
Whenever the functions to which the Fourier transform is applied
are band-limited, or can be well approximated by band-limited
functions, the discrete Fourier transform (DFT) provides a means of
constructing explicit numerical solutions to the problems at hand. A
great variety of investigations in physics, engineering and applied
mathematics thus lead to DFT calculations, to such a degree that, at
the time of writing, about 50% of all supercomputer CPU time is
alleged to be spent calculating DFTs.

The straightforward use of the defining formulae for the DFT
leads to calculations of size N2 for N sample points, which become
unfeasible for any but the smallest problems. Much ingenuity has
therefore been exerted on the design and implementation of faster
algorithms for calculating the DFT (McClellan & Rader, 1979;
Nussbaumer, 1981; Blahut, 1985; Brigham, 1988). The most
famous is that of Cooley & Tukey (1965) which heralded the age
of digital signal processing. However, it had been preceded by the
prime factor algorithm of Good (1958, 1960), which has lately been
the basis of many new developments. Recent historical research
(Goldstine, 1977, pp. 249–253; Heideman et al., 1984) has shown
that Gauss essentially knew the Cooley–Tukey algorithm as early as
1805 (before Fourier’s 1807 work on harmonic analysis!); while it
has long been clear that Dirichlet knew of the basis of the prime
factor algorithm and used it extensively in his theory of multi-
plicative characters [see e.g. Chapter I of Ayoub (1963), and
Chapters 6 and 8 of Apostol (1976)]. Thus the computation of the
DFT, far from being a purely technical and rather narrow piece of
specialized numerical analysis, turns out to have very rich
connections with such central areas of pure mathematics as number
theory (algebraic and analytic), the representation theory of certain
Lie groups and coding theory – to list only a few. The interested
reader may consult Auslander & Tolimieri (1979); Auslander, Feig
& Winograd (1982, 1984); Auslander & Tolimieri (1985);
Tolimieri (1985).

One-dimensional algorithms are examined first. The Sande
mixed-radix version of the Cooley–Tukey algorithm only calls
upon the additive structure of congruence classes of integers. The
prime factor algorithm of Good begins to exploit some of their
multiplicative structure, and the use of relatively prime factors leads
to a stronger factorization than that of Sande. Fuller use of the
multiplicative structure, via the group of units, leads to the Rader
algorithm; and the factorization of short convolutions then yields
the Winograd algorithms.

Multidimensional algorithms are at first built as tensor products
of one-dimensional elements. The problem of factoring the DFT in
several dimensions simultaneously is then examined. The section
ends with a survey of attempts at formalizing the interplay between
algorithm structure and computer architecture for the purpose of
automating the design of optimal DFT code.

It was originally intended to incorporate into this section a survey
of all the basic notions and results of abstract algebra which are
called upon in the course of these developments, but time
limitations have made this impossible. This material, however, is
adequately covered by the first chapter of Tolimieri et al. (1989) in a
form tailored for the same purposes. Similarly, the inclusion of
numerous detailed examples of the algorithms described here has
had to be postponed to a later edition, but an abundant supply of
such examples may be found in the signal processing literature, for
instance in the books by McClellan & Rader (1979), Blahut (1985),
and Tolimieri et al. (1989).

1.3.3.2. One-dimensional algorithms

Throughout this section we will denote by e�t� the expression
exp�2�it�, t � �. The mapping t ��� e�t� has the following
properties:

e�t1 � t2� � e�t1�e�t2�
e��t� � e�t� � 	e�t�
�1

e�t� � 1 � t � ��

Thus e defines an isomorphism between the additive group ���
(the reals modulo the integers) and the multiplicative group of
complex numbers of modulus 1. It follows that the mapping
� ��� e���N�, where � � � and N is a positive integer, defines an
isomorphism between the one-dimensional residual lattice ��N�
and the multiplicative group of Nth roots of unity.

The DFT on N points then relates vectors X and X� in W and W �
through the linear transformations:

F�N� � X �k� � 1
N

�

k����N�

X ��k��e��k�k�N�

�F�N� � X ��k�� �
�

k���N�

X �k�e�k�k�N��

1.3.3.2.1. The Cooley–Tukey algorithm

The presentation of Gentleman & Sande (1966) will be followed
first [see also Cochran et al. (1967)]. It will then be reinterpreted in
geometric terms which will prepare the way for the treatment of
multidimensional transforms in Section 1.3.3.3.

