
integers, which accommodates 2D crystallographic symmetries in a
most powerful and pleasing fashion.

At each stage of the calculation, it is necessary to keep track of
the definition of the asymmetric unit and of the symmetry properties
of the numbers being manipulated. This requirement applies not
only to the initial data and to the final results, where these are
familiar; but also to all the intermediate quantities produced by
partial transforms (on subsets of factors, or subsets of dimensions,
or both), where they are less familiar. Here, the general formalism
of transposition (or ‘orbit exchange’) described in Section
1.3.4.2.2.2 plays a central role.

1.3.4.3.3. Interaction between symmetry and
decomposition

Suppose that the space-group action is reducible, i.e. that for each
g � G

Rg � R�
g 0

0 R��
g

� �
, tg �

t�g
t��g

� �
;

by Schur’s lemma, the decimation matrix must then be of the form

N � N� 0
0 N��

� �
if it is to commute with all the Rg.

Putting x � x�

x��

� �
and h � h�

h��

� �
, we may define

S�g�x�� � R�
gx� � t�g,

S��g �x��� � R��
gx�� � t��g ,

and write Sg � S�g � S��g (direct sum) as a shorthand for Sg�x� �
S�g�x��
S��g �x���

� �
�

We may also define the representation operators S
��
g and S

���
g

acting on functions of x� and x��, respectively (as in Section
1.3.4.2.2.4), and the operators S

��
g and S

���
g acting on functions of h�

and h��, respectively (as in Section 1.3.4.2.2.5). Then we may write

S�
g � �S�g�� � �S��g ��

and

S�g � �S�g�� � �S��g ��

in the sense that g acts on f �x� 	 f �x�, x��� by

�S�
g f ��x�, x��� � f 
�S�g��1�x��, �S��g ��1�x����

and on ��h� 	 ��h�, h��� by

�S�g���h�, h��� � exp�2�ih� 
 t�g� exp�2�ih�� 
 t��g�
� �
R�T

g h�, R
��T
g h����

Thus equipped we may now derive concisely a general identity
describing the symmetry properties of intermediate quantities of the
form

T�x�, h��� �
�

h�
F�h�, h��� exp��2�ih� 
 x��

� 1
�det N��

�
x��

���x�, x��� exp��2�ih�� 
 x���,

which arise through partial transformation of F on h� or of ��on x��.
The action of g � G on these quantities will be

(i) through �S�g�� on the function x� ��� T�x�, h���,
(ii) through �S��g �� on the function h�� ��� T�x�, h���,

and hence the symmetry properties of T are expressed by the
identity

T � 
�S�g�� � �S��g ���T �
Applying this relation not to T but to 
�S�g�1�� � �S��e ���T gives


�S�g�1�� � �S��e ���T � 
�S�e�� � �S��g ���T ,

i.e.

T�S�g�x��, h��� � exp�2�ih�� 
 t��g�T�x�, R
��T
g h����

If the unique F�h� 	 F�h�, h��� were initially indexed by

�all h�� � �unique h���
(see Section 1.3.4.2.2.2), this formula allows the reindexing of the
intermediate results T�x�, h��� from the initial form

�all x�� � �unique h���
to the final form

�unique x�� � �all h���,
on which the second transform (on h��) may now be performed,
giving the final results ���x�, x��� indexed by

�unique x�� � �all x���,
which is an asymmetric unit. An analogous interpretation holds if
one is going from �� to F.

The above formula solves the general problem of transposing
from one invariant subspace to another, and is the main device for
decomposing the CDFT. Particular instances of this formula were
derived and used by Ten Eyck (1973); it is useful for orthorhombic
groups, and for dihedral groups containing screw axes nm with g.c.d.
�m, n� � 1. For comparison with later uses of orbit exchange, it
should be noted that the type of intermediate results just dealt with
is obtained after transforming on all factors in one summand.

A central piece of information for driving such a decomposition
is the definition of the full asymmetric unit in terms of the
asymmetric units in the invariant subspaces. As indicated at the end
of Section 1.3.4.2.2.2, this is straightforward when G acts without
fixed points, but becomes more involved if fixed points do exist. To
this day, no systematic ‘calculus of asymmetric units’ exists which
can automatically generate a complete description of the asym-
metric unit of an arbitrary space group in a form suitable for
directing the orbit exchange process, although Shenefelt (1988) has
outlined a procedure for dealing with space group P622 and its
subgroups. The asymmetric unit definitions given in Volume A of
International Tables are incomplete in this respect, in that they do
not specify the possible residual symmetries which may exist on the
boundaries of the domains.

