1.3. FOURIER TRANSFORMS IN CRYSTALLOGRAPHY

The Poisson kernel

$$P_r(x) = 1 + 2\sum_{m=1}^{\infty} r^m \cos 2\pi mx$$
$$= \frac{1 - r^2}{1 - 2r \cos 2\pi mx + r^2}$$

with $0 \le r < 1$ gives rise to an Abel summation procedure [Tolstov (1962, p. 162); Whittaker & Watson (1927, p. 57)] since

$$(P_r * f)(x) = \sum_{m \in \mathbb{Z}} c_m(f) r^{|m|} \exp(2\pi i m x)$$

Compared with the other kernels, P_r has the disadvantage of not being a trigonometric polynomial; however, P_r is the real part of the Cauchy kernel (Cartan, 1961; Ahlfors, 1966):

$$P_r(x) = \Re e \left[\frac{1 + r \exp(2\pi i x)}{1 - r \exp(2\pi i x)} \right]$$

and hence provides a link between trigonometric series and analytic functions of a complex variable.

Other methods of summation involve forming a moving average of f by convolution with other sequences of functions $\alpha_p(\mathbf{x})$ besides D_p of F_p which 'tend towards δ ' as $p \to \infty$. The convolution is performed by multiplying the Fourier coefficients of f by those of α_p , so that one forms the quantities

$$S'_p(f)(x) = \sum_{|m| \le p} c_m(\alpha_p) c_m(f) \exp(2\pi i m x).$$

For instance the 'sigma factors' of Lanczos (Lanczos, 1966, p. 65), defined by

$$\sigma_m = \frac{\sin[m\pi/p]}{m\pi/p}$$

lead to a summation procedure whose behaviour is intermediate between those using the Dirichlet and the Fejér kernels; it corresponds to forming a moving average of f by convolution with

$$\alpha_p = p\chi_{[-1/(2p), 1/(2p)]} * D_p,$$

which is itself the convolution of a 'rectangular pulse' of width 1/p and of the Dirichlet kernel of order p.

A review of the summation problem in crystallography is given in Section 1.3.4.2.1.3.

1.3.2.6.10.2. Classical L^2 theory

The space $L^2(\mathbb{R}/\mathbb{Z})$ of (equivalence classes of) square-integrable complex-valued functions f on the circle is contained in $L^1(\mathbb{R}/\mathbb{Z})$, since by the Cauchy–Schwarz inequality

$$\|f\|_{1}^{2} = \left(\int_{0}^{1} |f(x)| \times 1 \, \mathrm{d}x\right)^{2}$$

$$\leq \left(\int_{0}^{1} |f(x)|^{2} \, \mathrm{d}x\right) \left(\int_{0}^{1} 1^{2} \, \mathrm{d}x\right) = \|f\|_{2}^{2} \leq \infty.$$

Thus all the results derived for L^1 hold for L^2 , a great simplification over the situation in \mathbb{R} or \mathbb{R}^n where neither L^1 nor L^2 was contained in the other.

However, more can be proved in L^2 , because L^2 is a Hilbert space (Section 1.3.2.2.4) for the inner product

$$(f,g) = \int_{0}^{1} \overline{f(x)}g(x) \,\mathrm{d}x,$$

and because the family of functions $\{\exp(2\pi i m x)\}_{m \in \mathbb{Z}}$ constitutes an orthonormal Hilbert basis for L^2 .

The sequence of Fourier coefficients $c_m(f)$ of $f \in L^2$ belongs to the space $\ell^2(\mathbb{Z})$ of square-summable sequences:

$$\sum_{m\in\mathbb{Z}}|c_m(f)|^2 < \infty.$$

Conversely, every element $c = (c_m)$ of ℓ^2 is the sequence of Fourier coefficients of a unique function in L^2 . The inner product

$$(c,d) = \sum_{m \in \mathbb{Z}} \overline{c_m} d_m$$

makes ℓ^2 into a Hilbert space, and the map from L^2 to ℓ^2 established by the Fourier transformation is an isometry (Parseval/Plancherel):

$$||f||_{L^2} = ||c(f)||_{\ell^2}$$

or equivalently:

$$(f,g) = (c(f), c(g)).$$

This is a useful property in applications, since (f, g) may be calculated either from f and g themselves, or from their Fourier coefficients c(f) and c(g) (see Section 1.3.4.4.6) for crystallographic applications).