Suppose that the number of sample points N is composite, say
N � N1N2. We may write k to the base N1 and k� to the base N2 as
follows:

k � k1 � N1k2 k1 � ��N1�, k2 � ��N2�

k� � k�2 � k�1N2 k�1 � ��N1�, k�2 � ��N2��

The defining relation for �F�N� may then be written:

X ��k�2 � k�1N2� �
�

k1���N1�

�

k2���N2�

X �k1 � N1k2�


 e
�k�2 � k�1N2��k1 � N1k2�

N1N2

� �
�

The argument of e	�
 may be expanded as

k�2k1

N
� k�1k1

N1
� k�2k2

N2
� k�1k2,

and the last summand, being an integer, may be dropped:

X ��k�2 � k�1N2�

�
�

k1

e
k�2k1

N

� � �

k2

X �k1 � N1k2�e k�2k2

N2

� �� �� 	


 e
k�1k1

N1

� �
�

This computation may be decomposed into five stages, as follows:
(i) form the N1 vectors Yk1 of length N2 by the prescription

Yk1�k2� � X �k1 � N1k2�, k1 � ��N1�, k2 � ��N2�;

(ii) calculate the N1 transforms Y�
k1

on N2 points:

Y�
k1
� �F�N2�	Yk1 
, k1 � ��N1�;

(iii) form the N2 vectors Zk�2 of length N1 by the prescription

Zk�2 �k1� � e
k�2k1

N

� �
Y �

k1
�k�2�, k1 � ��N1�, k�2 � ��N2�;
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(iv) calculate the N2 transforms Z�
k�2

on N1 points:

Z�
k�2
� �F�N1�	Zk�2 
, k�2 � ��N2�;

(v) collect X ��k�2 � k�1N2� as Z�k�2 �k
�
1�.

If the intermediate transforms in stages (ii) and (iv) are
performed in place, i.e. with the results overwriting the data, then
at stage (v) the result X ��k�2 � k�1N2� will be found at address
k�1 � N1k�2 . This phenomenon is called scrambling by ‘digit
reversal’, and stage (v) is accordingly known as unscrambling.

The initial N-point transform �F�N� has thus been performed as
N1 transforms �F�N2� on N2 points, followed by N2 transforms
�F�N1� on N1 points, thereby reducing the arithmetic cost from
�N1N2�2 to N1N2�N1 � N2�. The phase shifts applied at stage (iii)
are traditionally called ‘twiddle factors’, and the transposition
between k1 and k�2 can be performed by the fast recursive technique
of Eklundh (1972). Clearly, this procedure can be applied
recursively if N1 and N2 are themselves composite, leading to an
overall arithmetic cost of order N log N if N has no large prime
factors.

The Cooley–Tukey factorization may also be derived from a
geometric rather than arithmetic argument. The decomposition k �
k1 � N1k2 is associated to a geometric partition of the residual
lattice ��N� into N1 copies of ��N2�, each translated by k1 �
��N1� and ‘blown up’ by a factor N1. This partition in turn induces
a (direct sum) decomposition of X as

X �

k1

Xk1 ,

where

Xk1�k� � X �k� if k � k1 mod N1,

� 0 otherwise�

According to (i), Xk1 is related to Yk1 by decimation by N1 and
offset by k1. By Section 1.3.2.7.2, �F�N�	Xk1 
 is related to �F�N2�	Yk1 

by periodization by N2 and phase shift by e�k�k1�N�, so that

X ��k�� �
�

k1

e
k�k1

N

� �
Y �

k1
�k�2�,

the periodization by N2 being reflected by the fact that Y �
k1

does not
depend on k�1. Writing k� � k�2 � k�1N2 and expanding k�k1 shows
that the phase shift contains both the twiddle factor e�k�2k1�N� and
the kernel e�k�1k1�N1� of �F�N1�. The Cooley–Tukey algorithm is
thus naturally associated to the coset decomposition of a lattice
modulo a sublattice (Section 1.3.2.7.2).

It is readily seen that essentially the same factorization can be
obtained for F�N�, up to the complex conjugation of the twiddle
factors. The normalizing constant 1�N arises from the normalizing
constants 1�N1 and 1�N2 in F�N1� and F�N2�, respectively.

