
The Poisson kernel

Pr�x� � 1� 2
��

m�1

rm cos 2�mx

� 1� r2

1� 2r cos 2�mx� r2

with 0 � r � 1 gives rise to an Abel summation procedure
[Tolstov (1962, p. 162); Whittaker & Watson (1927, p. 57)] since

�Pr � f ��x� � �
m	�

cm� f �r
m
 exp�2�imx��

Compared with the other kernels, Pr has the disadvantage of not
being a trigonometric polynomial; however, Pr is the real part of the
Cauchy kernel (Cartan, 1961; Ahlfors, 1966):

Pr�x� � ��
1� r exp�2�ix�
1� r exp�2�ix�
� �

and hence provides a link between trigonometric series and analytic
functions of a complex variable.

Other methods of summation involve forming a moving average
of f by convolution with other sequences of functions �p�x� besides
Dp of Fp which ‘tend towards �’ as p ��. The convolution is
performed by multiplying the Fourier coefficients of f by those of
�p, so that one forms the quantities

S�p� f ��x� � �

m
�p

cm��p�cm� f � exp�2�imx��

For instance the ‘sigma factors’ of Lanczos (Lanczos, 1966, p. 65),
defined by

�m � sinm��p�
m��p

,

lead to a summation procedure whose behaviour is intermediate
between those using the Dirichlet and the Fejér kernels; it
corresponds to forming a moving average of f by convolution with

�p � p��1��2p�	 1��2p���Dp,

which is itself the convolution of a ‘rectangular pulse’ of width 1�p
and of the Dirichlet kernel of order p.

A review of the summation problem in crystallography is given
in Section 1.3.4.2.1.3.

1.3.2.6.10.2. Classical L2 theory
The space L2����� of (equivalence classes of) square-integrable

complex-valued functions f on the circle is contained in L1�����,
since by the Cauchy–Schwarz inequality

� f �2
1 �

�1

0

 f �x�
 � 1 dx

� �2

� �1

0

 f �x�
2 dx

� �
�1

0
12 dx

� �
� � f �2

2 � ��

Thus all the results derived for L1 hold for L2, a great simplification
over the situation in � or �n where neither L1 nor L2 was contained
in the other.

However, more can be proved in L2, because L2 is a Hilbert space
(Section 1.3.2.2.4) for the inner product

� f , g� � �1

0
f �x�g�x� dx,

and because the family of functions �exp�2�imx��m	� constitutes
an orthonormal Hilbert basis for L2.

The sequence of Fourier coefficients cm� f � of f 	 L2 belongs to
the space 
2��� of square-summable sequences:

�
m	�


cm� f �
2 � ��

Conversely, every element c � �cm� of 
2 is the sequence of Fourier
coefficients of a unique function in L2. The inner product

�c, d� � �
m	�

cmdm

makes 
2 into a Hilbert space, and the map from L2 to 
2 established
by the Fourier transformation is an isometry (Parseval/Plancherel):

� f �L2 � �c� f ��
2

or equivalently:

� f , g� � �c� f �, c�g���
This is a useful property in applications, since ( f , g) may be
calculated either from f and g themselves, or from their Fourier
coefficients c� f � and c�g� (see Section 1.3.4.4.6) for crystallo-
graphic applications).

By virtue of the orthogonality of the basis �exp�2�imx��m	�, the
partial sum Sp� f � is the best mean-square fit to f in the linear
subspace of L2 spanned by �exp�2�imx��
m
�p, and hence (Bessel’s
inequality)

�

m
�p


cm� f �
2 � � f �2
2 �

�

M 
�p


cM � f �
2 � � f �2
2�

1.3.2.6.10.3. The viewpoint of distribution theory
The use of distributions enlarges considerably the range of

behaviour which can be accommodated in a Fourier series, even in
the case of general dimension n where classical theories meet with
even more difficulties than in dimension 1.

