= |\det \mathbf{A}|\mathscr{F}[f](\mathbf{A}^T\boldsymbol{\xi})$$

i.e.

$$\mathscr{F}[A^{\#}f] = |\det \mathbf{A}|[(\mathbf{A}^{-1})^T]^{\#}\mathscr{F}[f]$$

and similarly for $\widetilde{\mathscr{F}}$. The matrix $(\mathbf{A}^{-1})^T$ is called the *contragredient* of matrix \mathbf{A} .

Under an affine change of coordinates $\mathbf{x} \longmapsto S(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$ with non-singular matrix \mathbf{A} , the transform of $S^{\#}f$ is given by

$$\mathcal{F}[S^{\#}f](\boldsymbol{\xi}) = \mathcal{F}[\tau_{\mathbf{b}}(A^{\#}f)](\boldsymbol{\xi})$$

$$= \exp(-2\pi i \boldsymbol{\xi} \cdot \mathbf{b}) \mathcal{F}[A^{\#}f](\boldsymbol{\xi})$$

$$= \exp(-2\pi i \boldsymbol{\xi} \cdot \mathbf{b}) |\det \mathbf{A}| \mathcal{F}[f](\mathbf{A}^{T}\boldsymbol{\xi})$$

with a similar result for $\bar{\mathscr{F}}$, replacing -i by +i.

1.3.2.4.2.3. Conjugate symmetry

The kernels of the Fourier transformations \mathscr{F} and $\bar{\mathscr{F}}$ satisfy the following identities:

$$\exp(\pm 2\pi i \boldsymbol{\xi} \cdot \mathbf{x}) = \exp\left[\underline{\pm 2\pi i \boldsymbol{\xi} \cdot (-\mathbf{x})}\right] = \exp\left[\underline{\pm 2\pi i (-\boldsymbol{\xi}) \cdot \mathbf{x}}\right].$$

As a result the transformations \mathscr{F} and $\bar{\mathscr{F}}$ themselves have the following 'conjugate symmetry' properties [where the notation $f(\mathbf{x}) = f(-\mathbf{x})$ of Section 1.3.2.2.2 will be used]:

$$\mathscr{F}[f](\xi) = \overline{\mathscr{F}[\bar{f}](-\xi)} = \overline{\mathscr{F}[\bar{f}](\xi)}$$

$$\mathscr{F}[f](\xi) = \overline{\mathscr{F}[\bar{f}](\xi)}.$$

Therefore,

(i) $f \text{ real } \Leftrightarrow f = \overline{f} \Leftrightarrow \mathscr{F}[f] = \overline{\mathscr{F}[f]} \Leftrightarrow \mathscr{F}[f](\xi) = \overline{\mathscr{F}[f](-\xi)} : \mathscr{F}[f] \text{ is said to possess } Hermitian symmetry;}$

(ii) f centrosymmetric $\Leftrightarrow f = \check{f} \Leftrightarrow \mathscr{F}[f] = \overline{\mathscr{F}[\bar{f}]};$

(iii) f real centrosymmetric $\Leftrightarrow f = \tilde{f} = \check{f} \Leftrightarrow \mathscr{F}[f] = \overline{\mathscr{F}[f]} = \overline{\mathscr{F}[f]}$

 $\overline{\mathscr{F}[f]} \Leftrightarrow \mathscr{F}[f]$ real centrosymmetric.

Conjugate symmetry is the basis of Friedel's law (Section 1.3.4.2.1.4) in crystallography.

1.3.2.4.2.4. *Tensor product property*

Another elementary property of \mathscr{F} is its naturality with respect to tensor products. Let $u \in L^1(\mathbb{R}^m)$ and $v \in L^1(\mathbb{R}^n)$, and let $\mathscr{F}_{\mathbf{x}}, \mathscr{F}_{\mathbf{y}}, \mathscr{F}_{\mathbf{x}, \mathbf{y}}$ denote the Fourier transformations in $L^1(\mathbb{R}^m), L^1(\mathbb{R}^n)$ and $L^1(\mathbb{R}^m \times \mathbb{R}^n)$, respectively. Then

$$\mathscr{F}_{\mathbf{x},\mathbf{v}}[u\otimes v]=\mathscr{F}_{\mathbf{x}}[u]\otimes\mathscr{F}_{\mathbf{v}}[v].$$