Factors of 2 are particularly simple to deal with and give rise to a
characteristic computational structure called a ‘butterfly loop’. If
N � 2M , then two options exist:

(a) using N1 � 2 and N2 � M leads to collecting the even-
numbered coordinates of X into Y0 and the odd-numbered
coordinates into Y1

Y0�k2� � X �2k2�, k2 � 0, � � � , M � 1,

Y1�k2� � X �2k2 � 1�, k2 � 0, � � � , M � 1,

and writing:

X ��k�2� � Y �
0 �k�2� � e�k�2�N�Y �

1 �k�2�,
k�2 � 0, � � � , M � 1;

X ��k�2 �M� � Y �
0 �k�2� � e�k�2�N�Y �

1 �k�2�,
k�2 � 0, � � � , M � 1�

This is the original version of Cooley & Tukey, and the process of
formation of Y0 and Y1 is referred to as ‘decimation in time’ (i.e.
decimation along the data index k).

(b) using N1 � M and N2 � 2 leads to forming

Z0�k1� � X �k1� � X �k1 �M�, k1 � 0, � � � , M � 1,

Z1�k1� � 	X �k1� � X �k1 �M�
e k1

N

� �
, k1 � 0, � � � , M � 1,

then obtaining separately the even-numbered and odd-numbered
components of X� by transforming Z0 and Z1:

X ��2k�1� � Z�0�k�1�, k�1 � 0, � � � , M � 1;

X ��2k�1 � 1� � Z�1�k�1�, k�1 � 0, � � � , M � 1�

This version is due to Sande (Gentleman & Sande, 1966), and the
process of separately obtaining even-numbered and odd-numbered
results has led to its being referred to as ‘decimation in frequency’
(i.e. decimation along the result index k�).

By repeated factoring of the number N of sample points, the
calculation of F�N� and �F�N� can be reduced to a succession of
stages, the smallest of which operate on single prime factors of N.
The reader is referred to Gentleman & Sande (1966) for a
particularly lucid analysis of the programming considerations
which help implement this factorization efficiently; see also
Singleton (1969). Powers of two are often grouped together into
factors of 4 or 8, which are advantageous in that they require fewer
complex multiplications than the repeated use of factors of 2. In this
approach, large prime factors P are detrimental, since they require a
full P2-size computation according to the defining formula.

1.3.3.2.2. The Good (or prime factor) algorithm

1.3.3.2.2.1. Ring structure on ��N�
The set ��N� of congruence classes of integers modulo an

integer N [see e.g. Apostol (1976), Chapter 5] inherits from � not
only the additive structure used in deriving the Cooley–Tukey
factorization, but also a multiplicative structure in which the
product of two congruence classes mod N is uniquely defined as
the class of the ordinary product (in �) of representatives of each
class. The multiplication can be distributed over addition in the
usual way, endowing ��N� with the structure of a commutative
ring.

If N is composite, the ring ��N� has zero divisors. For example,
let N � N1N2, let n1 � N1 mod N, and let n2 � N2 mod N: then
n1n2 � 0 mod N. In the general case, a product of non-zero elements
will be zero whenever these elements collect together all the factors
of N. These circumstances give rise to a fundamental theorem in the
theory of commutative rings, the Chinese Remainder Theorem
(CRT), which will now be stated and proved [see Apostol (1976),
Chapter 5; Schroeder (1986), Chapter 16].

1.3.3.2.2.2. The Chinese remainder theorem
Let N � N1N2 � � �Nd be factored into a product of pairwise

coprime integers, so that g.c.d. �Ni, Nj� � 1 for i �� j. Then the
system of congruence equations

� � �j mod Nj, j � 1, � � � , d,

has a unique solution � mod N. In other words, each � � ��N� is
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associated in a one-to-one fashion to the d-tuple ��1, �2, � � � , �d� of
its residue classes in ��N1�,��N2�, � � � ,��Nd�.