By virtue of the orthogonality of the basis $\{\exp(2\pi i m x)\}_{m \in \mathbb{Z}}$, the partial sum $S_p(f)$ is the best mean-square fit to f in the linear subspace of L^2 spanned by $\{\exp(2\pi i m x)\}_{|m| \leq p}$, and hence (Bessel's inequality)

$$\sum_{m|\leq p} |c_m(f)|^2 = ||f||_2^2 - \sum_{|M|\geq p} |c_M(f)|^2 \le ||f||_2^2.$$

1.3.2.6.10.3. The viewpoint of distribution theory

The use of distributions enlarges considerably the range of behaviour which can be accommodated in a Fourier series, even in the case of general dimension n where classical theories meet with even more difficulties than in dimension 1.

Let $\{w_m\}_{m\in\mathbb{Z}}$ be a sequence of complex numbers with $|w_m|$ growing at most polynomially as $|m| \to \infty$, say $|w_m| \leq C|m|^K$. Then the sequence $\{w_m/(2\pi i m)^{K+2}\}_{m\in\mathbb{Z}}$ is in ℓ^2 and even defines a *continuous* function $f \in L^2(\mathbb{R}/\mathbb{Z})$ and an associated tempered distribution $T_f \in \mathscr{Q}'(\mathbb{R}/\mathbb{Z})$. Differentiation of T_f (K+2) times then yields a tempered distribution whose Fourier transform leads to the original sequence of coefficients. Conversely, by the structure theorem for distributions with compact support (Section 1.3.2.3.9.7), the motif T^0 of a \mathbb{Z} -periodic distribution is a derivative of finite order of a continuous function; hence its Fourier coefficients will grow at most polynomially with |m| as $|m| \to \infty$.

Thus distribution theory allows the manipulation of Fourier series whose coefficients exhibit polynomial growth as their order goes to infinity, while those derived from functions had to tend to 0 by virtue of the Riemann–Lebesgue lemma. The distribution-theoretic approach to Fourier series holds even in the case of general dimension n, where classical theories meet with even more difficulties (see Ash, 1976) than in dimension 1.

1.3.2.7. The discrete Fourier transformation

1.3.2.7.1. Shannon's sampling theorem and interpolation formula

Let $\varphi \in \mathscr{E}(\mathbb{R}^n)$ be such that $\Phi = \mathscr{F}[\varphi]$ has compact support *K*. Let φ be sampled at the nodes of a lattice Λ^* , yielding the lattice distribution $\mathbb{R}^* \times \varphi$. The Fourier transform of this sampled version of φ is

$$\mathscr{F}[R^* \times \varphi] = |\det \mathbf{A}|(R * \Phi)|$$

which is essentially Φ periodized by period lattice $\Lambda = (\Lambda^*)^*$, with period matrix **A**.

Let us assume that Λ is such that the translates of *K* by different period vectors of Λ are disjoint. Then we may recover Φ from $R * \Phi$ by masking the contents of a 'unit cell' \mathcal{V} of Λ (*i.e.* a fundamental domain for the action of Λ in \mathbb{R}^n) whose boundary does not meet *K*. If $\chi_{\mathcal{V}}$ is the indicator function of \mathcal{V} , then

$$\Phi = \chi_{\mathscr{V}} \times (R * \Phi).$$

Transforming both sides by $\overline{\mathscr{F}}$ yields

$$\varphi = \bar{\mathscr{F}} \bigg[\chi_{\mathscr{V}} \times \frac{1}{|\det \mathbf{A}|} \mathscr{F}[R^* \times \varphi] \bigg],$$

i.e.

$$arphi = \left(rac{1}{V}ar{\mathscr{F}}[\chi_{\mathscr{V}}]
ight) * (R^* imes arphi)$$

since $|\det \mathbf{A}|$ is the volume V of \mathcal{V} .

This interpolation formula is traditionally credited to Shannon (1949), although it was discovered much earlier by Whittaker (1915). It shows that φ may be recovered from its sample values on Λ^* (*i.e.* from $R^* \times \varphi$) provided Λ^* is sufficiently fine that no overlap (or 'aliasing') occurs in the periodization of Φ by the dual lattice Λ . The interpolation kernel is the transform of the normalized indicator function of a unit cell of Λ containing the support *K* of Φ .

If *K* is contained in a sphere of radius $1/\Delta$ and if Λ and Λ^* are rectangular, the length of each basis vector of Λ must be greater than $2/\Delta$, and thus the sampling interval must be smaller than $\Delta/2$. This requirement constitutes the Shannon sampling criterion.