1.3.4.3.4. Interaction between symmetry and factorization

Methods for factoring the DFT in the absence of symmetry were
examined in Sections 1.3.3.2 and 1.3.3.3. They are based on the
observation that the finite sets which index both data and results are
endowed with certain algebraic structures (e.g. are Abelian groups,
or rings), and that subsets of indices may be found which are not
merely subsets but substructures (e.g. subgroups or subrings).
Summation over these substructures leads to partial transforms, and
the way in which substructures fit into the global structure indicates
how to reassemble the partial results into the final results. As a rule,
the richer the algebraic structure which is identified in the indexing
set, the more powerful the factoring method.
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The ability of a given factoring method to accommodate
crystallographic symmetry will thus be determined by the extent
to which the crystallographic group action respects (or fails to
respect) the partitioning of the index set into the substructures
pertaining to that method. This remark justifies trying to gain an
overall view of the algebraic structures involved, and of the
possibilities of a crystallographic group acting ‘naturally’ on them.

The index sets �m�m � �3�N�3� and �h�h � �3�NT�3� are
finite Abelian groups under component-wise addition. If an iterated
addition is viewed as an action of an integer scalar n � � via

nh � h� h� � � �� h �n times� for n � 0,

� 0 for n � 0,

� ��h� h� � � �� h� ��n� times� for n � 0,

then an Abelian group becomes a module over the ring � (or, for
short, a �-module), a module being analogous to a vector space but
with scalars drawn from a ring rather than a field. The left actions of
a crystallographic group G by

g � m ��� Rgm� Ntg mod N�3

and by

g � h ��� �R�1
g �T h mod NT�3

can be combined with this � action as follows:�
g�G

ngg � m ��� �
g�G

ng�Rgm� Ntg� mod N�3,

�
g�G

ngg � h ��� �
g�G

ng
�R�1
g �T h� mod NT�3�

This provides a left action, on the indexing sets, of the set

�G � �
g�G

ngg
��ng � � for each g � G

� �

of symbolic linear combinations of elements of G with integral
coefficients. If addition and multiplication are defined in �G by

�
g1�G

ag1 g1

� 	
� �

g2�G
bg2 g2

� 	
� �

g�G
�ag � bg�g

and

�
g1�G

ag1 g1

� 	
� �

g2�G
bg2 g2

� 	
� �

g�G
cgg,

with

cg �
�

g��G
ag�b�g���1 g,

then �G is a ring, and the action defined above makes the indexing
sets into �G-modules. The ring �G is called the integral group ring
of G (Curtis & Reiner, 1962, p. 44).

From the algebraic standpoint, therefore, the interaction between
symmetry and factorization can be expected to be favourable
whenever the indexing sets of partial transforms are �G-
submodules of the main �G-modules.

1.3.4.3.4.1. Multidimensional Cooley–Tukey factorization
Suppose, as in Section 1.3.3.3.2.1, that the decimation matrix N

may be factored as N1N2. Then any grid point index m � �3�N�3

in real space may be written

m � m1 � N1m2

with m1 � �3�N1�
3 and m2 � �3�N2�

3 determined by

m1 � m mod N1�
3,

m2 � N�1
1 �m �m1� mod N2�

3�

These relations establish a one-to-one correspondence m �
�m1, m2� between I � �3�N�3 and the Cartesian product I1 � I2
of I1 � �3�N1�

3 and I2 � �3�N2�
3, and hence I � I1 � I2 as a set.

However I �� I1 � I2 as an Abelian group, since in general m �
m� ����m1 �m�

1, m2 �m�
2� because there can be a ‘carry’ from the

addition of the first components into the second components;
therefore, I �� I1 � I2 as a �G-module, which shows that the
incorporation of symmetry into the Cooley–Tukey algorithm is not
a trivial matter.

Let g � G act on I through

g � m ��� Sg�m� � Rgm� Ntg mod N�3

and suppose that N ‘integerizes’ all the non-primitive translations tg
so that we may write

Ntg � t�1�g � N1t�2�g ,

with t�1�g � I1 and t�2�g � I2 determined as above. Suppose further
that N, N1 and N2 commute with Rg for all g � G, i.e. (by Schur’s
lemma, Section 1.3.4.2.2.4) that these matrices are integer multiples
of the identity in each G-invariant subspace. The action of g on
m � Nx mod N�3 leads to