The proof of the CRT goes as follows. Let

Qj � N
Nj
�
�

i ��j

Ni�

Since g.c.d. �Nj, Qj� � 1 there exist integers nj and qj such that

njNj � qjQj � 1, j � 1, � � � , d,

then the integer

� �
d

i�1
�iqiQi mod N

is the solution. Indeed,

� � �jqjQj mod Nj

because all terms with i �� j contain Nj as a factor; and

qjQj � 1 mod Nj

by the defining relation for qj.
It may be noted that

�qiQi��qjQj� � 0 mod N for i �� j,

�qjQj�2 � qjQj mod N , j � 1, � � � , d,

so that the qjQj are mutually orthogonal idempotents in the ring
��N�, with properties formally similar to those of mutually
orthogonal projectors onto subspaces in linear algebra. The analogy
is exact, since by virtue of the CRT the ring ��N� may be
considered as the direct product

��N1�
 ��N2�
 � � �
 ��Nd�

via the two mutually inverse mappings:
(i) � ��� ��1, �2, � � � , �d� by � � �j mod Nj for each j;
(ii) ��1, �2, � � � , �d� ��� � by � �
d

i�1�iqiQi mod N .
The mapping defined by (ii) is sometimes called the ‘CRT

reconstruction’ of � from the �j.
These two mappings have the property of sending sums to sums

and products to products, i.e:

�i� �� �� ��� ��1 � ��1, �2 � ��2, � � � , �d � ��d�
��� ��� ��1�

�
1, �2�

�
2, � � � , �d�

�
d�

�ii� ��1 � ��1, �2 � ��2, � � � , �d � ��d� ��� �� ��

��1�
�
1, �2�

�
2, � � � , �d�

�
d� ��� ���

(the last proof requires using the properties of the idempotents
qjQj). This may be described formally by stating that the CRT
establishes a ring isomorphism:

��N� � ���N1�� 
 � � �
 ���Nd���

1.3.3.2.2.3. The prime factor algorithm
The CRT will now be used to factor the N-point DFT into a tensor

product of d transforms, the jth of length Nj.
Let the indices k and k� be subjected to the following mappings:
(i) k ��� �k1, k2, � � � , kd�, kj � ��Nj�, by kj � k mod Nj for each

j, with reconstruction formula

k �
d

i�1
kiqiQi mod N ;

(ii) k� ��� �k�1 , k�2 , � � � , k�d�, k�j � ��Nj�, by k�j � qjk� mod Nj

for each j, with reconstruction formula

k� �
d

i�1
k�i Qi mod N �

Then

k�k � 
d

i�1
k�i Qi

� � 
d

j�1
kjqjQj

� 

mod N

� 
d

i� j�1
k�i kjQiqjQj mod N �

Cross terms with i �� j vanish since they contain all the factors of N,
hence

k�k �
d

j�1
qjQ

2
j k�j kj mod N

�
d

j�1
�1� njNj�Qjk

�
j kj mod N �

Dividing by N, which may be written as NjQj for each j, yields

k�k
N

�
�d

j�1

�1� njNj� Qj

NjQj
k�j kj mod 1

�
�d

j�1

1
Nj
� nj

� �
k�j kj mod 1,

and hence

k�k
N

�
�d

j�1

k�j kj

Nj
mod 1�

Therefore, by the multiplicative property of e���,

e
k�k
N

� �
�
�d

j�1

e
k�j kj

Nj

� �
�

Let X � L���N�� be described by a one-dimensional array X �k�
indexed by k. The index mapping (i) turns X into an element of
L���N1�
 � � �
 ��Nd�� described by a d-dimensional array
X �k1, � � � , kd�; the latter may be transformed by
�F�N1�

�
� � �

�
�F�Nd� into a new array X ��k�1 , k�2 , � � � , k�d�. Finally,

the one-dimensional array of results X ��k�� will be obtained by
reconstructing k� according to (ii).

The prime factor algorithm, like the Cooley–Tukey algorithm,
reindexes a 1D transform to turn it into d separate transforms, but
the use of coprime factors and CRT index mapping leads to the
further gain that no twiddle factors need to be applied between the
successive transforms (see Good, 1971). This makes up for the cost
of the added complexity of the CRT index mapping.

The natural factorization of N for the prime factor algorithm is
thus its factorization into prime powers: �F�N� is then the tensor
product of separate transforms (one for each prime power factor
Nj � p

�j

j ) whose results can be reassembled without twiddle factors.
The separate factors pj within each Nj must then be dealt with by
another algorithm (e.g. Cooley–Tukey, which does require twiddle
factors). Thus, the DFT on a prime number of points remains
undecomposable.

