International
Tables for
Crystallography
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2006). Vol. B. ch. 1.3, pp. 46-47   | 1 | 2 |

Section 1.3.2.7.2. Duality between subdivision and decimation of period lattices

G. Bricognea

a MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England, and LURE, Bâtiment 209D, Université Paris-Sud, 91405 Orsay, France

1.3.2.7.2. Duality between subdivision and decimation of period lattices

| top | pdf |

1.3.2.7.2.1. Geometric description of sublattices

| top | pdf |

Let [\Lambda_{\bf A}] be a period lattice in [{\bb R}^{n}] with matrix A, and let [\Lambda_{\bf A}^{*}] be the lattice reciprocal to [\Lambda_{\bf A}], with period matrix [(A^{-1})^{T}]. Let [\Lambda_{\bf B}, {\bf B}, \Lambda_{\bf B}^{*}] be defined similarly, and let us suppose that [\Lambda_{\bf A}] is a sublattice of [\Lambda_{\bf B}], i.e. that [\Lambda_{\bf B} \supset \Lambda_{\bf A}] as a set.

The relation between [\Lambda_{\bf A}] and [\Lambda_{\bf B}] may be described in two different fashions: (i) multiplicatively, and (ii) additively.

  • (i) We may write [{\bf A} = {\bf BN}] for some non-singular matrix N with integer entries. N may be viewed as the period matrix of the coarser lattice [\Lambda_{\bf A}] with respect to the period basis of the finer lattice [\Lambda_{\bf B}]. It will be more convenient to write [{\bf A} = {\bf DB}], where [{\bf D} = {\bf BNB}^{-1}] is a rational matrix (with integer determinant since det [{\bf D} = \det {\bf N}]) in terms of which the two lattices are related by [\Lambda_{\bf A} = {\bf D} \Lambda_{\bf B}.]

  • (ii) Call two vectors in [\Lambda_{\bf B}] congruent modulo [\Lambda_{\bf A}] if their difference lies in [\Lambda_{\bf A}]. Denote the set of congruence classes (or `cosets') by [\Lambda_{\bf B} / \Lambda_{\bf A}], and the number of these classes by [[\Lambda_{\bf B} : \Lambda_{\bf A}]]. The `coset decomposition' [\Lambda_{\bf B} = \bigcup_{{\boldell} \in \Lambda_{\bf B} / \Lambda_{\bf A}} ({\boldell} + \Lambda_{\bf A})] represents [\Lambda_{\bf B}] as the disjoint union of [[\Lambda_{\bf B} : \Lambda_{\bf A}]] translates of [\Lambda_{\bf A} .\; \Lambda_{\bf B} / \Lambda_{\bf A}] is a finite lattice with [[\Lambda_{\bf B} : \Lambda_{\bf A}]] elements, called the residual lattice of [\Lambda_{\bf B}] modulo [\Lambda_{\bf A}].

    The two descriptions are connected by the relation [[\Lambda_{\bf B} : \Lambda_{\bf A}] = \det {\bf D} = \det {\bf N}], which follows from a volume calculation. We may also combine (i)[link] and (ii)[link] into

  • [\displaylines{\quad({\rm iii})\hfill \Lambda_{\bf B} = \bigcup_{{\boldell} \in \Lambda_{\bf B} / \Lambda_{\bf A}} ({\boldell} + {\bf D} \Lambda_{\bf B})\hfill}] which may be viewed as the n-dimensional equivalent of the Euclidean algorithm for integer division: [\boldell] is the `remainder' of the division by [\Lambda_{\bf A}] of a vector in [\Lambda_{\bf B}], the quotient being the matrix D.

1.3.2.7.2.2. Sublattice relations for reciprocal lattices

| top | pdf |

Let us now consider the two reciprocal lattices [\Lambda_{\bf A}^{*}] and [\Lambda_{\bf B}^{*}]. Their period matrices [({\bf A}^{-1})^{T}] and [({\bf B}^{-1})^{T}] are related by: [({\bf B}^{-1})^{T} = ({\bf A}^{-1})^{T} {\bf N}^{T}], where [{\bf N}^{T}] is an integer matrix; or equivalently by [({\bf B}^{-1})^{T} = {\bf D}^{T} ({\bf A}^{-1})^{T}]. This shows that the roles are reversed in that [\Lambda_{\bf B}^{*}] is a sublattice of [\Lambda_{\bf A}^{*}], which we may write:

  • [\displaylines{\quad({\rm i})^*\hfill \Lambda_{\bf B}^{*} = {\bf D}^{T} \Lambda_{\bf A}^{*}\hfill}]

  • [\displaylines{\quad({\rm ii})^*\hfill\Lambda_{\bf A}^{*} = \bigcup_{{\boldell}^{*} \in \Lambda_{\bf A}^{*} / \Lambda_{\bf B}^{*}} ({\boldell}^{*} + \Lambda_{\bf B}^{*}).\hfill}] The residual lattice [\Lambda_{\bf A}^{*} / \Lambda_{\bf B}^{*}] is finite, with [[\Lambda_{\bf A}^{*}: \Lambda_{\bf B}^{*}] =] [ \det {\bf D} = \det {\bf N} = [\Lambda_{\bf B}: \Lambda_{\bf A}]], and we may again combine [(\hbox{i})^{*}] [link] and [(\hbox{ii})^{*}] [link] into

  • [\displaylines{\quad({\rm iii})^*\hfill\Lambda_{\bf A}^{*} = \bigcup_{{\boldell}^{*} \in \Lambda_{\bf A}^{*} / \Lambda_{\bf B}^{*}} ({\boldell}^{*} + {\bf D}^{T} \Lambda_{\bf A}^{*}).\hfill}]

1.3.2.7.2.3. Relation between lattice distributions

| top | pdf |

The above relations between lattices may be rewritten in terms of the corresponding lattice distributions as follows: [\displaylines{\quad (\hbox{i}) \hfill R_{\bf A} = {1 \over |\det {\bf D}|} {\bf D}^{\#} R_{\bf B}^{*} \;\hfill\cr \quad (\hbox{ii}) \hfill R_{\bf B} = T_{{\bf B} / {\bf A}} * R_{\bf A}\qquad \hfill\cr \quad (\hbox{i})^{*} \hfill \;\;R_{\bf B}^{*} = {1 \over |\det {\bf D}|} ({\bf D}^{T})^{\#} R_{\bf A}^{*} \hfill\cr \quad (\hbox{ii})^{*} \hfill R_{\bf A}^{*} =T_{{\bf A} / {\bf B}}^{*} * R_{\bf B}^{*} \qquad\;\;\hfill}] where [T_{{\bf B} / {\bf A}} = {\textstyle\sum\limits_{{\boldell} \in \Lambda_{\bf B} / \Lambda_{\bf A}}} \delta_{({\boldell})}] and [T_{{\bf A}/{\bf B}}^{*} = {\textstyle\sum\limits_{{\boldell}^{*} \in \Lambda_{\bf A}^{*} / \Lambda_{\bf B}^{*}}} \delta_{({\boldell}^{*})}] are (finite) residual-lattice distributions. We may incorporate the factor [1/|\det {\bf D}|] in (i) and [(\hbox{i})^{*}] into these distributions and define [S_{{\bf B}/{\bf A}} = {1 \over |\det {\bf D}|} T_{{\bf B}/{\bf A}},\quad S_{{\bf A}/{\bf B}}^{*} = {1 \over |\det {\bf D}|} T_{{\bf A}/{\bf B}}^{*}.]

Since [|\det {\bf D}| = [\Lambda_{\bf B}: \Lambda_{\bf A}] = [\Lambda_{\bf A}^{*}: \Lambda_{\bf B}^{*}]], convolution with [S_{{\bf B}/{\bf A}}] and [S_{{\bf A}/{\bf B}}^{*}] has the effect of averaging the translates of a distribution under the elements (or `cosets') of the residual lattices [\Lambda_{\bf B}/\Lambda_{\bf A}] and [\Lambda_{\bf A}^{*}/\Lambda_{\bf B}^{*}], respectively. This process will be called `coset averaging'. Eliminating [R_{\bf A}] and [R_{\bf B}] between (i) and (ii), and [R_{\bf A}^{*}] and [R_{\bf B}^{*}] between [(\hbox{i})^{*}] and [(\hbox{ii})^{*}], we may write: [\displaylines{\quad (\hbox{i}')\hfill \! R_{\bf A} = {\bf D}^{\#} (S_{{\bf B}/{\bf A}} * R_{\bf A})\;\;\;\hfill\cr \quad (\hbox{ii}')\hfill \! R_{\bf B} = S_{{\bf B}/{\bf A}} * ({\bf D}^{\#} R_{\bf B})\;\;\;\;\hfill\cr \quad (\hbox{i}')^{*}\hfill R_{\bf B}^{*} = ({\bf D}^{T})^{\#} (S_{{\bf A}/{\bf B}}^{*} * R_{\bf B}^{*}) \hfill\cr \quad (\hbox{ii}')^{*}\hfill R_{\bf A}^{*} = S_{{\bf A}/{\bf B}}^{*} * [({\bf D}^{T})^{\#} R_{\bf A}^{*}]. \;\hfill}] These identities show that period subdivision by convolution with [S_{{\bf B}/{\bf A}}] (respectively [S_{{\bf A}/{\bf B}}^{*}]) on the one hand, and period decimation by `dilation' by [{\bf D}^{\#}] on the other hand, are mutually inverse operations on [R_{\bf A}] and [R_{\bf B}] (respectively [R_{\bf A}^{*}] and [R_{\bf B}^{*}]).

