1.3. FOURIER TRANSFORMS IN CRYSTALLOGRAPHY

prime can itself be factored by invoking some extra arithmetic structure present in $\mathbb{Z} / p \mathbb{Z}$.

1.3.3.2.3.1. N an odd prime

The ring $\mathbb{Z} / p \mathbb{Z}=\{0,1,2, \ldots, p-1\}$ has the property that its $p-1$ non-zero elements, called units, form a multiplicative group $U(p)$. In particular, all units $r \in U(p)$ have a unique multiplicative inverse in $\mathbb{Z} / p \mathbb{Z}$, i.e. a unit $s \in U(p)$ such that $r s \equiv 1 \bmod p$. This endows $\mathbb{Z} / p \mathbb{Z}$ with the structure of a finite field.

Furthermore, $U(p)$ is a cyclic group, i.e. consists of the successive powers $g^{m} \bmod p$ of a generator g called a primitive $\operatorname{root} \bmod p$ (such a g may not be unique, but it always exists). For instance, for $p=7, U(7)=\{1,2,3,4,5,6\}$ is generated by $g=3$, whose successive powers mod 7 are:

$$
g^{0}=1, \quad g^{1}=3, \quad g^{2}=2, \quad g^{3}=6, \quad g^{4}=4, \quad g^{5}=5
$$

[see Apostol (1976), Chapter 10].
The basis of Rader's algorithm is to bring to light a hidden regularity in the matrix $F(p)$ by permuting the basis vectors \mathbf{u}_{k} and $\mathbf{v}_{k^{*}}$ of $L(\mathbb{Z} / p \mathbb{Z})$ as follows:

$$
\begin{aligned}
\mathbf{u}_{0}^{\prime} & =\mathbf{u}_{0} \\
\mathbf{u}_{m}^{\prime} & =\mathbf{u}_{k} \quad \text { with } k=g^{m}, \quad m=1, \ldots, p-1 ; \\
\mathbf{v}_{0}^{\prime} & =\mathbf{v}_{0} \\
\mathbf{v}_{m^{*}}^{\prime} & =\mathbf{v}_{k^{*}} \quad \text { with } k^{*}=g^{m^{*}}, \quad m^{*}=1, \ldots, p-1 ;
\end{aligned}
$$

where g is a primitive root $\bmod p$.
With respect to these new bases, the matrix representing $\bar{F}(p)$ will have the following elements:

$$
\begin{aligned}
& \text { element }(0,0)=1 \\
& \text { element }(0, m+1)=1 \quad \text { for all } m=0, \ldots p-2, \\
& \text { element }\left(m^{*}+1,0\right)=1 \text { for all } m^{*}=0, \ldots, p-2, \\
& \text { element }\left(m^{*}+1, m+1\right)=e\left(\frac{k^{*} k}{p}\right) \\
&=e\left(g^{\left(m^{*}+m\right) / p}\right) \\
& \quad \text { for all } m^{*}=0, \ldots, p-2 .
\end{aligned}
$$

Thus the 'core' $\bar{C}(p)$ of matrix $\bar{F}(p)$, of size $(p-1) \times(p-1)$, formed by the elements with two non-zero indices, has a so-called skew-circulant structure because element $\left(m^{*}, m\right)$ depends only on $m^{*}+m$. Simplification may now occur because multiplication by $\bar{C}(p)$ is closely related to a cyclic convolution. Introducing the notation $C(m)=e\left(g^{m / p}\right)$ we may write the relation $\mathbf{Y}^{*}=\bar{F}(p) \mathbf{Y}$ in the permuted bases as

$$
\begin{aligned}
Y^{*}(0) & =\sum_{k} Y(k) \\
Y^{*}\left(m^{*}+1\right) & =Y(0)+\sum_{m=0}^{p-2} C\left(m^{*}+m\right) Y(m+1) \\
& =Y(0)+\sum_{m=0}^{p-2} C\left(m^{*}-m\right) Z(m) \\
& =Y(0)+(\mathbf{C} * \mathbf{Z})\left(m^{*}\right), \quad m^{*}=0, \ldots, p-2,
\end{aligned}
$$

where \mathbf{Z} is defined by $Z(m)=Y(p-m-2), m=0, \ldots, p-2$.
Thus \mathbf{Y}^{*} may be obtained by cyclic convolution of \mathbf{C} and \mathbf{Z}, which may for instance be calculated by

$$
\mathbf{C} * \mathbf{Z}=F(p-1)[\bar{F}(p-1)[\mathbf{C}] \times \bar{F}(p-1)[\mathbf{Z}]],
$$

where \times denotes the component-wise multiplication of vectors. Since p is odd, $p-1$ is always divisible by 2 and may even be
highly composite. In that case, factoring $\bar{F}(p-1)$ by means of the Cooley-Tukey or Good methods leads to an algorithm of complexity $p \log p$ rather than p^{2} for $\bar{F}(p)$. An added bonus is that, because $g^{(p-1) / 2}=-1$, the elements of $\bar{F}(p-1)[\mathbf{C}]$ can be shown to be either purely real or purely imaginary, which halves the number of real multiplications involved.

