
�M � ��0 � ��0�

It then follows that ��� r � ��M � ���� Defining the ‘interference
function’ G as the normalized indicator function of M according to

G��� � 1
vol�M�

�� ��M ����

we may invoke Shannon’s theorem to calculate the value �� ���0��� �
at an arbitrary point � of reciprocal space from its sample values
F�h� � �� ���0��h� at points of the reciprocal lattice as

�� ���0���� � �

h	�3

G�� � h�F�h��

This aspect of Shannon’s theorem constitutes the mathematical
basis of phasing methods based on geometric redundancies created
by solvent regions and/or noncrystallographic symmetries (Bri-
cogne, 1974). The connection between Shannon’s theorem and the
phase problem was first noticed by Sayre (1952b). He pointed out
that the Patterson function of ��, written as ����, ��� � r � ����0 � ��0�,
may be viewed as consisting of a motif �0 � ���0 � ��0 (containing all
the internal interatomic vectors) which is periodized by convolution
with r. As the translates of �0 by vectors of �3 do overlap, the
sample values of the intensities 
F�h�
2 at nodes of the reciprocal
lattice do not provide enough data to interpolate intensities 
F���
2
at arbitrary points of reciprocal space. Thus the loss of phase is
intimately related to the impossibility of intensity interpolation,
implying in return that any indication of intensity values attached to
non-integral points of the reciprocal lattice is a potential source of
phase information.

1.3.4.2.1.8. Sections and projections
It was shown at the end of Section 1.3.2.5.8 that the convolution

theorem establishes, under appropriate assumptions, a duality
between sectioning a smooth function (viewed as a multiplication
by a �-function in the sectioning coordinate) and projecting its
transform (viewed as a convolution with the function 1 everywhere
equal to 1 as a function of the projection coordinate). This duality
follows from the fact that � and �� map 1xi to �xi and �xi to 1xi

(Section 1.3.2.5.6), and from the tensor product property (Section
1.3.2.5.5).

In the case of periodic distributions, projection and section must
be performed with respect to directions or subspaces which are
integral with respect to the period lattice if the result is to be
periodic; furthermore, projections must be performed only on the
contents of one repeating unit along the direction of projection, or
else the result would diverge. The same relations then hold between
principal central sections and projections of the electron density and
the dual principal central projections and sections of the weighted
reciprocal lattice, e.g.

���x1, 0, 0� � �

h1� h2

F�h1, h2, h3�,

���x1, x2, 0� ��

h3

F�h1, h2, h3�,

��1� 2�x3� �
�

�2��2

���x1, x2, x3� dx1 dx2 � F�0, 0, h3�,

��1�x2, x3� �
�

���

���x1, x2, x3� dx1 � F�0, h2, h3�

etc.
When the sections are principal but not central, it suffices to use

the shift property of Section 1.3.2.5.5. When the sections or
projections are not principal, they can be made principal by
changing to new primitive bases B and B� for � and ��,
respectively, the transition matrices P and P� to these new bases

being related by P� � �P�1�T in order to preserve duality. This
change of basis must be such that one of these matrices (say, P)
should have a given integer vector u as its first column, u being
related to the line or plane defining the section or projection of
interest.

The problem of constructing a matrix P given u received an
erroneous solution in Volume II of International Tables (Patterson,
1959), which was subsequently corrected in 1962. Unfortunately,
the solution proposed there is complicated and does not suggest a
general approach to the problem. It therefore seems worthwhile to
record here an effective procedure which solves this problem in any
dimension n (Watson, 1970).

Let

u �
u1

��
�

un

�

�
�

�

�
�

be a primitive integral vector, i.e. g.c.d. �u1, � � � , un� � 1. Then an
n� n integral matrix P with det P � 1 having u as its first column
can be constructed by induction as follows. For n � 1 the result is
trivial. For n � 2 it can be solved by means of the Euclidean
algorithm, which yields z1, z2 such that u1z2 � u2z1 � 1, so that we

may take P � u1 z1

u2 z2

	 


. Note that, if z � z1

z2

	 


is a solution,

then z� mu is another solution for any m 	 �. For n  3, write

u � u1

dz

	 


with d � g.c.d. �u2, � � � , un� so that both z �
z2

��
�

zn

�

�
�

�

�
�

and
u1

d

	 


are primitive. By the inductive hypothesis there is an

integral 2� 2 matrix V with
u1

d

	 


as its first column, and an

integral �n� 1� � �n� 1� matrix Z with z as its first column, with
det V � 1 and det Z � 1.

Now put

P � 1
Z

	 

V

In�2

	 


,

i.e.

P �

1 0 0 � 0
0 z2 � � �
0 z3 � � �
� � � � �
0 zn � � �

�

�
�
�
�
�

�

�
�
�
�
�

u1 � 0 � 0
d � 0 � 0
0 0 1 � 0
� � � � �
0 0 0 � 1

�

�
�
�
�
�

�

�
�
�
�
�
�

The first column of P is

u1

dz2

�
�

dzn

�

�
�
�
�
�

�

�
�
�
�
�
� u,

and its determinant is 1, QED.
The incremental step from dimension n� 1 to dimension n is the

construction of 2� 2 matrix V, for which there exist infinitely many
solutions labelled by an integer mn�1. Therefore, the collection of
matrices P which solve the problem is labelled by n� 1 arbitrary
integers �m1, m2, � � � , mn�1�. This freedom can be used to adjust the
shape of the basis B.
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Once P has been chosen, the calculation of general sections and
projections is transformed into that of principal sections and
projections by the changes of coordinates:

x � Px�, h � P�h�,

and an appeal to the tensor product property.
Booth (1945a) made use of the convolution theorem to form the