1.3.2.7.2.4. Relation between Fourier transforms

| top | pdf |

Finally, let us consider the relations between the Fourier transforms of these lattice distributions. Recalling the basic relation of Section 1.3.2.6.5[link], [\eqalign{{\scr F}[R_{\bf A}] &= {1 \over |\det {\bf A}|} R_{\bf A}^{*}\cr &= {1 \over |\det {\bf DB}|} T_{{\bf A}/{\bf B}}^{*} * R_{\bf B}^{*} \quad \quad \quad \quad \quad \quad \hbox{by (ii)}^{*}\cr &= \left({1 \over |\det {\bf D}|} T_{{\bf A}/{\bf B}}^{*}\right) * \left({1 \over |\det {\bf B}|} R_{\bf B}^{*}\right)}] i.e. [\displaylines{\quad (\hbox{iv})\hfill {\scr F}[R_{\bf A}] = S_{{\bf A}/{\bf B}}^{*} * {\scr F}[R_{\bf B}]\hfill}] and similarly: [\displaylines{\quad (\hbox{v})\hfill {\scr F}[R_{\bf B}^{*}] = S_{{\bf B}/{\bf A}} * {\scr F}[R_{\bf A}^{*}].\hfill}]

Thus [R_{\bf A}] (respectively [R_{\bf B}^{*}]), a decimated version of [R_{\bf B}] (respectively [R_{\bf A}^{*}]), is transformed by [{\scr F}] into a subdivided version of [{\scr F}[R_{\bf B}]] (respectively [{\scr F}[R_{\bf A}^{*}]]).

The converse is also true: [\eqalign{{\scr F}[R_{\bf B}] &= {1 \over |\det {\bf B}|} R_{\bf B}^{*}\cr &= {1 \over |\det {\bf B}|} {1 \over |\det {\bf D}|} ({\bf D}^{T})^{\#} R_{\bf A}^{*}\quad \quad \quad \quad \hbox{by (i)}^{*}\cr &= ({\bf D}^{T})^{\#} \left({1 \over |\det {\bf A}|} R_{\bf A}^{*}\right)}] i.e. [\displaylines{\quad (\hbox{iv}')\hfill {\scr F}[R_{\bf B}] = ({\bf D}^{T})^{\#} {\scr F}[R_{\bf A}]\hfill}] and similarly [\displaylines{\quad (\hbox{v}')\hfill {\scr F}[R_{\bf A}^{*}] = {\bf D}^{\#} {\scr F}[R_{\bf B}^{*}].\hfill}]

Thus [R_{\bf B}] (respectively [R_{\bf A}^{*}]), a subdivided version of [R_{\bf A}] (respectively [R_{\bf B}^{*}]) is transformed by [{\scr F}] into a decimated version of [{\scr F}[R_{\bf A}]] (respectively [{\scr F}[R_{\bf B}^{*}]]). Therefore, the Fourier transform exchanges subdivision and decimation of period lattices for lattice distributions.