Sg�m� � N
Rg�N�1m� � Ntg� mod N�3

� NRgN�1�m1 � N1m2� � t�1�g � N1t�2�g mod N�3

� Rgm1 � t�1�g � N1�Rgm2 � t�2�g � mod N�3,

which we may decompose as

Sg�m� � 
Sg�m��1 � N1
Sg�m��2
with


Sg�m��1 	 Sg�m� mod N1�
3

and


Sg�m��2 	 N�1
1 �Sg�m� � 
Sg�m��1� mod N2�

3�

Introducing the notation

S�1�g �m1� � Rgm1 � t�1�g mod N1�
3,

S�2�g �m2� � Rgm2 � t�2�g mod N2�
3,

the two components of Sg�m� may be written


Sg�m��1 � S�1�g �m1�,

Sg�m��2 � S�2�g �m2� � �2�g, m1� mod N2�

3,

with

�2�g, m1� � N�1
1 ��Rgm1 � t�1�g � � 
Sg�m1��1� mod N2�

3�

The term �2 is the geometric equivalent of a carry or borrow: it
arises because Rgm1 � t�1�g , calculated as a vector in �3�N�3, may
be outside the unit cell N1
0, 1�3, and may need to be brought back
into it by a ‘large’ translation with a non-zero component in the m2
space; equivalently, the action of g may need to be applied around
different permissible origins for different values of m1, so as to map
the unit cell into itself without any recourse to lattice translations.
[Readers familiar with the cohomology of groups (see e.g. Hall,
1959; MacLane, 1963) will recognize �2 as the cocycle of the
extension of �G-modules described by the exact sequence
0 � I2 � I � I1 � 0.]
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Thus G acts on I in a rather complicated fashion: although
g ��� S�1�g does define a left action in I1 alone, no action can be
defined in I2 alone because �2 depends on m1. However, because
Sg, S�1�g and S�2�g are left actions, it follows that �2 satisfies the
identity

�2�gg�, m1� � S�2�g 
�2�g�, m1�� � �2
g, S�1�g �m1�� mod N2�
3

for all g, g� in G and all m1 in I1. In particular, �2�e, m1� � 0 for all
m1, and

�2�g�1, m1� � �S�2�g�1��2
g, S�1�g�1�m1��� mod N2�
3�

This action will now be used to achieve optimal use of symmetry
in the multidimensional Cooley–Tukey algorithm of Section
1.3.3.3.2.1. Let us form an array Y according to

Y�m1, m2� � ��m1 � N1m2�
for all m2 � I2 but only for the unique m1 under the action S�1�g of G
in I1. Except in special cases which will be examined later, these
vectors contain essentially an asymmetric unit of electron-density
data, up to some redundancies on boundaries. We may then
compute the partial transform on m2:

Y ��m1, h2� � 1
�det N2�

�
m2�I2

Y�m1, m2�e
h2 
 �N�1
2 m2���

Using the symmetry of �� in the form ��� S�
g �� yields by the

procedure of Section 1.3.3.3.2 the transposition formula

Y ��S�1�g �m1�, h2� � e�h2 
 
N�1
2 �t�2�g � �2�g, m1����

� Y ��m1, 
R�2�
g �T h2��

By means of this identity we can transpose intermediate results
Y � initially indexed by

�unique m1� � �all h2�,
so as to have them indexed by

�all m1� � �unique h2��
We may then apply twiddle factors to get

Z�m1, h2� � e
h2 
 �N�1m1��Y ��m1, h2�
and carry out the second transform

Z��h1, h2� � 1
�det N1�

�
m1�I1

Z�m1, h2�e
h1 
 �N�1
1 m1���

The final results are indexed by

�all h1� � �unique h2�,
which yield essentially an asymmetric unit of structure factors after
unscrambling by:

F�h2 � NT
2 h1� � Z��h1, h2��

The transposition formula above applies to intermediate results
when going backwards from F to ��, provided these results are
considered after the twiddle-factor stage. A transposition formula
applicable before that stage can be obtained by characterizing the
action of G on h (including the effects of periodization by NT�3) in
a manner similar to that used for m.

Let

h � h2 � NT
2 h1,

with

h2 � h mod NT
2�

3,

h1 � �N�1
2 �T�h� h2� mod NT

1�
3�

We may then write

RT
g h � 
RT

g h�2 � NT
2 
RT

g h�1,

with


RT
g h�2 � 
R�2�

g �T h2 mod NT
2�

3,


RT
g h�1 � 
R�1�

g �T h1 � �1�g, h2� mod NT
1�

3�

Here 
R�2�
g �T , 
R�1�

g �T and �1 are defined by


R�2�
g �T h2 � RT

g h mod NT
2�

3,


R�1�
g �T h1 � RT

g h mod NT
1�

3

and

�1�g, h2� � �N�1
2 �T �RT

g h2 � 
R�2�
g �T h2� mod NT

1�
3�

Let us then form an array Z� according to

Z��h�1, h�2� � F�h�2 � NT
2 h�1�

for all h�1 but only for the unique h�2 under the action of G in
�3�NT

2�
3, and transform on h�1 to obtain

Z�m1, h2� �
�

h�1��3�NT
1 �

3

Z��h�1, h�2�e
�h�1 
 �N�1
1 m1���

Putting h� � RT
g h and using the symmetry of F in the form

F�h�� � F�h� exp��2�ih 
 tg�,
where

h 
 tg � �hT
2 � hT

1 N2��N�1
2 N�1

1 ��t�1�g � N1t�2�g �
	 h2 
 tg � h2 
 �N�1

1 t�1�g � mod 1

yields by a straightforward rearrangement

Z�m1, 
R�2�
g �T h2� � e
��h2 
 tg � �1�g, h2� 
 �N�1

1 m1���
� Z�S�1�g �m1�, h2��

This formula allows the transposition of intermediate results Z
from an indexing by