Furthermore, if $f \in L^1(\mathbb{R}^m \times \mathbb{R}^n)$, then $\mathscr{F}_{\mathbf{y}}[f] \in L^1(\mathbb{R}^m)$ as a function of \mathbf{x} and $\mathscr{F}_{\mathbf{x}}[f] \in L^1(\mathbb{R}^n)$ as a function of \mathbf{y} , and

$$\mathscr{F}_{\mathbf{x},\mathbf{y}}[f] = \mathscr{F}_{\mathbf{x}}[\mathscr{F}_{\mathbf{y}}[f]] = \mathscr{F}_{\mathbf{y}}[\mathscr{F}_{\mathbf{x}}[f]].$$

This is easily proved by using Fubini's theorem and the fact that $(\boldsymbol{\xi}, \boldsymbol{\eta}) \cdot (\mathbf{x}, \mathbf{y}) = \boldsymbol{\xi} \cdot \mathbf{x} + \boldsymbol{\eta} \cdot \mathbf{y}$, where $\mathbf{x}, \boldsymbol{\xi} \in \mathbb{R}^m, \mathbf{y}, \boldsymbol{\eta} \in \mathbb{R}^n$. This property may be written:

$$\mathscr{F}_{\mathbf{x},\,\mathbf{y}}=\mathscr{F}_{\mathbf{x}}\otimes\mathscr{F}_{\mathbf{y}}.$$

1.3.2.4.2.5. Convolution property

If f and g are summable, their convolution f * g exists and is summable, and

$$\mathscr{F}[f*g](\boldsymbol{\xi}) = \int\limits_{\mathbb{R}^n} \left[\int\limits_{\mathbb{R}^n} f(\mathbf{y}) g(\mathbf{x} - \mathbf{y}) \, d^n \mathbf{y} \right] \exp(-2\pi i \boldsymbol{\xi} \cdot \mathbf{x}) \, d^n \mathbf{x}.$$

With $\mathbf{x} = \mathbf{y} + \mathbf{z}$, so that

$$\exp(-2\pi i \boldsymbol{\xi} \cdot \mathbf{x}) = \exp(-2\pi i \boldsymbol{\xi} \cdot \mathbf{y}) \exp(-2\pi i \boldsymbol{\xi} \cdot \mathbf{z}),$$

and with Fubini's theorem, rearrangement of the double integral gives:

$$\mathscr{F}[f * g] = \mathscr{F}[f] \times \mathscr{F}[g]$$

and similarly

$$\bar{\mathscr{F}}[f * g] = \bar{\mathscr{F}}[f] \times \bar{\mathscr{F}}[g].$$

Thus the Fourier transform and cotransform turn convolution into multiplication.

1.3.2.4.2.6. Reciprocity property

In general, $\mathscr{F}[f]$ and $\overline{\mathscr{F}}[f]$ are not summable, and hence cannot be further transformed; however, as they are essentially bounded, their products with the Gaussians $G_t(\xi) = \exp(-2\pi^2 \|\xi\|^2 t)$ are summable for all t > 0, and it can be shown that

$$f = \lim_{t \to 0} \bar{\mathscr{F}}[G_t \mathscr{F}[f]] = \lim_{t \to 0} \mathscr{F}[G_t \bar{\mathscr{F}}[f]],$$

where the limit is taken in the topology of the L^1 norm $\|.\|_1$. Thus \mathscr{F} and $\overline{\mathscr{F}}$ are (in a sense) mutually inverse, which justifies the common practice of calling $\widetilde{\mathscr{F}}$ the 'inverse Fourier transformation'.

1.3.2.4.2.7. Riemann-Lebesgue lemma

If $f \in L^1(\mathbb{R}^n)$, *i.e.* is summable, then $\mathscr{F}[f]$ and $\overline{\mathscr{F}}[f]$ exist and are continuous and essentially bounded:

$$\|\mathscr{F}[f]\|_{\infty} = \|\bar{\mathscr{F}}[f]\|_{\infty} \le \|f\|_{1}.$$

In fact one has the much stronger property, whose statement constitutes the *Riemann–Lebesgue lemma*, that $\mathscr{F}[f](\xi)$ and $\mathscr{F}[f](\xi)$ both tend to zero as $\|\xi\| \to \infty$.

1.3.2.4.2.8. Differentiation

Let us now suppose that n=1 and that $f\in L^1(\mathbb{R})$ is differentiable with $f'\in L^1(\mathbb{R})$. Integration by parts yields

$$\mathscr{F}[f'](\xi) = \int_{-\infty}^{+\infty} f'(x) \exp(-2\pi i \xi \cdot x) dx$$
$$= [f(x) \exp(-2\pi i \xi \cdot x)]_{-\infty}^{+\infty}$$
$$+ 2\pi i \xi \int_{-\infty}^{+\infty} f(x) \exp(-2\pi i \xi \cdot x) dx.$$

Since f' is summable, f has a limit when $x \to \pm \infty$, and this limit must be 0 since f is summable. Therefore

$$\mathscr{F}[f'](\xi) = (2\pi i \xi) \mathscr{F}[f](\xi)$$

with the bound

$$||2\pi\xi\mathscr{F}[f]||_{\infty} \le ||f'||_{1}$$

so that $|\mathscr{F}[f](\xi)|$ decreases faster than $1/|\xi| \to \infty$.

