International
Tables for
Crystallography
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2006). Vol. B. ch. 1.4, pp. 120-149   | 1 | 2 |
https://doi.org/10.1107/97809553602060000552

Appendix A1.4.3. Structure-factor tables

U. Shmuelia

[link] [link] [link] [link] [link] [link] [link]

Table A1.4.3.1| top | pdf |
Plane groups

The symbols appearing in this table are explained in Section 1.4.3[link] and in Tables A1.4.3.3[link] (monoclinic), A1.4.3.5[link] (tetragonal) and A1.4.3.6[link] (trigonal and hexagonal).

SystemNo.SymbolParity A B
Oblique1 [p1] c([hk])s([hk])
2 [p2] 2c([hk])0
Rectangular3 [pm] 2c([hx])c([ky])2c([hx])s([ky])
4 [pg] [k=2n]2c([hx])c([ky])2c([hx])s([ky])
   [k=2n+1] −2s([hx])s([ky])2s([hx])c([ky])
5 [cm] 4c([hx])c([ky])4c([hx])s([ky])
6 [p2mm] 4c([hx])c([ky])0
7 [p2mg] [h=2n]4c([hx])c([ky])0
   [h=2n+1] −4s([hx])s([ky])0
8 [p2gg] [h+k=2n]4c([hx])c([ky])0
   [h+k=2n+1] −4s([hx])s([ky])0
9 [c2mm] 8c([hx])c([ky])0
Square10 p4 2[P(cc) − M(ss)]0
11 [p4mm] 4P(cc)0
12 [p4gm] [h+k=2n]4P(cc)0
   [h+k=2n+1] −4M(ss)0
Hexagonal13 [p3] C([hki])S([hki])
14 [p3m1] PH(cc)MH(ss)
15 [p31m] PH(cc)PH(ss)
16 [p6] 2C([hki])0
17 [p6mm] 2PH(cc)0

Table A1.4.3.2| top | pdf |
Triclinic space groups

For the definition of the triple products ccc, csc etc., see Table A1.4.3.4[link].

P1 [No. 1]

[hkl] A B
All [\cos2\pi]([hx+ky+lz]) = ccc − css − scs − ssc [\sin2\pi]([hx+ky+lz]) = scc [+] csc[\ +] ccs − sss

[P\overline{1}] [No. 2]

[hkl] A B
All2(ccc − css − scs − ssc)0

Table A1.4.3.3| top | pdf |
Monoclinic space groups

Each expression for A or B in the monoclinic system and for the space-group settings chosen in IT A is represented in terms of one of the following symbols:[\hfill{\eqalign{{\rm c}(hl){\rm c}(ky)&=\cos[2\pi{}(hx+lz)]\cos(2\pi{}ky),\cr{\rm c}(hl){\rm s}(ky)&=\cos[2\pi{}(hx+lz)]\sin(2\pi{}ky),\cr{\rm s}(hl){\rm c}(ky)&=\sin[2\pi{}(hx+lz)]\cos(2\pi{}ky),\cr{\rm s}(hl){\rm s}(ky)&=\sin[2\pi{}(hx+lz)]\sin(2\pi{}ky),\cr}}\quad{\eqalign{{\rm c}(hk){\rm c}(lz)&=\cos[2\pi{}(hx+ky)]\cos(2\pi{}lz),\cr{\rm c}(hk){\rm s}(lz)&=\cos[2\pi{}(hx+ky)]\sin(2\pi{}lz),\cr{\rm s}(hk){\rm c}(lz)&=\sin[2\pi{}(hx+ky)]\cos(2\pi{}lz),\cr{\rm s}(hk){\rm s}(lz)&=\sin[2\pi{}(hx+ky)]\sin(2\pi{}lz),\cr}}\hfill{\eqalign{&\cr&\cr&\cr&({\rm A}1.4.3.1)\cr}}] where the left-hand column of expressions corresponds to space-group representations in the second setting, with b taken as the unique axis, and the right-hand column corresponds to representations in the first setting, with c taken as the unique axis.