�all m1� � �unique h2�
to an indexing by

�unique m1� � �all h2��
We may then apply the twiddle factors to obtain

Y ��m1, h2� � e
�h2 
 �N�1m1��Z�m1, h2�
and carry out the second transform on h2

Y�m1, m2� �
�

h2��3�NT
2 �

3

Y ��m1, h2�e
�h2 
 �N�1
2 m2���

The results, indexed by

�unique m1� � �all m2�
yield essentially an asymmetric unit of electron densities by the
rearrangement

���m1 � N1m2� � Y�m1, m2��
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The equivalence of the two transposition formulae up to the
intervening twiddle factors is readily established, using the relation

h2 
 
N�1
2 �2�g, m1�� � �1�g, h2� 
 �N�1

1 m1� mod 1

which is itself a straightforward consequence of the identity

h 
 
N�1Sg�m�� � h 
 tg � �RT
g h� 
 �N�1m��

To complete the characterization of the effect of symmetry on the
Cooley–Tukey factorization, and of the economy of computation it
allows, it remains to consider the possibility that some values of m1
may be invariant under some transformations g � G under the
action m1 ��� S�1�g �m1�.

Suppose that m1 has a non-trivial isotropy subgroup Gm1 , and let
g � Gm1 . Then each subarray Ym1 defined by

Ym1�m2� � Y�m1, m2� � ��m1 � N1m2�
satisfies the identity

Ym1�m2� � Y
S�1�g �m1�
S

�2�
g �m2� � �2�g, m1��

� Ym1 
S�2�g �m2� � �2�g, m1��
so that the data for the transform on m2 have residual symmetry
properties. In this case the identity satisfied by �2 simplifies to

�2�gg�, m1� � S�2�g 
�2�g�, m1�� � �2�g, m1� mod N2�
3,

which shows that the mapping g ��� �2�g, m1� satisfies the
Frobenius congruences (Section 1.3.4.2.2.3). Thus the internal
symmetry of subarray Ym1 with respect to the action of G on m2 is
given by Gm1 acting on �3�N2�

3 via

m2 ��� S�2�g �m2� � �2�g, m1� mod N2�
3�

The transform on m2 needs only be performed for one out of

G � Gm1 � distinct arrays Ym1 (results for the others being obtainable
by the transposition formula), and this transforms is Gm1 -
symmetric. In other words, the following cases occur:

�i� Gm1 � �e� maximum saving in computation
�by �G��;
m2-transform has no symmetry�

�ii� Gm1 � G� � G saving in computation by a factor
of 
G � G��;
m2-transform is G�-symmetric�

�iii� Gm1 � G no saving in computation;
m2-transform is G-symmetric�

The symmetry properties of the m2-transform may themselves be
exploited in a similar way if N2 can be factored as a product of
smaller decimation matrices; otherwise, an appropriate symme-
trized DFT routine may be provided, using for instance the idea of
‘multiplexing/demultiplexing’ (Section 1.3.4.3.5). We thus have a
recursive descent procedure, in which the deeper stages of the
recursion deal with transforms on fewer points, or of lower
symmetry (usually both).

The same analysis applies to the h1-transforms on the subarrays
Z�h2

, and leads to a similar descent procedure.
In conclusion, crystallographic symmetry can be fully exploited

to reduce the amount of computation to the minimum required to
obtain the unique results from the unique data. No such analysis was
so far available in cases where the asymmetric units in real and
reciprocal space are not parallelepipeds. An example of this
procedure will be given in Section 1.3.4.3.6.5.

1.3.4.3.4.2. Multidimensional Good factorization
This procedure was described in Section 1.3.3.3.2.2. The main

difference with the Cooley–Tukey factorization is that if
N � N1N2 � � �Nd�1Nd , where the different factors are pairwise
coprime, then the Chinese remainder theorem reindexing makes
�3�N�3 isomorphic to a direct sum.

�3�N�3 � ��3�N1�
3� � � � �� ��3�Nd�

3�,
where each p-primary piece is endowed with an induced �G-
module structure by letting G operate in the usual way but with the
corresponding modular arithmetic. The situation is thus more
favourable than with the Cooley–Tukey method, since there is no
interference between the factors (no ‘carry’). In the terminology of
Section 1.3.4.2.2.2, G acts diagonally on this direct sum, and results
of a partial transform may be transposed by orbit exchange as in
Section 1.3.4.3.4.1 but without the extra terms � or �. The analysis
of the symmetry properties of partial transforms also carries over,
again without the extra terms. Further simplification occurs for all
p-primary pieces with p other than 2 or 3, since all non-primitive
translations (including those associated to lattice centring)
disappear modulo p.