1.3.3.2.3. The Rader algorithm

The previous two algorithms essentially reduce the calculation of
the DFT on N points for N composite to the calculation of smaller
DFTs on prime numbers of points, the latter remaining irreducible.
However, Rader (1968) showed that the p-point DFT for p an odd
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prime can itself be factored by invoking some extra arithmetic
structure present in ��p�.

1.3.3.2.3.1. N an odd prime
The ring ��p� � �0, 1, 2, � � � , p� 1� has the property that its

p� 1 non-zero elements, called units, form a multiplicative group
U�p�. In particular, all units r � U�p� have a unique multiplicative
inverse in ��p�, i.e. a unit s � U�p� such that rs � 1 mod p. This
endows ��p� with the structure of a finite field.

Furthermore, U�p� is a cyclic group, i.e. consists of the
successive powers gm mod p of a generator g called a primitive
root mod p (such a g may not be unique, but it always exists). For
instance, for p � 7, U�7� � �1, 2, 3, 4, 5, 6� is generated by g � 3,
whose successive powers mod 7 are:

g0 � 1, g1 � 3, g2 � 2, g3 � 6, g4 � 4, g5 � 5

[see Apostol (1976), Chapter 10].
The basis of Rader’s algorithm is to bring to light a hidden

regularity in the matrix F�p� by permuting the basis vectors uk and
vk� of L���p�� as follows:

u�0 � u0

u�m � uk with k � gm, m � 1, � � � , p� 1;

v�0 � v0

v�m� � vk� with k� � gm�
, m� � 1, � � � , p� 1;

where g is a primitive root mod p.
With respect to these new bases, the matrix representing �F�p�

will have the following elements:

element �0, 0� � 1

element �0, m� 1� � 1 for all m � 0, � � � p� 2,

element �m� � 1, 0� � 1 for all m� � 0, � � � , p� 2,

element �m� � 1, m� 1� � e
k�k
p

� �

� e�g�m��m��p�
for all m� � 0, � � � , p� 2�

Thus the ‘core’ �C�p� of matrix �F�p�, of size �p� 1� 
 �p� 1�,
formed by the elements with two non-zero indices, has a so-called
skew-circulant structure because element �m�, m� depends only on
m� � m. Simplification may now occur because multiplication by
�C�p� is closely related to a cyclic convolution. Introducing the
notation C�m� � e�gm�p� we may write the relation Y� � �F�p�Y in
the permuted bases as

Y ��0� �

k

Y�k�

Y ��m� � 1� � Y�0� � 
p�2

m�0
C�m� � m�Y�m� 1�

� Y�0� � 
p�2

m�0
C�m� � m�Z�m�

� Y�0� � �C � Z��m��, m� � 0, � � � , p� 2,

where Z is defined by Z�m� � Y�p� m� 2�, m � 0, � � � , p� 2.
Thus Y� may be obtained by cyclic convolution of C and Z,

which may for instance be calculated by

C � Z � F�p� 1�	�F�p� 1�	C
 
 �F�p� 1�	Z

,
where 
 denotes the component-wise multiplication of vectors.
Since p is odd, p� 1 is always divisible by 2 and may even be

highly composite. In that case, factoring �F�p� 1� by means of the
Cooley–Tukey or Good methods leads to an algorithm of complex-
ity p log p rather than p2 for �F�p�. An added bonus is that, because
g�p�1��2 � �1, the elements of �F�p� 1�	C
 can be shown to be
either purely real or purely imaginary, which halves the number of
real multiplications involved.

1.3.3.2.3.2. N a power of an odd prime
This idea was extended by Winograd (1976, 1978) to the

treatment of prime powers N � p� , using the cyclic structure of the
multiplicative group of units U�p��. The latter consists of all those
elements of ��p�� which are not divisible by p, and thus has q� �
p��1�p� 1� elements. It is cyclic, and there exist primitive roots g
modulo p� such that

U�p�� � �1, g, g2, g3, � � � , gq��1��
The p��1 elements divisible by p, which are divisors of zero, have to
be treated separately just as 0 had to be treated separately for N � p.