1.3.2.7.2. Duality between subdivision and decimation of period lattices

1.3.2.7.2.1. Geometric description of sublattices

Let $\Lambda_{\mathbf{A}}$ be a period lattice in \mathbb{R}^n with matrix \mathbf{A} , and let $\Lambda_{\mathbf{A}}^*$ be the lattice reciprocal to $\Lambda_{\mathbf{A}}$, with period matrix $(A^{-1})^T$. Let $\Lambda_{\mathbf{B}}$, \mathbf{B} , $\Lambda_{\mathbf{B}}^*$ be defined similarly, and let us suppose that $\Lambda_{\mathbf{A}}$ is a sublattice of $\Lambda_{\mathbf{B}}$, *i.e.* that $\Lambda_{\mathbf{B}} \supset \Lambda_{\mathbf{A}}$ as a set.

The relation between Λ_A and Λ_B may be described in two different fashions: (i) multiplicatively, and (ii) additively.

(i) We may write $\mathbf{A} = \mathbf{B}\mathbf{N}$ for some non-singular matrix \mathbf{N} with integer entries. \mathbf{N} may be viewed as the period matrix of the coarser lattice $\Lambda_{\mathbf{A}}$ with respect to the period basis of the finer lattice $\Lambda_{\mathbf{B}}$. It will be more convenient to write $\mathbf{A} = \mathbf{D}\mathbf{B}$, where $\mathbf{D} = \mathbf{B}\mathbf{N}\mathbf{B}^{-1}$ is a rational matrix (with integer determinant since det $\mathbf{D} = \det \mathbf{N}$) in terms of which the two lattices are related by

$$\Lambda_{\mathbf{A}} = \mathbf{D}\Lambda_{\mathbf{B}}.$$

(ii) Call two vectors in $\Lambda_{\mathbf{B}}$ congruent modulo $\Lambda_{\mathbf{A}}$ if their difference lies in $\Lambda_{\mathbf{A}}$. Denote the set of congruence classes (or 'cosets') by $\Lambda_{\mathbf{B}}/\Lambda_{\mathbf{A}}$, and the number of these classes by $[\Lambda_{\mathbf{B}} : \Lambda_{\mathbf{A}}]$. The 'coset decomposition'

$$\Lambda_{\mathbf{B}} = \bigcup_{\ell \in \Lambda_{\mathbf{B}}/\Lambda_{\mathbf{A}}} (\ell + \Lambda_{\mathbf{A}})$$

represents $\Lambda_{\mathbf{B}}$ as the disjoint union of $[\Lambda_{\mathbf{B}} : \Lambda_{\mathbf{A}}]$ translates of $\Lambda_{\mathbf{A}}$. $\Lambda_{\mathbf{B}}/\Lambda_{\mathbf{A}}$ is a finite lattice with $[\Lambda_{\mathbf{B}} : \Lambda_{\mathbf{A}}]$ elements, called the *residual lattice* of $\Lambda_{\mathbf{B}}$ modulo $\Lambda_{\mathbf{A}}$.

The two descriptions are connected by the relation $[\Lambda_{\mathbf{B}} : \Lambda_{\mathbf{A}}] = \det \mathbf{D} = \det \mathbf{N}$, which follows from a volume calculation. We may also combine (i) and (ii) into

(iii)
$$\Lambda_{\mathbf{B}} = \bigcup_{\ell \in \Lambda_{\mathbf{B}} / \Lambda_{\mathbf{A}}} (\ell + \mathbf{D} \Lambda_{\mathbf{B}})$$

which may be viewed as the *n*-dimensional equivalent of the Euclidean algorithm for integer division: ℓ is the 'remainder' of the division by Λ_A of a vector in Λ_B , the quotient being the matrix **D**.

1.3.2.7.2.2. Sublattice relations for reciprocal lattices

Let us now consider the two *reciprocal lattices* $\Lambda_{\mathbf{A}}^*$ and $\Lambda_{\mathbf{B}}^*$. Their period matrices $(\mathbf{A}^{-1})^T$ and $(\mathbf{B}^{-1})^T$ are related by: $(\mathbf{B}^{-1})^T = (\mathbf{A}^{-1})^T \mathbf{N}^T$, where \mathbf{N}^T is an integer matrix; or equivalently by $(\mathbf{B}^{-1})^T = \mathbf{D}^T (\mathbf{A}^{-1})^T$. This shows that the roles are reversed in that $\Lambda_{\mathbf{B}}^*$ is a sublattice of $\Lambda_{\mathbf{A}}^*$, which we may write:

$$(\mathbf{i})^* \qquad \qquad \Lambda_{\mathbf{B}}^* = \mathbf{D}^T \Lambda_{\mathbf{A}}^*$$

