
where A is a symmetric positive-definite matrix. Diagonalizing A as
E�ET with EET the identity matrix, and putting A1�2 � E�1�2ET ,
we may write

GA�x� � G
A
2�

� �1�2

x

� �

i.e.

GA � ��2�A�1�1�2��G;

hence (by Section 1.3.2.4.2.3)

� �GA� � �det �2�A�1��1�2 A
2�

� �1�2
� ��

G,

i.e.

� �GA��� � � �det �2�A�1��1�2G��2�A�1�1�2� �,
i.e. finally

� �GA� � �det �2�A�1��1�2G4�2A�1 �

This result is widely used in crystallography, e.g. to calculate
form factors for anisotropic atoms (Section 1.3.4.2.2.6) and to
obtain transforms of derivatives of Gaussian atomic densities
(Section 1.3.4.4.7.10).

1.3.2.4.4.3. Heisenberg’s inequality, Hardy’s theorem
The result just obtained, which also holds for �� , shows that the

‘peakier’ GA, the ‘broader’ � �GA�. This is a general property of the
Fourier transformation, expressed in dimension 1 by the Heisenberg
inequality (Weyl, 1931):�

x2� f �x��2 dx

� � �
�2�� � f �����2 d�

� �

� 1
16�2

�
� f �x��2 dx

� �2

,

where, by a beautiful theorem of Hardy (1933), equality can only be
attained for f Gaussian. Hardy’s theorem is even stronger: if both f
and � � f � behave at infinity as constant multiples of G, then each of
them is everywhere a constant multiple of G; if both f and � � f �
behave at infinity as constant multiples of G	monomial, then each
of them is a finite linear combination of Hermite functions. Hardy’s
theorem is invoked in Section 1.3.4.4.5 to derive the optimal
procedure for spreading atoms on a sampling grid in order to obtain
the most accurate structure factors.

The search for optimal compromises between the confinement of
f to a compact domain in x-space and of � � f � to a compact domain
in �-space leads to consideration of prolate spheroidal wavefunc-
tions (Pollack & Slepian, 1961; Landau & Pollack, 1961, 1962).

1.3.2.4.4.4. Symmetry property
A final formal property of the Fourier transform, best established

in � , is its symmetry: if f and g are in � , then by Fubini’s theorem


� � f �, g� � �
�n

�
�n

f �x� exp��2�i� � x� dnx

� �
g��� dn�

� �
�n

f �x� �
�n

g��� exp��2�i� � x� dn�

� �
dnx

� 
f ,� �g���

This possibility of ‘transposing’ � (and �� ) from the left to the
right of the duality bracket will be used in Section 1.3.2.5.4 to
extend the Fourier transformation to distributions.

1.3.2.4.5. Various writings of Fourier transforms

Other ways of writing Fourier transforms in �n exist besides the
one used here. All have the form

� h� �� f ���� � 1
hn

�
�n

f �x� exp��i�� � x� dnx,

where h is real positive and � real non-zero, with the reciprocity
formula written:

f �x� � 1
kn

�
�n

� h� �� f ��� � exp�i�� � x� dnx

with k real positive. The consistency condition between h, k and � is

hk � 2�
��� �

The usual choices are:

�i� � � �2�, h � k � 1 �as here�;
�ii� � � �1, h � 1, k � 2� �in probability theory

and in solid-state physics�;
�iii� � � �1, h � k �

						
2�

�
�in much of classical analysis��

It should be noted that conventions (ii) and (iii) introduce
numerical factors of 2� in convolution and Parseval formulae, while
(ii) breaks the symmetry between � and �� .

1.3.2.4.6. Tables of Fourier transforms

The books by Campbell & Foster (1948), Erdélyi (1954), and
Magnus et al. (1966) contain extensive tables listing pairs of
functions and their Fourier transforms. Bracewell (1986) lists those
pairs particularly relevant to electrical engineering applications.

1.3.2.5. Fourier transforms of tempered distributions

1.3.2.5.1. Introduction

It was found in Section 1.3.2.4.2 that the usual space of test
functions � is not invariant under � and �� . By contrast, the space
� of infinitely differentiable rapidly decreasing functions is
invariant under � and �� , and furthermore transposition formulae
such as


� � f �, g� � 
 f ,� �g��
hold for all f , g � � . It is precisely this type of transposition which
was used successfully in Sections 1.3.2.3.9.1 and 1.3.2.3.9.3 to
define the derivatives of distributions and their products with
smooth functions.

This suggests using � instead of � as a space of test functions �,
and defining the Fourier transform � �T � of a distribution T by


� �T �,�� � 
T ,� ����
whenever T is capable of being extended from � to � while
remaining continuous. It is this latter proviso which will be
subsumed under the adjective ‘tempered’. As was the case with
the construction of ��, it is the definition of a sufficiently strong
topology (i.e. notion of convergence) in � which will play a key
role in transferring to the elements of its topological dual � � (called
tempered distributions) all the properties of the Fourier transforma-
tion.
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Besides the general references to distribution theory mentioned
in Section 1.3.2.3.1 the reader may consult the books by Zemanian
(1965, 1968). Lavoine (1963) contains tables of Fourier transforms
of distributions.