This result can be easily extended to several dimensions and to any multi-index \mathbf{m} : if f is summable and has continuous summable partial derivatives up to order $|\mathbf{m}|$, then

$$\mathscr{F}[D^{\mathbf{m}}f](\boldsymbol{\xi}) = (2\pi i \boldsymbol{\xi})^{\mathbf{m}} \mathscr{F}[f](\boldsymbol{\xi})$$

and

$$\|(2\pi\boldsymbol{\xi})^{\mathbf{m}}\mathscr{F}[f]\|_{\infty} \leq \|D^{\mathbf{m}}f\|_{1}.$$

Similar results hold for $\bar{\mathscr{F}}$, with $2\pi i \boldsymbol{\xi}$ replaced by $-2\pi i \boldsymbol{\xi}$. Thus, the more differentiable f is, with summable derivatives, the faster $\mathscr{F}[f]$ and $\overline{\mathscr{F}}[f]$ decrease at infinity.

The property of turning differentiation into multiplication by a monomial has many important applications in crystallography, for instance differential syntheses (Sections 1.3.4.2.1.9, 1.3.4.4.7.2, 1.3.4.4.7.5) and moment-generating functions [Section 1.3.4.5.2.1(c)].

1.3.2.4.2.9. Decrease at infinity

Conversely, assume that f is summable on \mathbb{R}^n and that f decreases fast enough at infinity for $\mathbf{x}^{\mathbf{m}} f$ also to be summable, for some multiindex **m**. Then the integral defining $\mathcal{F}[f]$ may be subjected to the differential operator $D^{\mathbf{m}}$, still yielding a convergent integral: therefore $D^{\mathbf{m}} \mathcal{F}[f]$ exists, and

$$D^{\mathbf{m}}(\mathscr{F}[f])(\boldsymbol{\xi}) = \mathscr{F}[(-2\pi i \mathbf{x})^{\mathbf{m}} f](\boldsymbol{\xi})$$

with the bound

$$||D^{\mathbf{m}}(\mathscr{F}[f])||_{\infty} = ||(2\pi \mathbf{x})^{\mathbf{m}} f||_{1}.$$

Similar results hold for $\overline{\mathscr{F}}$, with $-2\pi i\mathbf{x}$ replaced by $2\pi i\mathbf{x}$. Thus, the faster f decreases at infinity, the more $\mathscr{F}[f]$ and $\overline{\mathscr{F}}[f]$ are differentiable, with bounded derivatives. This property is the converse of that described in Section 1.3.2.4.2.8, and their combination is fundamental in the definition of the function space \mathscr{S} in Section 1.3.2.4.4.1, of tempered distributions in Section 1.3.2.5, and in the extension of the Fourier transformation to them.

1.3.2.4.2.10. The Paley-Wiener theorem

An extreme case of the last instance occurs when f has compact support: then $\mathscr{F}[f]$ and $\mathscr{F}[f]$ are so regular that they may be analytically continued from \mathbb{R}^n to \mathbb{C}^n where they are *entire* functions, *i.e.* have no singularities at finite distance (Paley & Wiener, 1934). This is easily seen for $\mathscr{F}[f]$: giving vector $\boldsymbol{\xi} \in \mathbb{R}^n$ a vector $\boldsymbol{\eta} \in \mathbb{R}^n$ of imaginary parts leads to

$$\begin{split} \mathscr{F}[f](\boldsymbol{\xi} + i\boldsymbol{\eta}) &= \int_{\mathbb{R}^n} f(\mathbf{x}) \exp[-2\pi i(\boldsymbol{\xi} + i\boldsymbol{\eta}) \cdot \mathbf{x}] \, d^n \mathbf{x} \\ &= \mathscr{F}[\exp(2\pi \boldsymbol{\eta} \cdot \mathbf{x}) f](\boldsymbol{\xi}), \end{split}$$

where the latter transform always exists since $\exp(2\pi \mathbf{\eta} \cdot \mathbf{x})f$ is summable with respect to x for all values of η . This analytic continuation forms the basis of the saddlepoint method in probability theory [Section 1.3.4.5.2.1(f)] and leads to the use of maximum-entropy distributions in the statistical theory of direct phase determination [Section 1.3.4.5.2.2(e)].