Further insight into this phenomenon is provided by applying [\bar{\scr F}] to both sides of (iv) and (v) and invoking the convolution theorem: [\displaylines{\quad (\hbox{iv}'')\hfill \!\! R_{\bf A} = \bar{\scr F}[S_{{\bf A}/{\bf B}}^{*}] \times R_{\bf B} \;\hfill\cr \quad (\hbox{v}'')\hfill R_{\bf B}^{*} = \bar{\scr F}[S_{{\bf B}/{\bf A}}] \times R_{\bf A}^{*}. \hfill}] These identities show that multiplication by the transform of the period-subdividing distribution [S_{{\bf A}/{\bf B}}^{*}] (respectively [S_{{\bf B}/{\bf A}}]) has the effect of decimating [R_{\bf B}] to [R_{\bf A}] (respectively [R_{\bf A}^{*}] to [R_{\bf B}^{*}]). They clearly imply that, if [\boldell \in \Lambda_{\bf B}/\Lambda_{\bf A}] and [\boldell^{*} \in \Lambda_{\bf A}^{*}/\Lambda_{\bf B}^{*}], then [\eqalign{\bar{\scr F}[S_{{\bf A}/{\bf B}}^{*}] ({\boldell}) &= 1 \hbox{ if } {\boldell} = {\bf 0} \;\;\quad (i.e. \hbox{ if } {\boldell} \hbox{ belongs}\cr &{\hbox to 66pt{}}\hbox{to the class of } \Lambda_{\bf A}),\cr &= 0 \hbox{ if } {\boldell} \neq {\bf 0}\hbox{;}\cr \bar{\scr F}[S_{{\bf B}/{\bf A}}] ({\boldell}^{*}) &= 1 \hbox{ if } {\boldell}^{*} = {\bf 0} \quad (i.e. \hbox{ if } {\boldell}^{*} \hbox{ belongs}\cr &{\hbox to 60pt{}} \hbox{ to the class of } \Lambda_{\bf B}^{*}),\cr &= 0 \hbox{ if } {\boldell}^{*} \neq {\bf 0}.}] Therefore, the duality between subdivision and decimation may be viewed as another aspect of that between convolution and multiplication.

There is clearly a strong analogy between the sampling/periodization duality of Section 1.3.2.6.6[link] and the decimation/subdivision duality, which is viewed most naturally in terms of subgroup relationships: both sampling and decimation involve restricting a function to a discrete additive subgroup of the domain over which it is initially given.

1.3.2.7.2.5. Sublattice relations in terms of periodic distributions

| top | pdf |

The usual presentation of this duality is not in terms of lattice distributions, but of periodic distributions obtained by convolving them with a motif.

Given [T^{0} \in {\scr E}\,' ({\bb R}^{n})], let us form [R_{\bf A} * T^{0}], then decimate its transform [(1/|\det {\bf A}|) R_{\bf A}^{*} \times \bar{\scr F}[T^{0}]] by keeping only its values at the points of the coarser lattice [\Lambda_{\bf B}^{*} = {\bf D}^{T} \Lambda_{\bf A}^{*}]; as a result, [R_{\bf A}^{*}] is replaced by [(1/|\det {\bf D}|) R_{\bf B}^{*}], and the reverse transform then yields [\displaylines{\hfill{1 \over |\det {\bf D}|} R_{\bf B} * T^{0} = S_{{\bf B}/{\bf A}} * (R_{\bf A} * T^{0})\hfill \hbox{by (ii)},}] which is the coset-averaged version of the original [R_{\bf A} * T^{0}]. The converse situation is analogous to that of Shannon's sampling theorem. Let a function [\varphi \in {\scr E}({\bb R}^{n})] whose transform [\Phi = {\scr F}[\varphi]] has compact support be sampled as [R_{\bf B} \times \varphi] at the nodes of [\Lambda_{\bf B}]. Then [{\scr F}[R_{\bf B} \times \varphi] = {1 \over |\det {\bf B}|} (R_{\bf B}^{*} * \Phi)] is periodic with period lattice [\Lambda_{\bf B}^{*}]. If the sampling lattice [\Lambda_{\bf B}] is decimated to [\Lambda_{\bf A} = {\bf D} \Lambda_{\bf B}], the inverse transform becomes [\eqalign{{\hbox to 48pt{}}{\scr F}[R_{\bf A} \times \varphi] &= {1 \over |\det {\bf D}|} (R_{\bf A}^{*} * \Phi)\cr &= S_{{\bf A}/{\bf B}}^{*} * (R_{\bf B}^{*} * \Phi){\hbox to 58pt{}}\hbox{by (ii)}^{*},}] hence becomes periodized more finely by averaging over the cosets of [\Lambda_{\bf A}^{*}/\Lambda_{\bf B}^{*}]. With this finer periodization, the various copies of Supp Φ may start to overlap (a phenomenon called `aliasing'), indicating that decimation has produced too coarse a sampling of φ.








































to end of page
to top of page