The lattice types in this table are P, A, B, C and I, and are all explicit in the full space-group symbol only (see below). Note that s(hl), s(hk), s(ky) and s(lz) are zero for h = l = 0, h = k = 0, k = 0 and l = 0, respectively.

No.Group symbolParityABUnique axis
ShortFull
3 [P2] [P121] 2c([hl])c([ky])2c([hl])s([ky]) b
3 [P2] [P112] 2c([hk])c([lz])2c([hk])s([lz]) c
4 [P2_{1}] [P12_{1}1] [k=2n]2c([hl])c([ky])2c([hl])s([ky]) b
    [k=2n+1] −2s([hl])s([ky])2s([hl])c([ky]) 
4 [P2_{1}] [P112_{1}] [l=2n]2c([hk])c([lz])2c([hk])s([lz]) c
    [l=2n+1] −2s([hk])s([lz])2s([hk])c([lz]) 
5 [C2] [C121] 4c([hl])c([ky])4c([hl])s([ky]) b
5 [C2] [A121] 4c([hl])c([ky])4c([hl])s([ky]) b
5 [C2] [I121] 4c([hl])c([ky])4c([hl])s([ky]) b
5 [C2] [A112] 4c([hk])c([lz])4c([hk])s([lz]) c
5 [C2] [B112] 4c([hk])c([lz])4c([hk])s([lz]) c
5 [C2] [I112] 4c([hk])c([lz])4c([hk])s([lz]) c
6 [Pm] [P1m1] 2c([hl])c([ky])2s([hl])c([ky]) b
6 [Pm] [P11m] 2c([hk])c([lz])2s([hk])c([lz]) c
7 [Pc] [P1c1] [l=2n]2c([hl])c([ky])2s([hl])c([ky]) b
    [l=2n+1] −2s([hl])s([ky])2c([hl])s([ky]) 
7 [Pc] [P1n1] [h+l=2n]2c([hl])c([ky])2s([hl])c([ky]) b
    [h+l=2n+1] −2s([hl])s([ky])2c([hl])s([ky]) 
7 [Pc] [P1a1] [h=2n]2c([hl])c([ky])2s([hl])c([ky]) b
    [h=2n+1] −2s([hl])s([ky])2c([hl])s([ky]) 
7 [Pc] [P11a] [h=2n]2c([hk])c([lz])2s([hk])c([lz]) c
    [h=2n+1] −2s([hk])s([lz])2c([hk])s([lz]) 
7 [Pc] [P11n] [h+k=2n]2c([hk])c([lz])2s([hk])c([lz]) c
    [h+k=2n+1] −2s([hk])s([lz])2c([hk])s([lz]) 
7 [Pc] [P11b] [k=2n]2c([hk])c([lz])2s([hk])c([lz]) c
    [k=2n+1] −2s([hk])s([lz])2c([hk])s([lz]) 
8 [Cm] [C1m1] 4c([hl])c([ky])4s([hl])c([ky]) b
8 [Cm] [A1m1] 4c([hl])c([ky])4s([hl])c([ky]) b
8 [Cm] [I1m1] 4c([hl])c([ky])4s([hl])c([ky]) b
8 [Cm] [A11m] 4c([hk])c([lz])4s([hk])c([lz]) c
8 [Cm] [B11m] 4c([hk])c([lz])4s([hk])c([lz]) c
8 [Cm] [I11m] 4c([hk])c([lz])4s([hk])c([lz]) c
9 [Cc] [C1c1] [l=2n]4c([hl])c([ky])4s([hl])c([ky]) b
    [l=2n+1] −4s([hl])s([ky])4c([hl])s([ky]) 
9 [Cc] [A1n1] [h+l=2n]4c([hl])c([ky])4s([hl])c([ky]) b
    [h+l=2n+1] −4s([hl])s([ky])4c([hl])s([ky]) 
9 [Cc] [I1a1] [h=2n]4c([hl])c([ky])4s([hl])c([ky]) b
    [h=2n+1] −4s([hl])s([ky])4c([hl])s([ky]) 