Thus the cost of the CRT reindexing is compensated by the
computational savings due to the absence of twiddle factors and of
other phase shifts associated with non-primitive translations and
with geometric ‘carries’.

Within each p-primary piece, however, higher powers of p may
need to be split up by a Cooley–Tukey factorization, or carried out
directly by a suitably adapted Winograd algorithm.

1.3.4.3.4.3. Crystallographic extension of the Rader/
Winograd factorization

As was the case in the absence of symmetry, the two previous
classes of algorithms can only factor the global transform into
partial transforms on prime numbers of points, but cannot break the
latter down any further. Rader’s idea of using the action of the group
of units U�p� to obtain further factorization of a p-primary
transform has been used in ‘scalar’ form by Auslander & Shenefelt
(1987), Shenefelt (1988), and Auslander et al. (1988). It will be
shown here that it can be adapted to the crystallographic case so as
to take advantage also of the possible existence of n-fold cyclic
symmetry elements �n � 3, 4, 6� in a two-dimensional transform
(Bricogne & Tolimieri, 1990). This adaptation entails the use of
certain rings of algebraic integers rather than ordinary integers,
whose connection with the handling of cyclic symmetry will now be
examined.

Let G be the group associated with a threefold axis of symmetry:
G � �e, g, g2� with g3 � e. In a standard trigonal basis, G has
matrix representation

Re � 1 0
0 1

� �
� I, Rg � 0 �1

1 �1

� �
, Rg2 � �1 1

�1 0

� �

in real space,

R�
e �

1 0
0 1

� �
� I, R�

g �
�1 �1

1 0

� �
, R�

g2 � 0 1
�1 �1

� �

in reciprocal space. Note that

R�
g2 � 
R�1

g2 �T � RT
g ,

and that

RT
g � J�1RgJ, where J � 1 0

0 �1

� �

so that Rg and RT
g are conjugate in the group of 2� 2 unimodular
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integer matrices. The group ring �G is commutative, and has the
structure of the polynomial ring �
X � with the single relation X 2 �
X � 1 � 0 corresponding to the minimal polynomial of Rg. In the
terminology of Section 1.3.3.2.4, the ring structure of �G is
obtained from that of �
X � by carrying out polynomial addition and
multiplication modulo X 2 � X � 1, then replacing X by any
generator of G. This type of construction forms the very basis of
algebraic number theory [see Artin (1944, Section IIc) for an
illustration of this viewpoint], and �G as just defined is isomorphic
to the ring �
�� of algebraic integers of the form a� b� 
a, b �
�,� � exp�2�i�3�� under the identification X � �. Addition in
this ring is defined component-wise, while multiplication is defined
by

�a1 � b1�� � �a2 � b2�� � �a1a2 � b1b2�
� 
�a1 � b1�b2 � b1a2���

In the case of a fourfold axis, G � �e, g, g2, g3� with g4 � e, and

Rg � 0 �1
1 0

� �
� R�

g, with again RT
g � J�1RgJ�

�G is obtained from �
X � by carrying out polynomial arithmetic
modulo X 2 � 1. This identifies �G with the ring �
i� of Gaussian
integers of the form a� bi, in which addition takes place
component-wise while multiplication is defined by

�a1 � b1i� � �a2 � b2i� � �a1a2 � b1b2� � �a1b2 � b1a2�i�
In the case of a sixfold axis, G � �e, g, g2, g3, g4, g5� with

g6 � e, and

Rg � 1 �1
1 0

� �
, R�

g �
0 �1
1 1

� �
, RT

g � J�1RgJ�

�G is isomorphic to �
�� under the mapping g � 1� � since
�1� ��6 � 1.

Thus in all cases �G � �
X ��P�X � where P�X � is an irreducible
quadratic polynomial with integer coefficients.

The actions of G on lattices in real and reciprocal space (Sections
1.3.4.2.2.4, 1.3.4.2.2.5) extend naturally to actions of �G on �2 in
which an element z � a� bg of �G acts via

m � m1

m2

� �
��� zm � �aI� bRg� m1

m2

� �

in real space, and via

h � h1

h2

� �
��� zh � �aI� bRT

g �
h1

h2

� �

in reciprocal space. These two actions are related by conjugation,
since

�aI� bRT
g � � J�1�aI� bRg�J

and the following identity (which is fundamental in the sequel)
holds:

�zh� 
m � h 
 �zm� for all m, h � �2�

Let us now consider the calculation of a p� p two-dimensional
DFT with n-fold cyclic symmetry �n � 3, 4, 6� for an odd prime
p � 5. Denote ��p� by �p. Both the data and the results of the DFT
are indexed by �p � �p: hence the action of �G on these indices is
in fact an action of �pG, the latter being obtained from �G by
carrying out all integer arithmetic in �G modulo p. The algebraic
structure of �pG combines the symmetry-carrying ring structure of
�G with the finite field structure of �p used in Section 1.3.3.2.3.1,
and holds the key to a symmetry-adapted factorization of the DFT at
hand.