1.3.2.5.2. � as a test-function space

A notion of convergence has to be introduced in � ��n� in order
to be able to define and test the continuity of linear functionals on it.

A sequence ��j� of functions in � will be said to converge to 0 if,
for any given multi-indices k and p, the sequence �xkDp�j� tends to
0 uniformly on �n.

It can be shown that ���n� is dense in � ��n�. Translation is
continuous for this topology. For any linear differential operator
P�D� �


papDp and any polynomial Q�x� over �n, ��j� � 0
implies �Q�x� 	 P�D��j� � 0 in the topology of � . Therefore,
differentiation and multiplication by polynomials are continuous for
the topology on � .

The Fourier transformations � and �� are also continuous for the
topology of � . Indeed, let ��j� converge to 0 for the topology on � .
Then, by Section 1.3.2.4.2,

��2�� �mDp�� ��j���� � �Dm��2�x�p�j��1�

The right-hand side tends to 0 as j �� by definition of
convergence in � , hence ���mDp�� ��j�� � 0 uniformly, so that
�� ��j�� � 0 in � as j ��. The same proof applies to �� .

1.3.2.5.3. Definition and examples of tempered
distributions

A distribution T � ����n� is said to be tempered if it can be
extended into a continuous linear functional on � .

If � ���n� is the topological dual of � ��n�, and if S � � ���n�,
then its restriction to � is a tempered distribution; conversely, if
T � �� is tempered, then its extension to � is unique (because � is
dense in � ), hence it defines an element S of � �. We may therefore
identify � � and the space of tempered distributions.

A distribution with compact support is tempered, i.e. � � � � �. By
transposition of the corresponding properties of � , it is readily
established that the derivative, translate or product by a polynomial
of a tempered distribution is still a tempered distribution.

These inclusion relations may be summarized as follows: since �
contains � but is contained in � , the reverse inclusions hold for the
topological duals, and hence � � contains � � but is contained in ��.

A locally summable function f on �n will be said to be of
polynomial growth if � f �x�� can be majorized by a polynomial in
�x� as �x� � �. It is easily shown that such a function f defines a
tempered distribution Tf via


Tf ,�� � �
�n

f �x���x� dnx�

In particular, polynomials over �n define tempered distributions,
and so do functions in � . The latter remark, together with the
transposition identity (Section 1.3.2.4.4), invites the extension of �
and �� from � to � �.

1.3.2.5.4. Fourier transforms of tempered distributions

The Fourier transform � �T � and cotransform �� �T � of a tempered
distribution T are defined by


� �T �,�� � 
T ,� ����

 �� �T �,�� � 
T , �� ����

for all test functions � � � . Both � �T � and �� �T � are themselves
tempered distributions, since the maps � ��� � ��� and � ��� �� ���

are both linear and continuous for the topology of � . In the same
way that x and � have been used consistently as arguments for � and
� ���, respectively, the notation Tx and � �T �� will be used to
indicate which variables are involved.

When T is a distribution with compact support, its Fourier
transform may be written

� �Tx�� � 
Tx, exp��2�i� � x��
since the function x ��� exp��2�i� � x� is in � while Tx � � �. It
can be shown, as in Section 1.3.2.4.2, to be analytically continuable
into an entire function over �n.

1.3.2.5.5. Transposition of basic properties

The duality between differentiation and multiplication by a
monomial extends from � to � � by transposition:

� �Dp
xTx�� � �2�i��p� �Tx��

Dp
� �� �Tx�� � � � ���2�ix�pTx�� �

Analogous formulae hold for �� , with i replaced by �i.
The formulae expressing the duality between translation and

phase shift, e.g.

� ��aTx�� � exp��2�ia � ��� �Tx��
���� �Tx�� � � � �exp�2�i� � x�Tx�� ;

between a linear change of variable and its contragredient, e.g.

� �A�T � � �det A���A�1�T ��� �T �;
are obtained similarly by transposition from the corresponding
identities in � . They give a transposition formula for an affine
change of variables x ��� S�x� � Ax b with non-singular matrix
A:

� �S�T � � exp��2�i� � b�� �A�T �
� exp��2�i� � b��det A���A�1�T ��� �T �,

with a similar result for �� , replacing �i by +i.
Conjugate symmetry is obtained similarly:

� ��T � � �� �T �,� ���T � � � �T �,
with the same identities for �� .

The tensor product property also transposes to tempered
distributions: if U � � ���m�, V � � ���n�,

� �Ux � Vy� � � �U �� � � �V ��
�� �Ux � Vy� � �� �U �� � �� �V �� �

1.3.2.5.6. Transforms of 	-functions

Since 	 has compact support,

� �	x�� � 
	x, exp��2�i� � x�� � 1� , i�e� � �	� � 1�

It is instructive to show that conversely � �1� � 	 without invoking
the reciprocity theorem. Since 
j1 � 0 for all j � 1, � � � , n, it
follows from Section 1.3.2.3.9.4 that � �1� � c	; the constant c can
be determined by using the invariance of the standard Gaussian G
established in Section 1.3.2.4.3:


� �1�x, Gx� � 
1� , G� � � 1;

hence c � 1. Thus, � �1� � 	.
The basic properties above then read (using multi-indices to

denote differentiation):
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