When k� �� U�p��, then k� � pk�1 with k�1 � ��p��1�. The results
X ��pk�1� are p-decimated, hence can be obtained via the p��1-point
DFT of the p��1-periodized data Y:

X ��pk�1� � �F�p��1�	Y
�k�1�
with

Y�k1� �



k2���p�
X �k1 � p��1k2��

When k� � U�p��, then we may write

X ��k�� � X �
0 �k�� � X �

1 �k��,
where X�

0 contains the contributions from k �� U�p�� and X�
1 those

from k � U�p��. By a converse of the previous calculation, X�
0

arises from p-decimated data Z, hence is the p��1-periodization of
the p��1-point DFT of these data:

X �
0 �p��1k�1 � k�2� � �F�p��1�	Z
�k�2�

with

Z�k2� � X �pk2�, k2 � ��p��1�

(the p��1-periodicity follows implicity from the fact that the
transform on the right-hand side is independent of k�1 � ��p�).

Finally, the contribution X �
1 from all k � U�p�� may be

calculated by reindexing by the powers of a primitive root g
modulo p� , i.e. by writing

X �
1 �gm� � � 
q��1

m�0
X �gm�e�g�m��m��p� �

then carrying out the multiplication by the skew-circulant matrix
core as a convolution.

Thus the DFT of size p� may be reduced to two DFTs of size p��1

(dealing, respectively, with p-decimated results and p-decimated
data) and a convolution of size q� � p��1�p� 1�. The latter may be
‘diagonalized’ into a multiplication by purely real or purely
imaginary numbers (because g�q��2� � �1) by two DFTs, whose
factoring in turn leads to DFTs of size p��1 and p� 1. This method,
applied recursively, allows the complete decomposition of the DFT
on p� points into arbitrarily small DFTs.

1.3.3.2.3.3. N a power of 2
When N � 2� , the same method can be applied, except for a

slight modification in the calculation of X�
1. There is no primitive

root modulo 2� for � � 2: the group U�2�� is the direct product of
two cyclic groups, the first (of order 2) generated by �1, the second
(of order N�4) generated by 3 or 5. One then uses a representation
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k � ��1�m1 5m2

k� � ��1�m�
1 5m�

2

and the reindexed core matrix gives rise to a two-dimensional
convolution. The latter may be carried out by means of two 2D
DFTs on 2
 �N�4� points.

1.3.3.2.4. The Winograd algorithms

The cyclic convolutions generated by Rader’s multiplicative
reindexing may be evaluated more economically than through DFTs
if they are re-examined within a new algebraic setting, namely the
theory of congruence classes of polynomials [see, for instance,
Blahut (1985), Chapter 2; Schroeder (1986), Chapter 24].

The set, denoted �	X 
, of polynomials in one variable with
coefficients in a given field � has many of the formal properties of
the set � of rational integers: it is a ring with no zero divisors and
has a Euclidean algorithm on which a theory of divisibility can be
built.

Given a polynomial P�z�, then for every W �z� there exist unique
polynomials Q�z� and R�z� such that

W�z� � P�z�Q�z� � R�z�
and

degree �R� � degree �P��
R�z� is called the residue of H�z� modulo P�z�. Two polynomials
H1�z� and H2�z� having the same residue modulo P�z� are said to be
congruent modulo P�z�, which is denoted by

H1�z� � H2�z� mod P�z��
If H�z� � 0 mod P�z�, H�z� is said to be divisible by P�z�. If

H�z� only has divisors of degree zero in �	X 
, it is said to be
irreducible over � (this notion depends on �). Irreducible
polynomials play in �	X 
 a role analogous to that of prime numbers
in �, and any polynomial over � has an essentially unique
factorization as a product of irreducible polynomials.

There exists a Chinese remainder theorem (CRT) for poly-
nomials. Let P�z� � P1�z� � � �Pd�z� be factored into a product of
pairwise coprime polynomials [i.e. Pi�z� and Pj�z� have no common
factor for i �� j]. Then the system of congruence equations

H�z� � Hj�z� mod Pj�z�, j � 1, � � � , d,

has a unique solution H�z� modulo P�z�. This solution may be
constructed by a procedure similar to that used for integers. Let