Let �wm�m	� be a sequence of complex numbers with 
wm

growing at most polynomially as 
m
 � �, say 
wm
 � C
m
K .
Then the sequence �wm��2�im�K�2�m	� is in 
2 and even defines a
continuous function f 	 L2����� and an associated tempered
distribution Tf 	 �������. Differentiation of Tf �K � 2� times
then yields a tempered distribution whose Fourier transform leads to
the original sequence of coefficients. Conversely, by the structure
theorem for distributions with compact support (Section
1.3.2.3.9.7), the motif T0 of a �-periodic distribution is a derivative
of finite order of a continuous function; hence its Fourier
coefficients will grow at most polynomially with 
m
 as 
m
 � �.

Thus distribution theory allows the manipulation of Fourier
series whose coefficients exhibit polynomial growth as their order
goes to infinity, while those derived from functions had to tend to 0
by virtue of the Riemann–Lebesgue lemma. The distribution-
theoretic approach to Fourier series holds even in the case of general
dimension n, where classical theories meet with even more
difficulties (see Ash, 1976) than in dimension 1.

1.3.2.7. The discrete Fourier transformation

1.3.2.7.1. Shannon’s sampling theorem and interpolation
formula

Let � 	 ���n� be such that � � � �� has compact support K.
Let � be sampled at the nodes of a lattice ��, yielding the lattice
distribution R� � �. The Fourier transform of this sampled version
of � is

� R� � �� � 
det A
�R � ��,
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which is essentially � periodized by period lattice � � �����, with
period matrix A.

Let us assume that � is such that the translates of K by different
period vectors of � are disjoint. Then we may recover � from R � �
by masking the contents of a ‘unit cell’ � of � (i.e. a fundamental
domain for the action of � in �n) whose boundary does not meet K.
If �� is the indicator function of � , then

� � �� � �R � ���
Transforming both sides by �� yields

� � �� �� � 1

det A
� R

� � ��
� �

,

i.e.

� � 1
V

�� �� �
� 	

� �R� � ��

since 
det A
 is the volume V of � .
This interpolation formula is traditionally credited to Shannon

(1949), although it was discovered much earlier by Whittaker
(1915). It shows that � may be recovered from its sample values on
�� (i.e. from R� � �) provided �� is sufficiently fine that no overlap
(or ‘aliasing’) occurs in the periodization of � by the dual lattice �.
The interpolation kernel is the transform of the normalized indicator
function of a unit cell of � containing the support K of �.

If K is contained in a sphere of radius 1�� and if � and �� are
rectangular, the length of each basis vector of � must be greater
than 2��, and thus the sampling interval must be smaller than ��2.
This requirement constitutes the Shannon sampling criterion.

1.3.2.7.2. Duality between subdivision and decimation of
period lattices

1.3.2.7.2.1. Geometric description of sublattices
Let �A be a period lattice in �n with matrix A, and let ��A be the

lattice reciprocal to �A, with period matrix �A�1�T . Let �B, B,��B be
defined similarly, and let us suppose that �A is a sublattice of �B,
i.e. that �B � �A as a set.

The relation between �A and �B may be described in two
different fashions: (i) multiplicatively, and (ii) additively.

(i) We may write A � BN for some non-singular matrix N with
integer entries. N may be viewed as the period matrix of the coarser
lattice �A with respect to the period basis of the finer lattice �B. It
will be more convenient to write A � DB, where D � BNB�1 is a
rational matrix (with integer determinant since det D � det N) in
terms of which the two lattices are related by

�A � D�B�

(ii) Call two vectors in �B congruent modulo �A if their
difference lies in �A. Denote the set of congruence classes (or
‘cosets’) by �B��A, and the number of these classes by �B � �A�.
The ‘coset decomposition’

�B �



�	�B��A

�� � �A�

represents �B as the disjoint union of �B � �A� translates of
�A� �B��A is a finite lattice with �B � �A� elements, called the
residual lattice of �B modulo �A.

The two descriptions are connected by the relation
�B � �A� � det D � det N, which follows from a volume calcula-
tion. We may also combine (i) and (ii) into

�iii� �B �



�	�B��A

�� � D�B�

which may be viewed as the n-dimensional equivalent of the
Euclidean algorithm for integer division: � is the ‘remainder’ of the
division by �A of a vector in �B, the quotient being the matrix D.

