
The Poisson kernel

Pr�x� � 1� 2
��

m�1

rm cos 2�mx

� 1� r2

1� 2r cos 2�mx� r2

with 0 � r � 1 gives rise to an Abel summation procedure
[Tolstov (1962, p. 162); Whittaker & Watson (1927, p. 57)] since

�Pr � f ��x� � �
m	�

cm� f �r
m
 exp�2�imx��

Compared with the other kernels, Pr has the disadvantage of not
being a trigonometric polynomial; however, Pr is the real part of the
Cauchy kernel (Cartan, 1961; Ahlfors, 1966):

Pr�x� � ��
1� r exp�2�ix�
1� r exp�2�ix�
� �

and hence provides a link between trigonometric series and analytic
functions of a complex variable.

Other methods of summation involve forming a moving average
of f by convolution with other sequences of functions �p�x� besides
Dp of Fp which ‘tend towards �’ as p ��. The convolution is
performed by multiplying the Fourier coefficients of f by those of
�p, so that one forms the quantities

S�p� f ��x� � �

m
�p

cm��p�cm� f � exp�2�imx��

For instance the ‘sigma factors’ of Lanczos (Lanczos, 1966, p. 65),
defined by

�m � sinm��p�
m��p

,

lead to a summation procedure whose behaviour is intermediate
between those using the Dirichlet and the Fejér kernels; it
corresponds to forming a moving average of f by convolution with

�p � p��1��2p�	 1��2p���Dp,

which is itself the convolution of a ‘rectangular pulse’ of width 1�p
and of the Dirichlet kernel of order p.

A review of the summation problem in crystallography is given
in Section 1.3.4.2.1.3.

1.3.2.6.10.2. Classical L2 theory
The space L2����� of (equivalence classes of) square-integrable

complex-valued functions f on the circle is contained in L1�����,
since by the Cauchy–Schwarz inequality

� f �2
1 �

�1

0

 f �x�
 � 1 dx

� �2

� �1

0

 f �x�
2 dx

� �
�1

0
12 dx

� �
� � f �2

2 � ��

Thus all the results derived for L1 hold for L2, a great simplification
over the situation in � or �n where neither L1 nor L2 was contained
in the other.

However, more can be proved in L2, because L2 is a Hilbert space
(Section 1.3.2.2.4) for the inner product

� f , g� � �1

0
f �x�g�x� dx,

and because the family of functions �exp�2�imx��m	� constitutes
an orthonormal Hilbert basis for L2.

The sequence of Fourier coefficients cm� f � of f 	 L2 belongs to
the space 
2��� of square-summable sequences:

�
m	�


cm� f �
2 � ��

Conversely, every element c � �cm� of 
2 is the sequence of Fourier
coefficients of a unique function in L2. The inner product

�c, d� � �
m	�

cmdm

makes 
2 into a Hilbert space, and the map from L2 to 
2 established
by the Fourier transformation is an isometry (Parseval/Plancherel):

� f �L2 � �c� f ��
2

or equivalently:

� f , g� � �c� f �, c�g���
This is a useful property in applications, since ( f , g) may be
calculated either from f and g themselves, or from their Fourier
coefficients c� f � and c�g� (see Section 1.3.4.4.6) for crystallo-
graphic applications).

By virtue of the orthogonality of the basis �exp�2�imx��m	�, the
partial sum Sp� f � is the best mean-square fit to f in the linear
subspace of L2 spanned by �exp�2�imx��
m
�p, and hence (Bessel’s
inequality)

�

m
�p


cm� f �
2 � � f �2
2 �

�

M 
�p


cM � f �
2 � � f �2
2�

1.3.2.6.10.3. The viewpoint of distribution theory
The use of distributions enlarges considerably the range of

behaviour which can be accommodated in a Fourier series, even in
the case of general dimension n where classical theories meet with
even more difficulties than in dimension 1.

Let �wm�m	� be a sequence of complex numbers with 
wm

growing at most polynomially as 
m
 � �, say 
wm
 � C
m
K .
Then the sequence �wm��2�im�K�2�m	� is in 
2 and even defines a
continuous function f 	 L2����� and an associated tempered
distribution Tf 	 �������. Differentiation of Tf �K � 2� times
then yields a tempered distribution whose Fourier transform leads to
the original sequence of coefficients. Conversely, by the structure
theorem for distributions with compact support (Section
1.3.2.3.9.7), the motif T0 of a �-periodic distribution is a derivative
of finite order of a continuous function; hence its Fourier
coefficients will grow at most polynomially with 
m
 as 
m
 � �.

Thus distribution theory allows the manipulation of Fourier
series whose coefficients exhibit polynomial growth as their order
goes to infinity, while those derived from functions had to tend to 0
by virtue of the Riemann–Lebesgue lemma. The distribution-
theoretic approach to Fourier series holds even in the case of general
dimension n, where classical theories meet with even more
difficulties (see Ash, 1976) than in dimension 1.