Qj�z� � P�z��Pj�z� �
�
i ��j

Pi�z��

Then Pj and Qj are coprime, and the Euclidean algorithm may be
used to obtain polynomials pj�z� and qj�z� such that

pj�z�Pj�z� � qj�z�Qj�z� � 1�

With Si�z� � qi�z�Qi�z�, the polynomial

H�z� �
d

i�1
Si�z�Hi�z� mod P�z�

is easily shown to be the desired solution.
As with integers, it can be shown that the 1:1 correspondence

between H�z� and Hj�z� sends sums to sums and products to
products, i.e. establishes a ring isomorphism:

�	X 
 mod P � ��	X 
 mod P1� 
 � � �
 ��	X 
 mod Pd��
These results will now be applied to the efficient calculation of

cyclic convolutions. Let U � �u0, u1, � � � , uN�1� and V �
�v0, v1, � � � , vN�1� be two vectors of length N, and let W �

�w0, w1, � � � , wN�1� be obtained by cyclic convolution of U and V:

wn �

N�1

m�0
umvn�m, n � 0, � � � , N � 1�

The very simple but crucial result is that this cyclic convolution
may be carried out by polynomial multiplication modulo �zN � 1�:
if

U�z� � 
N�1

l�0
ulz

l

V �z� � 
N�1

m�0
vmzm

W�z� � 
N�1

n�0
wnzn

then the above relation is equivalent to

W�z� � U�z�V �z� mod �zN � 1��
Now the polynomial zN � 1 can be factored over the field of rational
numbers into irreducible factors called cyclotomic polynomials: if d
is the number of divisors of N, including 1 and N, then

zN � 1 � �d

i�1
Pi�z�,

where the cyclotomics Pi�z� are well known (Nussbaumer, 1981;
Schroeder, 1986, Chapter 22). We may now invoke the CRT, and
exploit the ring isomorphism it establishes to simplify the
calculation of W �z� from U�z� and V �z� as follows:

(i) compute the d residual polynomials

Ui�z� � U�z� mod Pi�z�, i � 1, � � � , d,

Vi�z� � V �z� mod Pi�z�, i � 1, � � � , d;

(ii) compute the d polynomial products

Wi�z� � Ui�z�Vi�z� mod Pi�z�, i � 1, � � � , d;

(iii) use the CRT reconstruction formula just proved to recover
W�z� from the Wi�z�:

W�z� �
d

i�1
Si�z�Wi�z� mod �zN � 1��

When N is not too large, i.e. for ‘short cyclic convolutions’, the
Pi�z� are very simple, with coefficients 0 or �1, so that (i) only
involves a small number of additions. Furthermore, special
techniques have been developed to multiply general polynomials
modulo cyclotomic polynomials, thus helping keep the number of
multiplications in (ii) and (iii) to a minimum. As a result, cyclic
convolutions can be calculated rapidly when N is sufficiently
composite.

It will be recalled that Rader’s multiplicative indexing often
gives rise to cyclic convolutions of length p� 1 for p an odd prime.
Since p� 1 is highly composite for all p � 50 other than 23 and 47,
these cyclic convolutions can be performed more efficiently by the
above procedure than by DFT.

These combined algorithms are due to Winograd (1977, 1978,
1980), and are known collectively as ‘Winograd small FFT
algorithms’. Winograd also showed that they can be thought of as
bringing the DFT matrix F to the following ‘normal form’:

F � CBA,

where
A is an integer matrix with entries 0, �1, defining the ‘pre-

additions’,
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B is a diagonal matrix of multiplications,
C is a matrix with entries 0,�1,�i, defining the ‘post-additions’.

The elements on the diagonal of B can be shown to be either real or
pure imaginary, by the same argument as in Section 1.3.3.2.3.1.
Matrices A and C may be rectangular rather than square, so that
intermediate results may require extra storage space.

1.3.3.3. Multidimensional algorithms

From an algorithmic point of view, the distinction between one-
dimensional (1D) and multidimensional DFTs is somewhat blurred
by the fact that some factoring techniques turn a 1D transform into a
multidimensional one. The distinction made here, however, is a
practical one and is based on the dimensionality of the indexing sets
for data and results. This section will therefore be concerned with
the problem of factoring the DFT when the indexing sets for the
input data and output results are multidimensional.