1.3.2.7.2.2. Sublattice relations for reciprocal lattices
Let us now consider the two reciprocal lattices ��A and ��B. Their

period matrices �A�1�T and �B�1�T are related by:
�B�1�T � �A�1�T NT , where NT is an integer matrix; or equivalently
by �B�1�T � DT �A�1�T . This shows that the roles are reversed in
that ��B is a sublattice of ��A, which we may write:

�i�� ��B � DT��A

�ii�� ��A �



��	��A���B
��� � ��B��

The residual lattice ��A��
�
B is finite, with ��A � ��B� �

det D � det N � �B � �A�, and we may again combine �i�� and
�ii�� into

�iii�� ��A �



��	��A���B
��� � DT��A��

1.3.2.7.2.3. Relation between lattice distributions
The above relations between lattices may be rewritten in terms of

the corresponding lattice distributions as follows:

�i� RA � 1

det D
D

�R�
B

�ii� RB � TB�A � RA

�i�� R�
B �

1

det D
 �D

T��R�
A

�ii�� R�
A � T�

A�B � R�
B

where

TB�A �
�

�	�B��A

����

and

T�
A�B �

�
��	��A���B

�����

are (finite) residual-lattice distributions. We may incorporate the
factor 1�
det D
 in (i) and �i�� into these distributions and define

SB�A � 1

det D
 TB�A, S�A�B �

1

det D
 T

�
A�B�

Since 
det D
 � �B � �A� � ��A � ��B�, convolution with SB�A
and S�A�B has the effect of averaging the translates of a distribution
under the elements (or ‘cosets’) of the residual lattices �B��A and
��A��

�
B, respectively. This process will be called ‘coset averaging’.

Eliminating RA and RB between (i) and (ii), and R�
A and R�

B between
�i�� and �ii��, we may write:

�i�� RA � D��SB�A � RA�
�ii�� RB � SB�A � �D�RB�
�i��� R�

B � �DT ���S�A�B � R�
B�

�ii��� R�
A � S�A�B � �DT��R�

A��
These identities show that period subdivision by convolution with
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SB�A (respectively S�A�B) on the one hand, and period decimation by
‘dilation’ by D� on the other hand, are mutually inverse operations
on RA and RB (respectively R�

A and R�
B).

1.3.2.7.2.4. Relation between Fourier transforms
Finally, let us consider the relations between the Fourier

transforms of these lattice distributions. Recalling the basic relation
of Section 1.3.2.6.5,

� RA� � 1

det A
R

�
A

� 1

det DB
 T

�
A�B � R�

B by (ii)�

� 1

det D
 T

�
A�B

� 	
� 1


det B
R
�
B

� 	

i.e.

�iv� � RA� � S�A�B � � RB�
and similarly:

�v� � R�
B� � SB�A � � R�

A��
Thus RA (respectively R�

B), a decimated version of RB
(respectively R�

A), is transformed by � into a subdivided version
of � RB� (respectively � R�

A�).
The converse is also true:

� RB� � 1

det B
R

�
B

� 1

det B


1

det D
 �D

T��R�
A by (i)�

� �DT �� 1

det A
R

�
A

� 	

i.e.

�iv�� � RB� � �DT ��� RA�
and similarly

�v�� � R�
A� � D�� R�

B��
Thus RB (respectively R�

A), a subdivided version of RA
(respectively R�

B) is transformed by � into a decimated version of
� RA� (respectively � R�

B�). Therefore, the Fourier transform
exchanges subdivision and decimation of period lattices for lattice
distributions.

Further insight into this phenomenon is provided by applying ��
to both sides of (iv) and (v) and invoking the convolution theorem:

�iv��� RA � �� S�A�B� � RB

�v��� R�
B � �� SB�A� � R�

A�

These identities show that multiplication by the transform of the
period-subdividing distribution S�A�B (respectively SB�A) has the
effect of decimating RB to RA (respectively R�

A to R�
B). They clearly

imply that, if � 	 �B��A and �� 	 ��A��
�
B, then

�� S�A�B���� � 1 if � � 0 �i�e� if � belongs

to the class of �A�,
� 0 if � �� 0;

�� SB�A����� � 1 if �� � 0 �i�e� if �� belongs

to the class of ��B�,
� 0 if �� �� 0�

Therefore, the duality between subdivision and decimation may be
viewed as another aspect of that between convolution and
multiplication.

