
��r,�� 2�k1, z� k2� � ��r,�, z��
Suppose the fibre now has helical symmetry, with u copies of the

same molecule in t turns, where g.c.d. �u, t� � 1. Using the
Euclidean algorithm, write u � �t � � with � and � positive
integers and � � t. The period lattice for the ��, z� dependence of
� may be defined in terms of the new basis vectors:

I, joining subunit 0 to subunit l in the same turn;
J, joining subunit 0 to subunit � after wrapping around.

In terms of the original basis

I � t
u

i� 1
u

j, J � ��
u

i� �

u
j�

If � and 	 are coordinates along I and J, respectively,

�
2�

z

� �
� 1

u
t ��
1 �

� �
�
	

� �

or equivalently

�
	

� �
� � �

�1 t

� �
�
2�

z

� �
�

By Fourier transformation,
�

2�
, z

� �
� ��n, l�

��, 	� � �m, p�
with the transformations between indices given by the contra-
gredients of those between coordinates, i.e.

n
l

� �
� �� 1

�� t

� �
m
p

� �

and

m
p

� �
� 1

u
�t 1
� �

� �
n
l

� �
�

It follows that

l � tn � um,

or alternatively that

�n � up� �l,

which are two equivalent expressions of the selection rules
describing the decimation of the transform. These rules imply that
only certain orders n contribute to a given layer l.

The 2D Fourier analysis may now be performed by analysing a
single subunit referred to coordinates � and 	 to obtain

hm� p�r� �
�1
0

�1
0
��r,�,	� exp�2�i�m�� p	�� d� d	

and then reindexing to get only the allowed gnl’s by

gnl�r� � uh��m�p� �m�tp�r��
This is u times faster than analysing u subunits with respect to the
��, z� coordinates.

1.3.4.5.2. Application to probability theory and direct
methods

The Fourier transformation plays a central role in the branch of
probability theory concerned with the limiting behaviour of sums of
large numbers of independent and identically distributed random
variables or random vectors. This privileged role is a consequence
of the convolution theorem and of the ‘moment-generating’

properties which follow from the exchange between differentiation
and multiplication by monomials. When the limit theorems are
applied to the calculation of joint probability distributions of
structure factors, which are themselves closely related to the Fourier
transformation, a remarkable phenomenon occurs, which leads to
the saddlepoint approximation and to the maximum-entropy
method.

1.3.4.5.2.1. Analytical methods of probability theory
The material in this section is not intended as an introduction to

probability theory [for which the reader is referred to Cramér
(1946), Petrov (1975) or Bhattacharya & Rao (1976)], but only as
an illustration of the role played by the Fourier transformation in
certain specific areas which are used in formulating and
implementing direct methods of phase determination.

(a) Convolution of probability densities
The addition of independent random variables or vectors leads to

the convolution of their probability distributions: if X1 and X2 are
two n-dimensional random vectors independently distributed with
probability densities P1 and P2, respectively, then their sum X �
X1 � X2 has probability density � given by

��X� � �
Rn

P1�X1�P2�X� X1� dnX1

� �
Rn

P1�X� X2�P2�X2� dnX2

i.e.

� � P1 	 P2�

This result can be extended to the case where P1 and P2 are
singular measures (distributions of order zero, Section 1.3.2.3.4)
and do not have a density with respect to the Lebesgue measure in
�n.

(b) Characteristic functions
This convolution can be turned into a simple multiplication by

considering the Fourier transforms (called the characteristic
functions) of P1, P2 and � , defined with a slightly different
normalization in that there is no factor of 2� in the exponent (see
Section 1.3.2.4.5), e.g.

C�t� � �
Rn

P�X� exp�it 
 X� dnX�

Then by the convolution theorem

��t� � C1�t� � C2�t�,
so that ��X� may be evaluated by Fourier inversion of its
characteristic function as

��X� � 1
�2��n

�
�n

C1�t�C2�t� exp��it 
 X� dnt

(see Section 1.3.2.4.5 for the normalization factors).
It follows from the differentiation theorem that the partial

derivatives of the characteristic function C�t� at t � 0 are related
to the moments of a distribution P by the identities