Fourier coefficients of ‘bounded projections’, which provided a
compromise between 2D and 3D Fourier syntheses. If it is desired to
compute the projection on the (x, y) plane of the electron density
lying between the planes z � z1 and z � z2, which may be written as

���� �1x � 1y � ��z1� z2��� � ��x � �y � 1z��
The transform is then

�F � ��h � �k � �� ���z1� z2���� � �1h � 1k � �l�,
giving for coefficient �h, k�:

�

l	�
F�h, k, l� exp�2�il��z1 � z2��2�� � sin�l�z1 � z2�

�l
�

1.3.4.2.1.9. Differential syntheses
Another particular instance of the convolution theorem is the

duality between differentiation and multiplication by a monomial
(Sections 1.3.2.4.2.8, 1.3.2.5.8).

In the present context, this result may be written

��
	m1�m2�m3�

	X m1
1 	X m2

2 	X m3
3

� 

�H�

� ��2�i�m1�m2�m3 Hm1
1 Hm2

2 Hm3
3 F�AT H�

in Cartesian coordinates, and

��
	m1�m2�m3��

	xm1
1 	xm2

2 	xm3
3

� 

�h� � ��2�i�m1�m2�m3 hm1
1 hm2

2 hm3
3 F�h�

in crystallographic coordinates.
A particular case of the first formula is

�4�2 �

H	��
�H�2F�AT H� exp��2�iH � X� � ���X�,

where

�� �
�3

j�1

	2�

	X 2
j

is the Laplacian of �.
The second formula has been used with 
m
 � 1 or 2 to compute

‘differential syntheses’ and refine the location of maxima (or other
stationary points) in electron-density maps. Indeed, the values at x
of the gradient vector ��� and Hessian matrix ���T��� are readily
obtained as

������x� � �

h	�3

��2�ih�F�h� exp��2�ih � x�,

����T�����x� � �

h	�3

��4�2hhT�F�h� exp��2�ih � x�,

and a step of Newton iteration towards the nearest stationary point
of ��will proceed by

x ��� x� �����T�����x���1������x��
The modern use of Fourier transforms to speed up the

computation of derivatives for model refinement will be described
in Section 1.3.4.4.7.

The converse property is also useful: it relates the derivatives of
the continuous transform �� ��0� to the moments of �0:

	m1�m2�m3 �� ��0�
	X m1

1 	X m2
2 	X m3

3
�H� � �� ��2�i�m1�m2�m3 X m1

1 X m2
2 X m3

3 �0
x��H��

For 
m
 � 2 and H � 0, this identity gives the well known relation
between the Hessian matrix of the transform �� ��0� at the origin of
reciprocal space and the inertia tensor of the motif �0. This is a
particular case of the moment-generating properties of �� , which
will be further developed in Section 1.3.4.5.2.

1.3.4.2.1.10. Toeplitz forms, determinantal inequalities
and Szegö’s theorem

The classical results presented in Section 1.3.2.6.9 can be readily
generalized to the case of triple Fourier series; no new concept is
needed, only an obvious extension of the notation.

Let �� be real-valued, so that Friedel’s law holds and
F��h� � F�h�. Let � be a finite set of indices comprising the
origin: � � �h0 � 0, h1, � � � , hn�. Then the Hermitian form in n�
1 complex variables

T������u� �
�n

j� k�0
F�hj � hk�ujuk

is called the Toeplitz form of order � associated to ��. By the
convolution theorem and Parseval’s identity,

T������u� �
�

�3��3

���x� �
n

j�0
uj exp�2�ihj � x�

�
�
�
�
�

�
�
�
�
�

2

d3x�

If �� is almost everywhere non-negative, then for all � the forms
T����� are positive semi-definite and therefore all Toeplitz
determinants D����� are non-negative, where

D����� � det ��F�hj � hk����
The Toeplitz–Carathéodory–Herglotz theorem given in Section

1.3.2.6.9.2 states that the converse is true: if D����  0 for all �,
then �� is almost everywhere non-negative. This result is known in
the crystallographic literature through the papers of Karle &
Hauptman (1950), MacGillavry (1950), and Goedkoop (1950),
following previous work by Harker & Kasper (1948) and Gillis
(1948a,b).

Szegö’s study of the asymptotic distribution of the eigenvalues of
Toeplitz forms as their order tends to infinity remains valid. Some
precautions are needed, however, to define the notion of a sequence
��k� of finite subsets of indices tending to infinity: it suffices that
the �k should consist essentially of the reciprocal-lattice points h
contained within a domain of the form k� (k-fold dilation of �)
where � is a convex domain in �3 containing the origin (Widom,
1960). Under these circumstances, the eigenvalues 
�n�� of the
Toeplitz forms T�k ���� become equidistributed with the sample
values ���n��� of ��on a grid satisfying the Shannon sampling criterion
for the data in �k (cf. Section 1.3.2.6.9.3).

A particular consequence of this equidistribution is that the
geometric means of the 
�n�� and of the ���n��� are equal, and hence as in
Section 1.3.2.6.9.4

lim
k��

�D�k �����1�
�k 
 � exp
�

�3��3

log ���x� d3x

� �

,

where 
�k 
 denotes the number of reflections in �k . Complementary
terms giving a better comparison of the two sides were obtained by
Widom (1960, 1975) and Linnik (1975).
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