There is clearly a strong analogy between the sampling/
periodization duality of Section 1.3.2.6.6 and the decimation/
subdivision duality, which is viewed most naturally in terms of
subgroup relationships: both sampling and decimation involve
restricting a function to a discrete additive subgroup of the domain
over which it is initially given.

1.3.2.7.2.5. Sublattice relations in terms of periodic
distributions

The usual presentation of this duality is not in terms of lattice
distributions, but of periodic distributions obtained by convolving
them with a motif.

Given T0 	 � ���n�, let us form RA � T0, then decimate its
transform �1�
det A
�R�

A � �� T0� by keeping only its values at the
points of the coarser lattice ��B � DT��A; as a result, R�

A is replaced
by �1�
det D
�R�

B, and the reverse transform then yields

1

det D
RB � T0 � SB�A � �RA � T0� by (ii),

which is the coset-averaged version of the original RA � T0. The
converse situation is analogous to that of Shannon’s sampling
theorem. Let a function � 	 ���n� whose transform � � � �� has
compact support be sampled as RB � � at the nodes of �B. Then

� RB � �� � 1

det B
 �R

�
B � ��

is periodic with period lattice ��B. If the sampling lattice �B is
decimated to �A � D�B, the inverse transform becomes

� RA � �� � 1

det D
 �R

�
A � ��

� S�A�B � �R�
B � �� by (ii)�,

hence becomes periodized more finely by averaging over the cosets
of ��A��

�
B. With this finer periodization, the various copies of Supp

� may start to overlap (a phenomenon called ‘aliasing’), indicating
that decimation has produced too coarse a sampling of �.

1.3.2.7.3. Discretization of the Fourier transformation

Let �0 	 ���n� be such that �0 � � �0� has compact support
(�0 is said to be band-limited). Then � � RA � �0 is �A-periodic,
and � � � �� � �1�
det A
�R�

A � �0 is such that only a finite
number of points ��A of ��A have a non-zero Fourier coefficient
�0���A� attached to them. We may therefore find a decimation ��B �
DT��A of ��A such that the distinct translates of Supp �0 by vectors
of ��B do not intersect.

The distribution � can be uniquely recovered from R�
B � � by the

procedure of Section 1.3.2.7.1, and we may write:

R�
B � � � 1


det A
R
�
B � �R�

A � �0�

� 1

det A
R

�
A � �R�

B � �0�

� 1

det A
R

�
B � T�

A�B � �R�
B � �0��;

these rearrangements being legitimate because �0 and T�
A�B have

compact supports which are intersection-free under the action of
��B. By virtue of its ��B-periodicity, this distribution is entirely
characterized by its ‘motif’ �� with respect to ��B:
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�� � 1

det A
 T

�
A�B � �R�

B � �0��

Similarly, � may be uniquely recovered by Shannon interpola-
tion from the distribution sampling its values at the nodes of �B �
D�1�A��B is a subdivision of �B). By virtue of its �A-periodicity,
this distribution is completely characterized by its motif:

�� � TB�A � � � TB�A � �R�
A � �0��

Let � 	 �B��A and �� 	 ��A��
�
B, and define the two sets of

coefficients

�1� ����� � ��� � �A� for any �A 	 �A

�all choices of �A give the same ���,
�2� ������ � �0��� � ��B� for the unique ��B (if it exists)

such that �� � ��B 	 Supp �0,
� 0 if no such ��B exists�

Define the two distributions

 � �
�	�B��A

���������

and

� � �
��	��A���B

������������

The relation between  and � has two equivalent forms:

�i� RA �  � � R�
B � ��

�ii� �� RA � � � R�
B � ��

By (i), RA �  � 
det B
RB � � ��. Both sides are weighted
lattice distributions concentrated at the nodes of �B, and equating
the weights at �B � � � �A gives