�r1r2���rn �
�
D

P�X�X r1
1 X r2

2 � � �X rn
n dnX

� i��r1�����rn� �
r1�����rn C

�tr1
1 � � � �trn

n

����
t�0

for any n-tuple of non-negative integers �r1, r2, � � � , rn�.
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(c) Moment-generating functions
The above relation can be freed from powers of i by defining (at

least formally) the moment-generating function:

M�t� � �
�n

P�X� exp�t 
 X� dnX

which is related to C�t� by C�t� � M�it� so that the inversion
formula reads

��X� � 1
�2��n

�
�n

M1�it�M2�it� exp��it 
 X� dnt�

The moment-generating function is well defined, in particular, for
any probability distribution with compact support, in which case it
may be continued analytically from a function over �n into an entire
function of n complex variables by virtue of the Paley–Wiener
theorem (Section 1.3.2.4.2.10). Its moment-generating properties
are summed up in the following relations:

�r1r2���rn �
�r1�����rn M
�tr1

1 � � � �trn
n

����
t�0

�

(d) Cumulant-generating functions
The multiplication of moment-generating functions may be

further simplified into the addition of their logarithms:

log� � log M1 � log M2,

or equivalently of the coefficients of their Taylor series at t � 0, viz:

r1r2���rn �
�r1�����rn�log M�

�tr1
1 � � � �trn

n

����
t�0

�

These coefficients are called cumulants, since they add when the
independent random vectors to which they belong are added, and
log M is called the cumulant-generating function. The inversion
formula for � then reads

��X� � 1
�2��n

�
�n

exp�log M1�it� � log M2�it� � it 
 X� dnt�

(e) Asymptotic expansions and limit theorems
Consider an n-dimensional random vector X of the form

X � X1 � X2 � � � �� XN ,

where the N summands are independent n-dimensional random
vectors identically distributed with probability density P. Then the
distribution � of X may be written in closed form as a Fourier
transform:

��X� � 1
�2��n

�
�n

MN �it� exp��it 
 X� dnt

� 1
�2��n

�
�n

exp�N log M�it� � it 
 X� dnt,

where

M�t� � �
�n

P�Y� exp�t 
 Y� dnY

is the moment-generating function common to all the summands.
This an exact expression for � , which may be exploited

analytically or numerically in certain favourable cases. Supposing
for instance that P has compact support, then its characteristic
function M�it� can be sampled finely enough to accommodate the
bandwidth of the support of � � P	N (this sampling rate clearly
depends on n) so that the above expression for � can be used for its

numerical evaluation as the discrete Fourier transform of MN �it�.
This exact method is practical only for small values of the
dimension n.

In all other cases some form of approximation must be used in the
Fourier inversion of MN �it�. For this purpose it is customary
(Cramér, 1946) to expand the cumulant-generating function around
t � 0 with respect to the carrying variables t:

log�MN �it�� �
�
r�n

Nr

r�
�it�r,

where r � �r1, r2, � � � , rn� is a multi-index (Section 1.3.2.2.3). The
first-order terms may be eliminated by recentring � around its
vector of first-order cumulants

�X� �	N
j�1
�Xj�,

where �
� denotes the mathematical expectation of a random vector.
The second-order terms may be grouped separately from the terms
of third or higher order to give

MN �it� � exp��1
2N tU Qt�

� exp
�
�r��3

Nr

r�
�it�r


�
�

�
�,

where Q � ��T�log M� is the covariance matrix of the multi-
variate distribution P. Expanding the exponential gives rise to a
series of terms of the form

exp��1
2N tT Qt� �monomial in t1, t2, � � � , tn,

each of which may now be subjected to a Fourier transformation to
yield a Hermite function of t (Section 1.3.2.4.4.2) with coefficients
involving the cumulants  of P. Taking the transformed terms in
natural order gives an asymptotic expansion of P for large N called
the Gram–Charlier series of � , while grouping the terms according
to increasing powers of 1


����
N

�
gives another asymptotic expansion

called the Edgeworth series of � . Both expansions comprise a
leading Gaussian term which embodies the central-limit theorem:

��E� � 1��������������������
det �2�Q�� exp��1

2E
T Q�1E�, where E � X� �X�����

N
� �

( f ) The saddlepoint approximation
A limitation of the Edgeworth series is that it gives an accurate

estimate of ��X� only in the vicinity of X � �X�, i.e. for small
values of E. These convergence difficulties are easily understood:
one is substituting a local approximation to log M (viz a Taylor-
series expansion valid near t � 0) into an integral, whereas
integration is a global process which consults values of log M far
from t � 0.