The structure of �pG depends on whether P�X � remains
irreducible when considered as a polynomial over �p. Thus two
cases arise:

(1) P�X � remains irreducible mod p, i.e. there is no nth root of
unity in �p;

(2) P�X � factors as �X � u��X � v�, i.e. there are nth roots of
unity in �p.

These two cases require different developments.
Case 1. �pG is a finite field with p2 elements. There is essentially

(i.e. up to isomorphism) only one such field, denoted GF�p2�, and
its group of units is a cyclic group with p2 � 1 elements. If � is a
generator of this group of units, the input data �m with m �� 0 may
be reordered as

m0, �m0, �2m0, �3m0, � � � , �p2�2m0

by the real-space action of �; while the results Fh with h �� 0 may
be reordered as

h0, �h0, �2h0, �3h0, � � � , �p2�2h0

by the reciprocal-space action of �, where m0 and h0 are arbitrary
non-zero indices.

The core Cp�p of the DFT matrix, defined by

Fp�p �
1 1 � � � 1
1
��
�

Cp�p

1



���



���,

will then have a skew-circulant structure (Section 1.3.3.2.3.1) since

�Cp�p�jk � e
�� jh0� 
 ��km0�

p

� �
� e

h0 
 �� j�km0�
p

� �

depends only on j� k. Multiplication by Cp�p may then be turned
into a cyclic convolution of length p2 � 1, which may be factored
by two DFTs (Section 1.3.3.2.3.1) or by Winograd’s techniques
(Section 1.3.3.2.4). The latter factorization is always favourable, as
it is easily shown that p2 � 1 is divisible by 24 for any odd prime
p � 5. This procedure is applicable even if no symmetry is present
in the data.

Assume now that cyclic symmetry of order n � 3, 4 or 6 is
present. Since n divides 24 hence divides p2 � 1, the generator g of
this symmetry is representable as ��p

2�1��n for a suitable generator �
of the group of units. The reordered data will then be �p2 � 1��n-
periodic rather than simply �p2 � 1�-periodic; hence the reindexed
results will be n-decimated (Section 1.3.2.7.2), and the �p2 � 1��n
non-zero results can be calculated by applying the DFT to the �p2 �
1��n unique input data. In this way, the n-fold symmetry can be
used in full to calculate the core contributions from the unique data
to the unique results by a DFT of length �p2 � 1��n.

It is a simple matter to incorporate non-primitive translations into
this scheme. For example, when going from structure factors to
electron densities, reordered data items separated by �p2 � 1��n are
not equal but differ by a phase shift proportional to their index mod
p, whose effect is simply to shift the origin of the n-decimated
transformed sequence. The same economy of computation can
therefore be achieved as in the purely cyclic case.

Dihedral symmetry elements, which map g to g�1 (Section
1.3.4.2.2.3), induce extra one-dimensional symmetries of order 2 in
the reordered data which can also be fully exploited to reduce
computation.

Case 2. If p � 5, it can be shown that the two roots u and v are
always distinct. Then, by the Chinese remainder theorem (CRT) for
polynomials (Section 1.3.3.2.4) we have a ring isomorphism

�p
X ��P�X � � ��p
X ���X � u�� � ��p
X ���X � v��
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defined by sending a polynomial Q�X � from the left-hand-side ring
to its two residue classes modulo X � u and X � v, respectively.
Since the latter are simply the constants Q�u� and Q�v�, the CRT
reindexing has the particularly simple form

a� bX ��� �a� bu, a� bv� � �	, 
�

or equivalently

a
b

� �
��� 	




� �
� M

a
b

� �
mod p, with M � 1 u

1 v

� �
�

The CRT reconstruction formula similarly simplifies to

	




� �
��� a

b

� �
� M�1 	




� �
mod p,

with M�1 � 1
v� u

v �u

�1 1

� �
�

The use of the CRT therefore amounts to the simultaneous
diagonalization (by M) of all the matrices representing the elements
of �pG in the basis (1, X).

A first consequence of this diagonalization is that the internal
structure of �pG becomes clearly visible. Indeed, �pG is mapped
isomorphically to a direct product of two copies of �p, in which
arithmetic is carried out component-wise between eigenvalues 	
and 
. Thus if

z � a� bX��CRT �	, 
�,
z� � a� � b�X��CRT �	�, 
��,

then

z� z���CRT �	� 	�,
 � 
��,
zz���CRT �		�,

���

Taking in particular

z��CRT �	, 0� �� �0, 0�,
z���CRT �0,
� �� �0, 0�,

we have zz� � 0, so that �pG contains zero divisors; therefore �pG
is not a field. On the other hand, if z��CRT �	,
� with 	 �� 0 and