1.3.3.3.1. The method of successive one-dimensional
transforms

The DFT was defined in Section 1.3.2.7.4 in an n-dimensional
setting and it was shown that when the decimation matrix N is
diagonal, say N � diag�N �1�, N �2�, � � � , N �n��, then �F�N� has a
tensor product structure:

�F�N� � �F�N �1�� � �F�N �2�� � � � �� �F�N �n���
This may be rewritten as follows:

�F�N� � 	�F�N �1�� � IN �2� � � � �� IN �n� 


 	IN �1� � �F�N �2�� � � � �� IN �n� 


 � � �


 	IN �1� � IN �2� � � � �� �F�N �n�
,
where the I’s are identity matrices and 
 denotes ordinary matrix
multiplication. The matrix within each bracket represents a one-
dimensional DFT along one of the n dimensions, the other
dimensions being left untransformed. As these matrices commute,
the order in which the successive 1D DFTs are performed is
immaterial.

This is the most straightforward method for building an n-
dimensional algorithm from existing 1D algorithms. It is known in
crystallography under the name of ‘Beevers–Lipson factorization’
(Section 1.3.4.3.1), and in signal processing as the ‘row–column
method’.

1.3.3.3.2. Multidimensional factorization

Substantial reductions in the arithmetic cost, as well as gains in
flexibility, can be obtained if the factoring of the DFT is carried out
in several dimensions simultaneously. The presentation given here
is a generalization of that of Mersereau & Speake (1981), using the
abstract setting established independently by Auslander, Tolimieri
& Winograd (1982).

Let us return to the general n-dimensional setting of Section
1.3.2.7.4, where the DFT was defined for an arbitrary decimation
matrix N by the formulae (where �N� denotes �det N�):

F�N� � X �k� � 1
�N�

�

k�
X ��k��e	�k� � �N�1k�


�F�N� � X ��k�� �
�

k

X �k�e	k� � �N�1k�


with

k � �n�N�n, k� � �n�NT�n�

1.3.3.3.2.1. Multidimensional Cooley–Tukey factorization
Let us now assume that this decimation can be factored into d

successive decimations, i.e. that

N � N1N2 � � �Nd�1Nd

and hence

NT � NT
d NT

d�1 � � �N
T
2 NT

1 �

Then the coset decomposition formulae corresponding to these
successive decimations (Section 1.3.2.7.1) can be combined as
follows:

�n �
�

k1

�k1 � N1�
n�

�
�

k1

k1 � N1

�

k2

�k2 � N2�
n�

� �� 	

� � � �

�
�

k1

� � �
�

kd

�k1 � N1k2 � � � �� N1N2 
 � � �
 Nd�1kd � N�n�

with kj � �n�Nj�
n. Therefore, any k � ��N�n may be written

uniquely as

k � k1 � N1k2 � � � �� N1N2 
 � � �
 Nd�1kd �

Similarly:

�n �
�

k�d

�k�d � NT
d�

n�

� � � �

�
�

k�d

� � �
�

k�1

�k�d � NT
d k�d�1 � � � �� NT

d 
 � � �
 NT
2 k�1

� NT�n�
so that any k� � �n�NT�n may be written uniquely as

k� � k�d � NT
d k�d�1 � � � �� NT

d 
 � � �
 NT
2 k�1

with k�j � �n�NT
j �

n. These decompositions are the vector
analogues of the multi-radix number representation systems used
in the Cooley–Tukey factorization.

We may then write the definition of �F�N� with d � 2 factors as

X ��k�2 � NT
2 k�1� �



k1



k2

X �k1 � N1k2�


 e	�k�T
2 � k�T

1 N2�N�1
2 N�1

1 �k1 � N1k2�
�
The argument of e(–) may be expanded as

k�2 � �N�1k1� � k�1 � �N�1
1 k1� � k�2 � �N�1

2 k2� � k�1 � k2�

The first summand may be recognized as a twiddle factor, the
second and third as the kernels of �F�N1� and �F�N2�, respectively,
while the fourth is an integer which may be dropped. We are thus
led to a ‘vector-radix’ version of the Cooley–Tukey algorithm, in
which the successive decimations may be introduced in all n
dimensions simultaneously by general integer matrices. The
computation may be decomposed into five stages analogous to
those of the one-dimensional algorithm of Section 1.3.3.2.1:

(i) form the �N1� vectors Yk1 of shape N2 by

Yk1�k2� � X �k1 � N1k2�, k1 � �n�N1�
n, k2 � �n�N2�

n;
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