It is possible, however, to let the point t where log M is expanded
as a Taylor series depend on the particular value X	 of X for which
an accurate evaluation of ��X� is desired. This is the essence of the
saddlepoint method (Fowler, 1936; Khinchin 1949; Daniels, 1954;
de Bruijn, 1970; Bleistein & Handelsman, 1986), which uses an
analytical continuation of M�t� from a function over �n to a
function over �n (see Section 1.3.2.4.2.10). Putting then t � s� i� ,
the �n version of Cauchy’s theorem (Hörmander, 1973) gives rise
to the identity
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��X	� � exp��� 
 X	�
�2��n

�
�
�n

exp N log M�� � is� � is 
 X	

N

� �� �
dns

for any �  �n. By a convexity argument involving the positive-
definiteness of covariance matrix Q, there is a unique value of �
such that

��log M��t�0�i� �
X	

N
�

At the saddlepoint t	 � 0� i� , the modulus of the integrand above
is a maximum and its phase is stationary with respect to the
integration variable s: as N tends to infinity, all contributions to the
integral cancel because of rapid oscillation, except those coming
from the immediate vicinity of t	 where there is no oscillation. A
Taylor expansion of log MN to second order with respect to s at t	
then gives

log MN �� � is� � log MN ��� � is 
 X	 � N
2
�sT Qs�

and hence

� �X	� � exp�log MN ��� � � 
 X	� 1
�2��n

�
�n

exp��1
2s

T�s� dns�

The last integral is elementary and gives the ‘saddlepoint
approximation’:

�SP�X	� � exp�����������������������
det �2���� ,

where

� � log MN ��� � � 
 X	

and where

� � ��T�log MN � � NQ�

This approximation scheme amounts to using the ‘conjugate
distribution’ (Khinchin, 1949)

P� �Xj� � P�Xj� exp�� 
 Xj�
M���

instead of the original distribution P�Xj� � P0�Xj� for the common
distribution of all N random vectors Xj. The exponential modulation
results from the analytic continuation of the characteristic (or
moment-generating) function into �n, as in Section 1.3.2.4.2.10.
The saddlepoint approximation �SP is only the leading term of an
asymptotic expansion (called the saddlepoint expansion) for � ,
which is actually the Edgeworth expansion associated with P	N

� .

1.3.4.5.2.2. The statistical theory of phase determination
The methods of probability theory just surveyed were applied to

various problems formally similar to the crystallographic phase
problem [e.g. the ‘problem of the random walk’ of Pearson (1905)]
by Rayleigh (1880, 1899, 1905, 1918, 1919) and Kluyver (1906).
They became the basis of the statistical theory of communication
with the classic papers of Rice (1944, 1945).

The Gram–Charlier and Edgeworth series were introduced into
crystallography by Bertaut (1955a,b,c, 1956a) and by Klug (1958),
respectively, who showed them to constitute the mathematical basis
of numerous formulae derived by Hauptman & Karle (1953). The
saddlepoint approximation was introduced by Bricogne (1984) and
was shown to be related to variational methods involving the

maximization of certain entropy criteria. This connection exhibits
most of the properties of the Fourier transform at play
simultaneously, and will now be described as a final illustration.

(a) Definitions and conventions
Let H be a set of unique non-origin reflections h for a crystal with

lattice � and space group G. Let H contain na acentric and nc centric
reflections. Structure-factor values attached to all reflections in H
will comprise n � 2na � nc real numbers. For h acentric, �h and 	h
will be the real and imaginary parts of the complex structure factor;
for h centric, �h will be the real coordinate of the (possibly
complex) structure factor measured along a real axis rotated by one
of the two angles �h, � apart, to which the phase is restricted modulo
2� (Section 1.3.4.2.2.5). These n real coordinates will be arranged
as a column vector containing the acentric then the centric data, i.e.
in the order

�1, 	1,�2,	2, � � � ,�na , 	na , �1, �2, � � � , �nc �

(b) Vectors of trigonometric structure-factor expressions
Let � �x� denote the vector of trigonometric structure-factor

expressions associated with x  D, where D denotes the asymmetric
unit. These are defined as follows:

�h�x� � i	h�x� � ��h, x� for h acentric

�h�x� � exp��i�h���h, x� for h centric,

where

��h, x� � 1
�Gx�

�
gG

exp�2�ih 
 �Sg�x����

According to the convention above, the coordinates of ��x� in �n

will be arranged in a column vector as follows:

� 2r�1�x� � �hr�x� for r � 1, � � � , na,

� 2r�x� � 	hr�x� for r � 1, � � � , na,

� na�r�x� � �hr�x� for r � na � 1, � � � , na � nc�

(c) Distributions of random atoms and moment-generating
functions

Let position x in D now become a random vector with probability
density m�x�. Then � �x� becomes itself a random vector in �n,
whose distribution p�� � is the image of distribution m�x� through
the mapping x � ��x� just defined. The locus of ��x� in �n is a
compact algebraic manifold � (the multidimensional analogue of a
Lissajous curve), so that p is a singular measure (a distribution of
order 0, Section 1.3.2.3.4, concentrated on that manifold) with
compact support. The average with respect to p of any function �
over �n which is infinitely differentiable in a neighbourhood of �
may be calculated as an average with respect to m over D by the
‘induction formula’:

�p,�� � �
D

m�x�����x�� d3x�

In particular, one can calculate the moment-generating function
M for distribution p as

M�t� � �p� , exp�t 
 ��� � �
D

m�x� exp�t 
 ��x�� d3x

and hence calculate the moments � (respectively cumulants ) of p
by differentiation of M (respectively log M) at t � 0:
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�r1r2���rn �
�
D

m�x�� r1
1 �x�� r2

2 �x� � � � � rn
n �x� d3x

� �r1�����rn�M�
�tr1

1 � � � �trn
n

r1r2���rn �
�r1�����rn�log M�

�tr1
1 � � � �trn

n
�

The structure-factor algebra for group G (Section 1.3.4.2.2.9) then
allows one to express products of � ’s as linear combinations of
other � ’s, and hence to express all moments and cumulants of
distribution p��� as linear combinations of real and imaginary parts
of Fourier coefficients of the prior distribution of atoms m�x�. This
plays a key role in the use of non-uniform distributions of atoms.

(d) The joint probability distribution of structure factors
In the random-atom model of an equal-atom structure, N atoms

are placed randomly, independently of each other, in the
asymmetric unit D of the crystal with probability density m�x�.
For point atoms of unit weight, the vector F of structure-factor
values for reflections h  H may be written

F � 	N
I�1

� �I �,

where the N copies � �I � of random vector � are independent and
have the same distribution p�� �.

The joint probability distribution ��F� is then [Section
1.3.4.5.2.1(e)]

� �X� � 1
�2��n

�
�n

exp�N log M�it� � it 
 X� dnt�

For low dimensionality n it is possible to carry out the Fourier
transformation numerically after discretization, provided M�it� is
sampled sufficiently finely that no aliasing results from taking its
Nth power (Barakat, 1974). This exact approach can also
accommodate heterogeneity, and has been used first in the field of
intensity statistics (Shmueli et al., 1984, 1985; Shmueli & Weiss,
1987, 1988), then in the study of the �1 and �2 relations in triclinic
space groups (Shmueli & Weiss, 1985, 1986). Some of these
applications are described in Chapter 2.1 of this volume. This
method could be extended to the construction of any joint
probability distribution (j.p.d.) in any space group by using the
generic expression for the moment-generating function (m.g.f.)
derived by Bricogne (1984). It is, however, limited to small values
of n by the necessity to carry out n-dimensional FFTs on large
arrays of sample values.

The asymptotic expansions of Gram–Charlier and Edgeworth
have good convergence properties only if Fh lies in the vicinity of
�Fh� � N �� �m��h� for all h  H . Previous work on the j.p.d. of
structure factors has used for m�x� a uniform distribution, so that
�F� � 0; as a result, the corresponding expansions are accurate only
if all moduli �Fh� are small, in which case the j.p.d. contains little
phase information.

