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1.3. FOURIER TRANSFORMS IN CRYSTALLOGRAPHY

prime can itself be factored by invoking some extra arithmetic
structure present in Z/pZ.

1.3.3.2.3.1. N an odd prime

The ring Z/pZ ={0,1,2, ...,p — 1} has the property that its
p — 1 non-zero elements, called units, form a multiplicative group
U(p). In particular, all units » € U(p) have a unique multiplicative
inverse in Z/pZ, i.e. a unit s € U(p) such that rs = 1 mod p. This
endows Z/pZ with the structure of a finite field.

Furthermore, U(p) is a cyclic group, ie. consists of the
successive powers g” mod p of a generator g called a primitive
root mod p (such a g may not be unique, but it always exists). For
instance, for p =7, U(7) = {1,2,3,4,5,6} is generated by g = 3,
whose successive powers mod 7 are:
g=6 g'=4 =5

gozl, g1:3, g2=2,

[see Apostol (1976), Chapter 10].

The basis of Rader’s algorithm is to bring to light a hidden
regularity in the matrix F(p) by permuting the basis vectors u; and
vy of L(Z/pZ) as follows:

up, = uy
u, =w withk=g¢", m=1,....p—1;
Vo = Vo
V.=v withk"=¢", m'=1,...,p—1;

where g is a primitive root mod p. ~
With respect to these new bases, the matrix representing F(p)
will have the following elements:

element (0,0) =1

element (0,m+1)=1 forallm=0, ..

.p—2,

element (m* +1,0) =1 forall m" =0, ...,p—2,
k*k
element (m" + 1,m+1) = e< >
p
— e(g(m*+m)/p)
forall m*=0,...,p—2.

Thus the ‘core’ C(p) of matrix F(p), of size (p—1) x (p— 1),
formed by the elements with two non-zero indices, has a so-called
skew-circulant structure because element (m*,m) depends only on
m* + m. Simplification may now occur because multiplication by
C(p) is closely related to a cyclic convolution. Introducing the
notation C(m) = e(g"/?) we may write the relation Y* = F(p)Y in
the permuted bases as

= Sr
Y (m* + 1) = ¥(0) +Z§_jzc(m* +m)Y(m+1)
= Y0+ O =zt
—Y(0) + (CxZ)m), m' =0,....p—2,
where Z is defined by Z(m) = Y(p —m —2), m =0, ....p — 2.

Thus Y* may be obtained by cyclic convolution of C and Z,
which may for instance be calculated by

CxZ=F(p—1)[F(p—1)[C]xFp—1)z]],

where X denotes the component-wise multiplication of vectors.
Since p is odd, p — 1 is always divisible by 2 and may even be
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highly composite. In that case, factoring F(p — 1) by means of the
Cooley-Tukey or Good methods leads to an algorlthm of complex-
1tz] p log p rather than p? for F (p). An added bonus is that, because

—1, the elements of F(p —1)[C] can be shown to be
elther purely real or purely imaginary, which halves the number of
real multiplications involved.

1.3.3.2.3.2. N a power of an odd prime
This idea was extended by Winograd (1976, 1978) to the
treatment of prime powers N = p”, using the cyclic structure of the
multiplicative group of units U (p”). The latter consists of all those
elements of Z/p”Z which are not divisible by p, and thus has ¢, =
P p - 1) elements. It is cyclic, and there exist primitive roots g
modulo p¥ such that

up’)={l.g.8.¢, ....g" '}

The p”~! elements divisible by p, which are divisors of zero, have to
be treated separately just as 0 had to be treated separately for N = p.
When k* ¢ U(p”), then k* = pkj withk} € Z/p” 17. The results

X*(pky) are P dec1mated hence can be obtamed via the p”~'-point
DFT of the p~!-periodized data Y:
X*(pki) = F(p" )[Y](K})
with
Y(k)= 2 X(k+p" k).
kQEZ/pZ

When k* € U(p”), then we may write
X7 (k") = Xg (k) + X; (k)
where X, contains the contributions from k ¢ U(p”) and X those
from k € U(p”). By a converse of the prev10us calculatlon X

arises from p-decimated data Z, hence is the p”~!-periodization of
the p”~!'-point DFT of these data:

Xo(p" 7'k + k) = F(p"H)[Z](Kk3)
with
Z(ky) = X (pky), kyeZ/p''Z

(the p”~!-periodicity follows implicity from the fact that the
transform on the right-hand side is independent of k| € Z/pZ).

Finally, the contribution X, from all k € U(p”) may be
calculated by reindexing by the powers of a primitive root g
modulo p”, i.e. by writing

Xi(g") =

ql/_l

S X (g)elg " )

m=0

then carrying out the multiplication by the skew-circulant matrix
core as a convolution.

Thus the DFT of size p” may be reduced to two DFTs of size p*~!
(dealing, respectively, with p-decimated results and p-decimated
data) and a convolution of size g, = p”~!(p — 1). The latter may be
‘dlagonahzed’ into a multlphcann by purely real or purely
imaginary numbers (because g(q“/ = —1) by two DFTs, whose
factoring in turn leads to DFTs of size p”~! and p — 1. This method,
applied recursively, allows the complete decomposition of the DFT
on p” points into arbitrarily small DFTs.