By Liouville's theorem, an entire function in \mathbb{C}^n cannot vanish identically on the complement of a compact subset of \mathbb{R}^n without vanishing everywhere: therefore $\mathscr{F}[f]$ cannot have compact support if f has, and hence $\mathscr{Q}(\mathbb{R}^n)$ is not stable by Fourier transformation.

1.3.2.4.3. Fourier transforms in L^2

Let f belong to $L^2(\mathbb{R}^n)$, i.e. be such that

$$\|f\|_2 = \left(\int\limits_{\mathbb{R}^n} |f(\mathbf{x})|^2 d^n \mathbf{x}\right)^{1/2} < \infty.$$

1.3.2.4.3.1. *Invariance of L*² $\mathscr{F}[f]$ and $\widehat{\mathscr{F}}[f]$ exist and are functions in L^2 , *i.e.* $\mathscr{F}L^2 = L^2$,

1.3.2.4.3.2. Reciprocity

 $\mathscr{F}[\bar{\mathscr{F}}[f]] = f$ and $\bar{\mathscr{F}}[\mathscr{F}[f]] = f$, equality being taken as 'almost everywhere' equality. This again leads to calling $\bar{\mathscr{F}}$ the 'inverse Fourier transformation' rather than the Fourier cotransformation.

1.3.2.4.3.3. *Isometry*

 \mathscr{F} and $\overline{\mathscr{F}}$ preserve the L^2 norm:

 $\|\mathscr{F}[f]\|_2 = \|\mathscr{F}[f]\|_2 = \|f\|_2$ (Parseval's/Plancherel's theorem).

This property, which may be written in terms of the inner product (,) in $L^2(\mathbb{R}^n)$ as

$$(\mathscr{F}[f],\mathscr{F}[g])=(\bar{\mathscr{F}}[f],\bar{\mathscr{F}}[g])=(f,g),$$

implies that \mathscr{F} and $\widetilde{\mathscr{F}}$ are unitary transformations of $L^2(\mathbb{R}^n)$ into itself, i.e. infinite-dimensional 'rotations'.

1.3.2.4.3.4. Eigenspace decomposition of L^2

Some light can be shed on the geometric structure of these rotations by the following simple considerations. Note that

$$\mathcal{F}^{2}[f](\mathbf{x}) = \int_{\mathbb{R}^{n}} \mathcal{F}[f](\boldsymbol{\xi}) \exp(-2\pi i \mathbf{x} \cdot \boldsymbol{\xi}) d^{n} \boldsymbol{\xi}$$
$$= \bar{\mathcal{F}}[\mathcal{F}[f]](-\mathbf{x}) = f(-\mathbf{x})$$

so that \mathcal{F}^4 (and similarly $\bar{\mathcal{F}}^4$) is the identity map. Any eigenvalue of \mathscr{F} or $\overline{\mathscr{F}}$ is therefore a fourth root of unity, *i.e.* ± 1 or $\pm i$, and $L^2(\mathbb{R}^n)$ splits into an orthogonal direct sum

$$\mathbf{H}_0 \otimes \mathbf{H}_1 \otimes \mathbf{H}_2 \otimes \mathbf{H}_3$$
,

where \mathscr{F} (respectively $\bar{\mathscr{F}}$) acts in each subspace $\mathbf{H}_k(k=0,1,2,3)$ by multiplication by $(-i)^k$. Orthonormal bases for these subspaces can be constructed from Hermite functions (cf. Section 1.3.2.4.4.2) This method was used by Wiener (1933, pp. 51–71).

1.3.2.4.3.5. The convolution theorem and the isometry

In L^2 , the convolution theorem (when applicable) and the Parseval/Plancherel theorem are not independent. Suppose that f, $g, f \times g$ and f * g are all in L^2 (without questioning whether these properties are independent). Then f * g may be written in terms of the inner product in L^2 as follows:

$$(f*g)(\mathbf{x}) = \int\limits_{\mathbb{R}^n} f(\mathbf{x} - \mathbf{y})g(\mathbf{y}) d^n \mathbf{y} = \int\limits_{\mathbb{R}^n} \overline{\breve{f}}(\mathbf{y} - \mathbf{x})g(\mathbf{y}) d^n \mathbf{y},$$

i.e.

$$(f * g)(\mathbf{x}) = (\tau_{\mathbf{x}} \overset{\,\,{}_{\stackrel{\smile}{f}}}{f}, g).$$

Invoking the isometry property, we may rewrite the right-hand side as