The saddlepoint method [Section 1.3.4.5.2.1( f )] constitutes the
method of choice for evaluating the joint probability ��F	� of
structure factors when some of the moduli in F	 are large. As shown
previously, this approximation amounts to using the ‘conjugate
distribution’

p� �� � � p�� � exp�� 
 ��
M���

instead of the original distribution p��� � p0��� for the distribution
of random vector �. This conjugate distribution p� is induced from

the modified distribution of atoms

q� �x� � m�x� exp�� 
 ��x��
M��� , �SP1�

where, by the induction formula, M��� may be written as

M��� � �
D

m�x� exp�� 
 ��x�� d3x �SP2�

and where � is the unique solution of the saddlepoint equation:

�� �log MN � � F	� �SP3�
The desired approximation is then

�SP�F	� � exp�����������������������
det �2���� ,

where

� � log MN ��� � � 
 F	

and where

� � ��T�log MN � � NQ�

Finally, the elements of the Hessian matrix Q � ��T�log M�
are just the trigonometric second-order cumulants of distribution p,
and hence can be calculated via structure-factor algebra from the
Fourier coefficients of q� �x�. All the quantities involved in the
expression for �SP�F	� are therefore effectively computable from
the initial data m�x� and F	.

(e) Maximum-entropy distributions of atoms
One of the main results in Bricogne (1984) is that the modified

distribution q� �x� in (SP1) is the unique distribution which has
maximum entropy � m�q� relative to m�x�, where

� m�q� � �
�
D

q�x� log
q�x�
m�x�
� �

d3x,

under the constraint that F	 be the centroid vector of the
corresponding conjugate distribution � � �F�. The traditional
notation of maximum-entropy (ME) theory (Jaynes, 1957, 1968,
1983) is in this case (Bricogne, 1984)

qME�x� � m�x� exp�� 
 ��x��
Z��� �ME1�

Z��� � �
D

m�x� exp�� 
 � �x�� d3x �ME2�

���log ZN � � F	 �ME3�
so that Z is identical to the m.g.f. M, and the coordinates � of the
saddlepoint are the Lagrange multipliers � for the constraints F	.

Jaynes’s ME theory also gives an estimate for ��F	�:
�ME�F	� � exp�� �,

where

� � log ZN � � 
 F	 � N� m�qME�
is the total entropy and is the counterpart to � under the equivalence
just established.

�ME is identical to �SP, but lacks the denominator. The latter,
which is the normalization factor of a multivariate Gaussian with
covariance matrix �, may easily be seen to arise through Szegö’s
theorem (Sections 1.3.2.6.9.4, 1.3.4.2.1.10) from the extra logarith-
mic term in Stirling’s formula

log�q�� � q log q� q� 1
2 log�2�q�
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(see, for instance, Reif, 1965) beyond the first two terms which
serve to define entropy, since

1
n

log det �2�Q� �
�

�3
�3

log 2�qME�x� d3x�

The relative effect of this extra normalization factor depends on the
ratio

n
N
� dimension of F over �

number of atoms
�

The above relation between entropy maximization and the
saddlepoint approximation is the basis of a Bayesian statistical
approach to the phase problem (Bricogne, 1988) where the
assumptions under which joint distributions of structure factors
are sought incorporate many new ingredients (such as molecular
boundaries, isomorphous substitutions, known fragments, noncrys-
tallographic symmetries, multiple crystal forms) besides trial phase
choices for basis reflections. The ME criterion intervenes in the
construction of qME�x� under these assumptions, and the distribu-
tion qME�x� is a very useful computational intermediate in obtaining
the approximate joint probability � SP�F	� and the associated
conditional distributions and likelihood functions.

( f ) Role of the Fourier transformation
The formal developments presented above make use of the

following properties of the Fourier transformation:
(i) the convolution theorem, which turns the convolution of

probability distributions into the multiplication of their character-
istic functions;

(ii) the differentiation property, which confers moment-generat-
ing properties to characteristic functions;

(iii) the reciprocity theorem, which allows the retrieval of a
probability distribution from its characteristic or moment-generat-
ing function;

(iv) the Paley–Wiener theorem, which allows the analytic
continuation of characteristic functions associated to probability

distributions with compact support, and thus gives rise to conjugate
families of distributions;

(v) Bertaut’s structure-factor algebra (a discrete symmetrized
version of the convolution theorem), which allows the calculation of
all necessary moments and cumulants when the dimension n is
small;

(vi) Szegö’s theorem, which provides an asymptotic approxima-
tion of the normalization factor when n is large.

This multi-faceted application seems an appropriate point at
which to end this description of the Fourier transformation and of its
use in crystallography.
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