����� � 1

det D


�

��	��A���B

������ exp�2�i�� � �� � �A���

Since �� 	 ��A, �� � �A is an integer, hence

����� � 1

det D


�

��	��A���B

������ exp��2�i�� � ���

By (ii), we have

1

det A
R

�
B � T�

A�B � �R�
B � �0�� � 1


det A

�� RA � ��

Both sides are weighted lattice distributions concentrated at the
nodes of ��B, and equating the weights at ��A � �� � ��B gives

������ � �
�	�B��A

����� exp�2�i� � ��� � ��B���

Since � 	 �B, � � ��B is an integer, hence

������ � �
�	�B��A

����� exp��2�i� � ����

Now the decimation/subdivision relations between �A and �B
may be written:

A � DB � BN,

so that

� � B� for � 	 �n

�� � �A�1�T�� for �� 	 �n

with �A�1�T � �B�1�T�N�1�T , hence finally

�� � � � � � �� � �� � �N�1���

Denoting ���B�� by ���� and ���A�1�T��� by 	����, the relation
between  and � may be written in the equivalent form

�i� ���� � 1

det N


�

��	�n�NT�n

	���� exp�2�i�� � �N�1���

�ii� 	���� �
�

�	�n�N�n

���� exp�2�i�� � �N�1���,

where the summations are now over finite residual lattices in
standard form.

Equations (i) and (ii) describe two mutually inverse linear
transformations � �N� and �� �N� between two vector spaces WN
and W �

N of dimension 
det N
. � �N� [respectively �� �N�] is the
discrete Fourier (respectively inverse Fourier) transform associated
to matrix N.

The vector spaces WN and W �
N may be viewed from two different

standpoints:
(1) as vector spaces of weighted residual-lattice distributions, of

the form ��x�TB�A and ��x�T�
A�B; the canonical basis of WN

(respectively W �
N) then consists of the ���� for � 	 �n�N�n

[respectively ����� for �� 	 �n�NT�n];
(2) as vector spaces of weight vectors for the 
det N
 �-functions

involved in the expression for TB�A (respectively T�
A�B); the

canonical basis of WN (respectively W �
N) consists of weight vectors

u� (respectively v��) giving weight 1 to element � (respectively ��)
and 0 to the others.

These two spaces are said to be ‘isomorphic’ (a relation denoted
�), the isomorphism being given by the one-to-one correspondence:

 ��
�
�������� � � ��

�
����u�

� ��
��
	��������� � 	 ��

��
	����v�� �

The second viewpoint will be adopted, as it involves only linear
algebra. However, it is most helpful to keep the first one in mind and
to think of the data or results of a discrete Fourier transform as
representing (through their sets of unique weights) two periodic
lattice distributions related by the full, distribution-theoretic Fourier
transform.

We therefore view WN (respectively W �
N) as the vector space of

complex-valued functions over the finite residual lattice �B��A
(respectively ��A��

�
B) and write:

WN � L��B��A� � L��n�N�n�
W �

N � L���A���B� � L��n�NT�n�

since a vector such as � is in fact the function � ��� ����.
The two spaces WN and W �

N may be equipped with the following
Hermitian inner products:

��,��W ��
�
��������

��,	�W � ��
�
�����	����,

which makes each of them into a Hilbert space. The canonical bases
�u�
� 	 �n�N�n� and �v�� 
�� 	 �n�NT�n� and WN and W �

N are
orthonormal for their respective product.
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1.3.2.7.4. Matrix representation of the discrete Fourier
transform (DFT)

By virtue of definitions (i) and (ii),

� �N�v�� � 1

det N


�

�

exp�2�i�� � �N�1���u�

�� �N�u� �
�

��
exp�2�i�� � �N�1���v��

so that � �N� and �� �N� may be represented, in the canonical bases
of WN and W �

N, by the following matrices:

� �N����� �
1


det N
 exp�2�i�� � �N�1���

 �� �N����� � exp�2�i�� � �N�1����
When N is symmetric, �n�N�n and �n�NT�n may be identified

in a natural manner, and the above matrices are symmetric.
When N is diagonal, say N � diag��1, �2, 
 
 
 , �n�, then the

tensor product structure of the full multidimensional Fourier
transform (Section 1.3.2.4.2.4)

� x � � x1 � � x2 � 
 
 
� � xn

gives rise to a tensor product structure for the DFT matrices. The
tensor product of matrices is defined as follows:

A� B �
a11B 
 
 
 a1nB




 






an1B 
 
 
 annB

�
�

�
���

Let the index vectors � and �� be ordered in the same way as the
elements in a Fortran array, e.g. for � with �1 increasing fastest, �2
next fastest, 
 
 
 , �n slowest; then

� �N� � � ��1� � � ��2� � 
 
 
� � ��n�,
where

� ��j���j	 ��j
� 1

�j
exp �2�i

��j �j

�j

� 	
,

and
�� �N� � �� ��1� � �� ��2� � 
 
 
� �� ��n�,

where

 ���j ���j 	 �j
� exp �2�i

��j �j

�j

� 	
�

1.3.2.7.5. Properties of the discrete Fourier transform

The DFT inherits most of the properties of the Fourier
transforms, but with certain numerical factors (‘Jacobians’) due to
the transition from continuous to discrete measure.

(1) Linearity is obvious.
(2) Shift property. If �������� � ��� � �� and ����	����� �

	��� � ���, where subtraction takes place by modular vector
arithmetic in �n�N�n and �n�NT�n, respectively, then the
following identities hold:

�� �N��������� � exp�2�i�� � �N�1��� �� �N�������
� �N����	���� � exp�2�i�� � �N�1���� �N�	�����

(3) Differentiation identities. Let vectors � and � be constructed
from �0 	 ���n� as in Section 1.3.2.7.3, hence be related by the
DFT. If Dp� designates the vector of sample values of Dp

x�
0 at the

points of �B��A, and Dp� the vector of values of Dp
��

0 at points of

��A��
�
B, then for all multi-indices p � �p1, p2, 
 
 
 , pn�

�Dp����� � �� �N���2�i���p�����
�Dp������ � � �N���2�i��p� �����

or equivalently

� �N�Dp� ����� � ��2�i���p�����
�� �N�Dp����� � ��2�i��p�����

(4) Convolution property. Let � 	 WN and � 	 W �
N (respec-

tively � and �) be related by the DFT, and define

�� � ����� � �
��	�n�N�n

�������� � ���

�� ������� � �

��� 	�n�NT�n

����� ����� � ��
� ��

Then
�� �N�� ������ � 
det N
��������
� �N�� � � ����� � ����������

and

�� �N�� � � ����� � 1

det N
 �� �������

� �N�������� � �� � ������
Since addition on �n�N�n and �n�NT�n is modular, this type of
convolution is called cyclic convolution.

(5) Parseval/Plancherel property. If �, �, �, � are as above,
then

�� �N���,� �N����W � 1

det N
 ��,��W �

� �� �N���, �� �N�� ��W � 1

det N
 ��,��W �

(6) Period 4. When N is symmetric, so that the ranges of indices �
and �� can be identified, it makes sense to speak of powers of � �N�
and �� �N�. Then the ‘standardized’ matrices �1�
det N
1�2�� �N�
and �1�
det N
1�2� �� �N� are unitary matrices whose fourth power is
the identity matrix (Section 1.3.2.4.3.4); their eigenvalues are
therefore �1 and �i.

1.3.3. Numerical computation of the discrete Fourier
transform

1.3.3.1. Introduction

The Fourier transformation’s most remarkable property is
undoubtedly that of turning convolution into multiplication. As
distribution theory has shown, other valuable properties – such as
the shift property, the conversion of differentiation into multi-
plication by monomials, and the duality between periodicity and
sampling – are special instances of the convolution theorem.

This property is exploited in many areas of applied mathematics
and engineering (Campbell & Foster, 1948; Sneddon, 1951;
Champeney, 1973; Bracewell, 1986). For example, the passing of
a signal through a linear filter, which results in its being convolved
with the response of the filter to a �-function ‘impulse’, may be
modelled as a multiplication of the signal’s transform by the
transform of the impulse response (also called transfer function).
Similarly, the solution of systems of partial differential equations
may be turned by Fourier transformation into a division problem for
distributions. In both cases, the formulations obtained after Fourier
transformation are considerably simpler than the initial ones, and
lend themselves to constructive solution techniques.
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