1.3.3.2.3.2. N a power of an odd prime

This idea was extended by Winograd $(1976,1978)$ to the treatment of prime powers $N=p^{\nu}$, using the cyclic structure of the multiplicative group of units $U\left(p^{\nu}\right)$. The latter consists of all those elements of $\mathbb{Z} / p^{\nu} \mathbb{Z}$ which are not divisible by p, and thus has $q_{\nu}=$ $p^{\nu-1}(p-1)$ elements. It is cyclic, and there exist primitive roots g modulo p^{ν} such that

$$
U\left(p^{\nu}\right)=\left\{1, g, g^{2}, g^{3}, \ldots, g^{q_{\nu}-1}\right\} .
$$

The $p^{\nu-1}$ elements divisible by p, which are divisors of zero, have to be treated separately just as 0 had to be treated separately for $N=p$.

When $k^{*} \notin U\left(p^{\nu}\right)$, then $k^{*}=p k_{1}^{*}$ with $k_{1}^{*} \in \mathbb{Z} / p^{\nu-1} \mathbb{Z}$. The results $X^{*}\left(p k_{1}^{*}\right)$ are p-decimated, hence can be obtained via the $p^{\nu-1}$-point DFT of the $p^{\nu-1}$-periodized data \mathbf{Y} :

$$
X^{*}\left(p k_{1}^{*}\right)=\bar{F}\left(p^{\nu-1}\right)[\mathbf{Y}]\left(k_{1}^{*}\right)
$$

with

$$
Y\left(k_{1}\right)=\sum_{k_{2} \in \mathbb{Z} / p \mathbb{Z}} X\left(k_{1}+p^{\nu-1} k_{2}\right) .
$$

When $k^{*} \in U\left(p^{\nu}\right)$, then we may write

$$
X^{*}\left(k^{*}\right)=X_{0}^{*}\left(k^{*}\right)+X_{1}^{*}\left(k^{*}\right),
$$

where \mathbf{X}_{0}^{*} contains the contributions from $k \notin U\left(p^{\nu}\right)$ and \mathbf{X}_{1}^{*} those from $k \in U\left(p^{\nu}\right)$. By a converse of the previous calculation, \mathbf{X}_{0}^{*} arises from p-decimated data \mathbf{Z}, hence is the $p^{\nu-1}$-periodization of the $p^{\nu-1}$-point DFT of these data:

$$
X_{0}^{*}\left(p^{\nu-1} k_{1}^{*}+k_{2}^{*}\right)=\bar{F}\left(p^{\nu-1}\right)[\mathbf{Z}]\left(k_{2}^{*}\right)
$$

with

$$
Z\left(k_{2}\right)=X\left(p k_{2}\right), \quad k_{2} \in \mathbb{Z} / p^{\nu-1} \mathbb{Z}
$$

(the $p^{\nu-1}$-periodicity follows implicity from the fact that the transform on the right-hand side is independent of $\left.k_{1}^{*} \in \mathbb{Z} / p \mathbb{Z}\right)$.

Finally, the contribution X_{1}^{*} from all $k \in U\left(p^{\nu}\right)$ may be calculated by reindexing by the powers of a primitive root g modulo p^{ν}, i.e. by writing

$$
X_{1}^{*}\left(g^{m^{*}}\right)=\sum_{m=0}^{q_{\nu}-1} X\left(g^{m}\right) e\left(g^{\left(m^{*}+m\right) / p^{\nu}}\right)
$$

then carrying out the multiplication by the skew-circulant matrix core as a convolution.

Thus the DFT of size p^{ν} may be reduced to two DFTs of size $p^{\nu-1}$ (dealing, respectively, with p-decimated results and p-decimated data) and a convolution of size $q_{\nu}=p^{\nu-1}(p-1)$. The latter may be 'diagonalized' into a multiplication by purely real or purely imaginary numbers (because $g^{\left(q_{\nu} / 2\right)}=-1$) by two DFTs, whose factoring in turn leads to DFTs of size $p^{\nu-1}$ and $p-1$. This method, applied recursively, allows the complete decomposition of the DFT on p^{ν} points into arbitrarily small DFTs.

1.3.3.2.3.3. N a power of 2

When $N=2^{\nu}$, the same method can be applied, except for a slight modification in the calculation of \mathbf{X}_{1}^{*}. There is no primitive root modulo 2^{ν} for $\nu>2$: the group $U\left(2^{\nu}\right)$ is the direct product of two cyclic groups, the first (of order 2) generated by -1 , the second (of order $N / 4$) generated by 3 or 5 . One then uses a representation