 �� 0, then 	 and 
 belong to the group of units U�p� (Section
1.3.3.2.3.1) and hence have inverses 	�1 and 
�1; it follows that z is
a unit in �pG, with inverse z�1��CRT �	�1, 
�1�. Therefore, �pG
consists of four distinct pieces:

0��CRT ��0, 0��,

D1��CRT ��	, 0��	 � U�p�� � U�p�,
D2��CRT ��0,
��
 � U�p�� � U�p�,
U��CRT ��	,
��	 � U�p�, 
 � U�p�� � U�p� � U�p��

A second consequence of this diagonalization is that the actions
of �pG on indices m and h can themselves be brought to diagonal
form by basis changes:

m ��� �aI� bRg�m

becomes � ��� 	 0

0 


� �
� with � � Mm,

h ��� �aI� bRT
g �h

becomes � ��� 	 0

0 


� �
� with � � MJh�

Thus the sets of indices � and � can be split into four pieces as �pG
itself, according as these indices have none, one or two of their
coordinates in U�p�. These pieces will be labelled by the same
symbols – 0, D1, D2 and U – as those of �pG.

The scalar product h 
m may be written in terms of � and � as

h 
m � 
� 
 ��M�1�T JM�1���,
and an elementary calculation shows that the matrix �
�M�1�T JM�1 is diagonal by virtue of the relation

uv � constant term in P�X � � 1�

Therefore, h 
m � 0 if h � D1 and � � D2 or vice versa.
We are now in a position to rearrange the DFT matrix Fp�p.

Clearly, the structure of Fp�p is more complex than in case 1, as
there are three types of ‘core’ matrices:

type 1: D� D �with D � D1 or D2�;
type 2: D� U or U � D;

type 3: U � U �

(Submatrices of type D1 � D2 and D2 � D1 have all their elements
equal to 1 by the previous remark.)

Let � be a generator of U�p�. We may reorder the elements in D1,
D2 and U – and hence the data and results indexed by these elements
– according to powers of �. This requires one exponent in each of
D1 and D2, and two exponents in U. For instance, in the h-index
space:

D1 �
� 0

0 0

� �j �1

0

� �
0

��� j � 1, � � � , p� 1

� �

D2 �
0 0

0 �

� �j 0

�2

� �
0

��� j � 1, � � � , p� 1

� �

U � � 0

0 1

� �j1 1 0

0 �

� �j2 �1

�2

� �
0

��� j1 � 1, � � � , p� 1;

�

j2 � 1, � � � , p� 1

�

and similarly for the � index.
Since the diagonal matrix � commutes with all the matrices

representing the action of �, this rearrangement will induce skew-
circulant structures in all the core matrices. The corresponding
cyclic convolutions may be carried out by Rader’s method, i.e. by
diagonalizing them by means of two (p� 1)-point one-dimensional
DFTs in the D� D pieces and of two �p� 1� � �p� 1�-point two-
dimensional DFTs in the U � U piece (the U � D and D� U
pieces involve extra section and projection operations).

In the absence of symmetry, no computational saving is
achieved, since the same reordering could have been applied to
the initial �p � �p indexing, without the CRT reindexing.

In the presence of n-fold cyclic symmetry, however, the
rearranged Fp�p lends itself to an n-fold reduction in size. The
basic fact is that whenever case 2 occurs, p� 1 is divisible by n (i.e.
p� 1 is divisible by 6 when n � 3 or 6, and by 4 when n � 4), say
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p� 1 � nq. If g is a generator of the cyclic symmetry, the generator
� of U�p� may be chosen in such a way that g � �q. The action of g
is then to increment the j index in D1 and D2 by q, and the �j1, j2�
index in U by (q, q). Since the data items whose indices are related
in this way have identical values, the DFTs used to diagonalize the
Rader cyclic convolutions will operate on periodized data, hence
yield decimated results; and the non-zero results will be obtained
from the unique data by DFTs n times smaller than their
counterparts in the absence of symmetry.

A more thorough analysis is needed to obtain a Winograd
factorization into the normal from CBA in the presence of
symmetry (see Bricogne & Tolimieri, 1990).

Non-primitive translations and dihedral symmetry may also be
accommodated within this framework, as in case 1.

This reindexing by means of algebraic integers yields larger
orbits, hence more efficient algorithms, than that of Auslander et al.
(1988) which only uses ordinary integers acting by scalar dilation.

1.3.4.3.5. Treatment of conjugate and parity-related
symmetry properties

Most crystallographic Fourier syntheses are real-valued and
originate from Hermitian-symmetric collections of Fourier coeffi-
cients. Hermitian symmetry is closely related to the action of a
centre of inversion in reciprocal space, and thus interacts strongly
with all other genuinely crystallographic symmetry elements of
order 2. All these symmetry properties are best treated by factoring
by 2 and reducing the computation of the initial transform to that of
a collection of smaller transforms with less symmetry or none at all.