1.3.2.7. The discrete Fourier transformation

1.3.2.7.1. Shannon’s sampling theorem and interpolation
formula

Let � 	 ���n� be such that � � � �� has compact support K.
Let � be sampled at the nodes of a lattice ��, yielding the lattice
distribution R� � �. The Fourier transform of this sampled version
of � is

� R� � �� � 
det A
�R � ��,
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which is essentially � periodized by period lattice � � �����, with
period matrix A.

Let us assume that � is such that the translates of K by different
period vectors of � are disjoint. Then we may recover � from R � �
by masking the contents of a ‘unit cell’ � of � (i.e. a fundamental
domain for the action of � in �n) whose boundary does not meet K.
If �� is the indicator function of � , then

� � �� � �R � ���
Transforming both sides by �� yields

� � �� �� � 1

det A
� R

� � ��
� �

,

i.e.

� � 1
V

�� �� �
� 	

� �R� � ��

since 
det A
 is the volume V of � .
This interpolation formula is traditionally credited to Shannon

(1949), although it was discovered much earlier by Whittaker
(1915). It shows that � may be recovered from its sample values on
�� (i.e. from R� � �) provided �� is sufficiently fine that no overlap
(or ‘aliasing’) occurs in the periodization of � by the dual lattice �.
The interpolation kernel is the transform of the normalized indicator
function of a unit cell of � containing the support K of �.

If K is contained in a sphere of radius 1�� and if � and �� are
rectangular, the length of each basis vector of � must be greater
than 2��, and thus the sampling interval must be smaller than ��2.
This requirement constitutes the Shannon sampling criterion.

1.3.2.7.2. Duality between subdivision and decimation of
period lattices

1.3.2.7.2.1. Geometric description of sublattices
Let �A be a period lattice in �n with matrix A, and let ��A be the

lattice reciprocal to �A, with period matrix �A�1�T . Let �B, B,��B be
defined similarly, and let us suppose that �A is a sublattice of �B,
i.e. that �B � �A as a set.

The relation between �A and �B may be described in two
different fashions: (i) multiplicatively, and (ii) additively.

(i) We may write A � BN for some non-singular matrix N with
integer entries. N may be viewed as the period matrix of the coarser
lattice �A with respect to the period basis of the finer lattice �B. It
will be more convenient to write A � DB, where D � BNB�1 is a
rational matrix (with integer determinant since det D � det N) in
terms of which the two lattices are related by

�A � D�B�

(ii) Call two vectors in �B congruent modulo �A if their
difference lies in �A. Denote the set of congruence classes (or
‘cosets’) by �B��A, and the number of these classes by �B � �A�.
The ‘coset decomposition’

�B �



�	�B��A

�� � �A�

represents �B as the disjoint union of �B � �A� translates of
�A� �B��A is a finite lattice with �B � �A� elements, called the
residual lattice of �B modulo �A.

The two descriptions are connected by the relation
�B � �A� � det D � det N, which follows from a volume calcula-
tion. We may also combine (i) and (ii) into

�iii� �B �



�	�B��A

�� � D�B�

which may be viewed as the n-dimensional equivalent of the
Euclidean algorithm for integer division: � is the ‘remainder’ of the
division by �A of a vector in �B, the quotient being the matrix D.

1.3.2.7.2.2. Sublattice relations for reciprocal lattices
Let us now consider the two reciprocal lattices ��A and ��B. Their

period matrices �A�1�T and �B�1�T are related by:
�B�1�T � �A�1�T NT , where NT is an integer matrix; or equivalently
by �B�1�T � DT �A�1�T . This shows that the roles are reversed in
that ��B is a sublattice of ��A, which we may write:

�i�� ��B � DT��A

�ii�� ��A �



��	��A���B
��� � ��B��

The residual lattice ��A��
�
B is finite, with ��A � ��B� �

det D � det N � �B � �A�, and we may again combine �i�� and
�ii�� into

�iii�� ��A �



��	��A���B
��� � DT��A��

1.3.2.7.2.3. Relation between lattice distributions
The above relations between lattices may be rewritten in terms of

the corresponding lattice distributions as follows:

�i� RA � 1

det D
D

�R�
B

�ii� RB � TB�A � RA

�i�� R�
B �

1

det D
 �D

T��R�
A

�ii�� R�
A � T�

A�B � R�
B

where

TB�A �
�

�	�B��A

����

and

T�
A�B �

�
��	��A���B

�����

are (finite) residual-lattice distributions. We may incorporate the
factor 1�
det D
 in (i) and �i�� into these distributions and define

SB�A � 1

det D
 TB�A, S�A�B �

1

det D
 T

�
A�B�

Since 
det D
 � �B � �A� � ��A � ��B�, convolution with SB�A
and S�A�B has the effect of averaging the translates of a distribution
under the elements (or ‘cosets’) of the residual lattices �B��A and
��A��

�
B, respectively. This process will be called ‘coset averaging’.

Eliminating RA and RB between (i) and (ii), and R�
A and R�

B between
�i�� and �ii��, we may write:

�i�� RA � D��SB�A � RA�
�ii�� RB � SB�A � �D�RB�
�i��� R�

B � �DT ���S�A�B � R�
B�

�ii��� R�
A � S�A�B � �DT��R�

A��
These identities show that period subdivision by convolution with
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