1.3.3.2.3.3. N a power of 2

When N = 2", the same method can be applied, except for a
slight modification in the calculation of Xj. There is no primitive
root modulo 2¥ for v > 2: the group U(2") is the direct product of
two cyclic groups, the first (of order 2) generated by —1, the second
(of order N /4) generated by 3 or 5. One then uses a representation
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k= (~1)"5"
k= (=1)"5"

and the reindexed core matrix gives rise to a two-dimensional
convolution. The latter may be carried out by means of two 2D
DFTs on 2 x (N /4) points.

1.3.3.2.4. The Winograd algorithms

The cyclic convolutions generated by Rader’s multiplicative
reindexing may be evaluated more economically than through DFTs
if they are re-examined within a new algebraic setting, namely the
theory of congruence classes of polynomials [see, for instance,
Blahut (1985), Chapter 2; Schroeder (1986), Chapter 24].

The set, denoted KK[X], of polynomials in one variable with
coefficients in a given field [ has many of the formal properties of
the set Z of rational integers: it is a ring with no zero divisors and
has a Euclidean algorithm on which a theory of divisibility can be
built.

Given a polynomial P(z), then for every W(z) there exist unique
polynomials Q(z) and R(z) such that

W(z) = P(2)0(z) + R(z)
and
degree (R) < degree (P).

R(z) is called the residue of H(z) modulo P(z). Two polynomials
H,(z) and H,(z) having the same residue modulo P(z) are said to be
congruent modulo P(z), which is denoted by

Hi(z) = Hy(z) mod P(z).

If H(z) =0 mod P(z), H(z) is said to be divisible by P(z). If
H(z) only has divisors of degree zero in KK[X], it is said to be
irreducible over [ (this notion depends on [K). Irreducible
polynomials play in I[X] a role analogous to that of prime numbers
in Z, and any polynomial over K has an essentially unique
factorization as a product of irreducible polynomials.

There exists a Chinese remainder theorem (CRT) for poly-
nomials. Let P(z) = Pi(z)...P4(z) be factored into a product of
pairwise coprime polynomials [i.e. P;(z) and P;j(z) have no common
factor for i # j]. Then the system of congruence equations

H(z) = Hj(z) mod Pi(z), j=1,....d,

has a unique solution H(z) modulo P(z). This solution may be
constructed by a procedure similar to that used for integers. Let

0,(z) = P(2)/Pi(z) = I] Pi(2).
i#j
Then P; and Q; are coprime, and the Euclidean algorithm may be
used to obtain polynomials p;(z) and gj(z) such that

pi(2)Pi(z) + qj(2)Q;(z) = 1.
With S;(z) = ¢i(z)Qi(z), the polynomial

H(z) = i Si(z)H;(z) mod P(z)

is easily shown to be the desired solution.

As with integers, it can be shown that the 1:1 correspondence
between H(z) and Hj(z) sends sums to sums and products to
products, i.e. establishes a ring isomorphism:

KK[X] mod P = (K[X] mod P;) x ... x (K[X] mod Py).
These results will now be applied to the efficient calculation of

cyclic convolutions. Let U= (ug,uy, ...,uy—1) and V=
(vo,v1, ...,vn—1) be two vectors of length N, and let W=
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(wg, w1, ...,wy_1) be obtained by cyclic convolution of U and V:

..,N—1

N-1
Wy = Z UnVn—m>, N = 0’
m=0

The very simple but crucial result is that this cyclic convolution
may be carried out by polynomial multiplication modulo (¥ — 1):
if

N-1 ;
Uz) = Y wz
=0

N-1
V(z) = > vmd"

m=0

N-1
W(z) = 2 wad"

n=0

then the above relation is equivalent to
W(z) = U(z)V(z) mod (7" —1).

Now the polynomial z¥ — 1 can be factored over the field of rational
numbers into irreducible factors called cyclotomic polynomials: if d
is the number of divisors of N, including 1 and N, then

1= ﬁPi(Z)»
i=1

where the cyclotomics P;(z) are well known (Nussbaumer, 1981;
Schroeder, 1986, Chapter 22). We may now invoke the CRT, and
exploit the ring isomorphism it establishes to simplify the
calculation of W(z) from U(z) and V/(z) as follows:

(i) compute the d residual polynomials

Ui(z) =U(z) mod Pi(z), i=1,....d,
Vi(z) = V(z) mod P;(z), i=1,....d,
(ii) compute the d polynomial products
Wi(z) = Ui(z)Vi(z) mod Pi(z), i=1,...,d,

(iii) use the CRT reconstruction formula just proved to recover

W (z) from the W;(z):

d

W(z) = Y Si(z)Wi(z) mod (¥ - 1).

i=1
When N is not too large, i.e. for ‘short cyclic convolutions’, the
Pi(z) are very simple, with coefficients 0 or £1, so that (i) only
involves a small number of additions. Furthermore, special
techniques have been developed to multiply general polynomials
modulo cyclotomic polynomials, thus helping keep the number of
multiplications in (ii) and (iii) to a minimum. As a result, cyclic
convolutions can be calculated rapidly when N is sufficiently
composite.

It will be recalled that Rader’s multiplicative indexing often
gives rise to cyclic convolutions of length p — 1 for p an odd prime.
Since p — 1 is highly composite for all p < 50 other than 23 and 47,
these cyclic convolutions can be performed more efficiently by the
above procedure than by DFT.

These combined algorithms are due to Winograd (1977, 1978,
1980), and are known collectively as ‘Winograd small FFT
algorithms’. Winograd also showed that they can be thought of as
bringing the DFT matrix F to the following ‘normal form’:

F = CBA,

where
A is an integer matrix with entries 0, £1, defining the ‘pre-
additions’,
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