1.3.4.3.5.1. Hermitian-symmetric or real-valued
transforms

The computation of a DFT with Hermitian-symmetric or real-
valued data can be carried out at a cost of half that of an ordinary
transform, essentially by ‘multiplexing’ pairs of special partial
transforms into general complex transforms, and then ‘demultiplex-
ing’ the results on the basis of their symmetry properties. The
treatment given below is for general dimension n; a subset of cases
for n � 1 was treated by Ten Eyck (1973).

(a) Underlying group action
Hermitian symmetry is not a geometric symmetry, but it is

defined in terms of the action in reciprocal space of point group
G � �1, i.e. G � �e, � e�, where e acts as I (the n� n identity
matrix) and �e acts as �I.

This group action on �n�N�n with N � N1N2 will now be
characterized by the calculation of the cocycle �1 (Section
1.3.4.3.4.1) under the assumption that N1 and N2 are both diagonal.
For this purpose it is convenient to associate to any integer vector

v �
v1

��
�

vn



��



�� in �n the vector � �v� whose jth component is

0 if vj � 0
1 if vj �� 0.

�

Let m � m1 � N1m2, and hence h � h2 � N2h1. Then

� h2 mod N�n � N� �h2� � h2,

� h2 mod N2�
n � N2� �h2� � h2,

hence

�1��e, h2� � N�1
2 �
N� �h2� � h2� � 
N2� �h2� � h2�� mod N1�

n

� �� �h2� mod N1�
n�

Therefore �e acts by

�h2, h1� ��� 
N2� �h2� � h2, N1� �h1� � h1 � � �h2���
Hermitian symmetry is traditionally dealt with by factoring by 2,

i.e. by assuming N � 2M. If N2 � 2I, then each h2 is invariant
under G, so that each partial vector Z�

h2
(Section 1.3.4.3.4.1) inherits

the symmetry internally, with a ‘modulation’ by �1�g, h2�. The
‘multiplexing–demultiplexing’ technique provides an efficient
treatment of this singular case.

(b) Calculation of structure factors
The computation may be summarized as follows:

�� ���dec�N1�
Y ���

�F�N2�
Y� ���TW

Z ���
�F�N1�

Z� ���rev�N2�
F

where dec�N1� is the initial decimation given by
Ym1�m2� � ���m1 � N1m2�, TW is the transposition and twiddle-
factor stage, and rev�N2� is the final unscrambling by coset reversal
given by F�h2 � N2h1� � Z�

h2
�h1�.

(i) Decimation in time �N1 � 2I, N2 � M�
The decimated vectors Ym1 are real and hence have Hermitian

transforms Y�
m1

. The 2n values of m1 may be grouped into 2n�1 pairs
�m�

1, m��
1� and the vectors corresponding to each pair may be

multiplexed into a general complex vector

Y � Ym�
1
� iYm��

1
�

The transform Y� � �F�M�
Y� can then be resolved into the separate
transforms Y�

m�
1

and Y�
m��

1
by using the Hermitian symmetry of the

latter, which yields the demultiplexing formulae

Y �
m�

1
�h2� � iY �

m��
1
�h2� � Y ��h2�

Y �
m�

1
�h2� � iY �

m��
1
�h2� � Y �
M� �h2� � h2��

The number of partial transforms �F�M� is thus reduced from 2n to
2n�1. Once this separation has been achieved, the remaining steps
need only be carried out for a unique half of the values of h2.

(ii) Decimation in frequency �N1 � M, N2 � 2I�
Since h2 � �n�2�n we have�h2 � h2 and � �h2� � h2 mod 2�n.

The vectors of decimated and scrambled results Z�
h2

then obey the
symmetry relations

Z�h2
�h1 � h2� � Z�h2


M� �h1� � h1�
which can be used to halve the number of �F�M� necessary to
compute them, as follows.

Having formed the vectors Zh2 given by

Zh2�m1� �
�

m2��n�2�n

��1�h2
m2

2n
���m1 �Mm2�

�
�

�
�e
h2 
 �N�1m1��,

we may group the 2n values of h2 into 2n�1 pairs �h�2, h��2� and for
each pair form the multiplexed vector:

Z � Zh�2 � iZh��2 �

After calculating the 2n�1 transforms Z� � �F�M�
Z�, the 2n

individual transforms Z�
h�2

and Z�
h��2

can be separated by using for
each pair the demultiplexing formulae

Z�h�2�h1� � iZ�h��2 �h1� � Z��h1�
Z�h�2�h1 � h�2� � iZ�h��2 �h1 � h��2� � Z�
M� �h1� � h1�

which can be solved recursively. If all pairs are chosen so that they
differ only in the jth coordinate �h2�j, the recursion is along �h1�j
and can be initiated by introducing the (real) values of Z�h�2 and Z�h��2 at
�h1�j � 0 and �h1�j � Mj, accumulated e.g. while forming Z for that
pair. Only points with �h1�j going from 0 to 1

2 Mj need be resolved,
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