(ii)^{*}
$$\Lambda_{\mathbf{A}}^* = \bigcup_{\ell^* \in \Lambda_{\mathbf{A}}^* / \Lambda_{\mathbf{B}}^*} (\ell^* + \Lambda_{\mathbf{B}}^*)$$

The residual lattice Λ_A^*/Λ_B^* is finite, with $[\Lambda_A^*:\Lambda_B^*] = \det \mathbf{D} = \det \mathbf{N} = [\Lambda_B:\Lambda_A]$, and we may again combine (i)^{*} and (ii)^{*} into

(iii)^{*}
$$\Lambda_{\mathbf{A}}^* = \bigcup_{\ell^* \in \Lambda_{\mathbf{A}}^* / \Lambda_{\mathbf{B}}^*} (\ell^* + \mathbf{D}^T \Lambda_{\mathbf{A}}^*).$$

1.3.2.7.2.3. *Relation between lattice distributions* The above relations between lattices may be rewritten in terms of the corresponding *lattice distributions* as follows:

(i)
$$R_{\mathbf{A}} = \frac{1}{|\det \mathbf{D}|} \mathbf{D}^{\#} R_{\mathbf{B}}^{*}$$

(ii)
$$R_{\mathbf{B}} = T_{\mathbf{B}/\mathbf{A}} * R_{\mathbf{A}}$$

(i)*
$$R_{\mathbf{B}}^* = \frac{1}{|\det \mathbf{D}|} (\mathbf{D}^T)^{\#} R_{\mathbf{A}}^*$$

$$(\mathrm{ii})^* \qquad \qquad R^*_{\mathbf{A}} = T^*_{\mathbf{A}/\mathbf{B}} * R^*_{\mathbf{B}}$$

where

and

$$T_{\mathbf{B}/\mathbf{A}} = \sum_{\boldsymbol{\ell} \in \Lambda_{\mathbf{B}}/\Lambda_{\mathbf{A}}} \delta_{(\boldsymbol{\ell})}$$

 $T^*_{\mathbf{A}/\mathbf{B}} = \sum_{\ell^* \in \Lambda^*_{\mathbf{A}}/\Lambda^*_{\mathbf{B}}} \delta_{(\ell^*)}$

are (finite) residual-lattice distributions. We may incorporate the factor $1/|\det \mathbf{D}|$ in (i) and (i)^{*} into these distributions and define

$$S_{\mathbf{B}/\mathbf{A}} = \frac{1}{|\det \mathbf{D}|} T_{\mathbf{B}/\mathbf{A}}, \quad S^*_{\mathbf{A}/\mathbf{B}} = \frac{1}{|\det \mathbf{D}|} T^*_{\mathbf{A}/\mathbf{B}}.$$

Since $|\det \mathbf{D}| = [\Lambda_{\mathbf{B}} : \Lambda_{\mathbf{A}}] = [\Lambda_{\mathbf{A}}^* : \Lambda_{\mathbf{B}}^*]$, convolution with $S_{\mathbf{B}/\mathbf{A}}$ and $S_{\mathbf{A}/\mathbf{B}}^*$ has the effect of *averaging* the translates of a distribution under the elements (or 'cosets') of the residual lattices $\Lambda_{\mathbf{B}}/\Lambda_{\mathbf{A}}$ and $\Lambda_{\mathbf{A}}^*/\Lambda_{\mathbf{B}}^*$, respectively. This process will be called 'coset averaging'. Eliminating $R_{\mathbf{A}}$ and $R_{\mathbf{B}}$ between (i) and (ii), and $R_{\mathbf{A}}^*$ and $R_{\mathbf{B}}^*$ between (i)* and (ii)*, we may write:

(i')
$$R_{\mathbf{A}} = \mathbf{D}^{\#}(S_{\mathbf{B}/\mathbf{A}} * R_{\mathbf{A}})$$

(ii')
$$R_{\mathbf{B}} = S_{\mathbf{B}/\mathbf{A}} * (\mathbf{D}^{\#} R_{\mathbf{B}})$$

$$(\mathbf{i}')^* \qquad \qquad \mathbf{R}^*_{\mathbf{B}} = (\mathbf{D}^T)^\# (S^*_{\mathbf{A}/\mathbf{B}} * \mathbf{R}^*_{\mathbf{B}})$$

$$(\mathrm{ii}')^* \qquad \qquad R^*_{\mathbf{A}} = S^*_{\mathbf{A}/\mathbf{B}} * [(\mathbf{D}^T)^{\#} R^*_{\mathbf{A}}].$$

These identities show that period subdivision by convolution with