9 [Cc] [A11a] [h=2n]4c([hk])c([lz])4s([hk])c([lz]) c
    [h=2n+1] −4s([hk])s([lz])4c([hk])s([lz]) 
9 [Cc] [B11n] [h+k=2n]4c([hk])c([lz])4s([hk])c([lz]) c
    [h+k=2n+1] −4s([hk])s([lz])4c([hk])s([lz]) 
9 [Cc] [I11b] [k=2n]4c([hk])c([lz])4s([hk])c([lz]) c
    [k=2n+1] −4s([hk])s([lz])4c([hk])s([lz]) 
10 [P2/m] [P12/m1] 4c([hl])c([ky])0 b
10 [P2/m] [P112/m] 4c([hk])c([lz])0 c
11 [P2_{1}/m] [P12_{1}/m1] [k=2n]4c([hl])c([ky])0 b
    [k=2n+1] −4s([hl])s([ky])0 
11 [P2_{1}/m] [P112_{1}/m] [l=2n]4c([hk])c([lz])0 c
    [l=2n+1] −4s([hk])s([lz])0 
12 [C2/m] [C12/m1] 8c([hl])c([ky])0 b
12 [C2/m] [A12/m1] 8c([hl])c([ky])0 b
12 [C2/m] [I12/m1] 8c([hl])c([ky])0 b
12 [C2/m] [A112/m] 8c([hk])c([lz])0 c
12 [C2/m] [B112/m] 8c([hk])c([lz])0 c
12 [C2/m] [I112/m] 8c([hk])c([lz])0 c
13 [P2/c] [P12/c1] [l=2n]4c([hl])c([ky])0 b
    [l=2n+1] −4s([hl])s([ky])0 
13 [P2/c] [P12/n1] [h+l=2n]4c([hl])c([ky])0 b
    [h+l=2n+1] −4s([hl])s([ky])0 
13 [P2/c] [P12/a1] [h=2n]4c([hl])c([ky])0 b
    [h=2n+1] −4s([hl])s([ky])0 
13 [P2/c] [P112/a] [h=2n]4c([hk])c([lz])0 c
    [h=2n+1] −4s([hk])s([lz])0 
13 [P2/c] [P112/n] [h+k=2n]4c([hk])c([lz])0 c
    [h+k=2n+1] −4s([hk])s([lz])0 
13 [P2/c] [P112/b] [k=2n]4c([hk])c([lz])0 c
    [k=2n+1] −4s([hk])s([lz])0 
14 [P2_{1}/c] [P12_{1}/c1] [k+l=2n]4c([hl])c([ky])0 b
    [k+l=2n+1] −4s([hl])s([ky])0 
14 [P2_{1}/c] [P12_{1}/n1] [h+k+l=2n]4c([hl])c([ky])0 b
    [h+k+l=2n+1] −4s([hl])s([ky])0 
14 [P2_{1}/c] [P12_{1}/a1] [h+k=2n]4c([hl])c([ky])0 b
    [h+k=2n+1] −4s([hl])s([ky])0 
14 [P2_{1}/c] [P112_{1}/a] [h+l=2n]4c([hk])c([lz])0 c
    [h+l=2n+1] −4s([hk])s([lz])0 
14 [P2_{1}/c] [P112_{1}/n] [h+k+l=2n]4c([hk])c([lz])0 c
    [h+k+l=2n+1] −4s([hk])s([lz])0 
14 [P2_{1}/c] [P112_{1}/b] [k+l=2n]4c([hk])c([lz])0 c
    [k+l=2n+1] −4s([hk])s([lz])0 
15 [C2/c] [C12/c1] [l=2n]8c([hl])c([ky])0 b
    [l=2n+1] −8s([hl])s([ky])0 
15 [C2/c] [A12/n1] [h+l=2n]8c([hl])c([ky])0 b
    [h+l=2n+1] −8s([hl])s([ky])0 
15 [C2/c] [I12/a1] [h=2n]8c([hl])c([ky])0 b
    [h=2n+1] −8s([hl])s([ky])0 
15 [C2/c] [A112/a] [h=2n]8c([hk])c([lz])0 c
    [h=2n+1] −8s([hk])s([lz])0 
15 [C2/c] [B112/n] [h+k=2n]8c([hk])c([lz])0 c
    [h+k=2n+1] −8s([hk])s([lz])0 
15 [C2/c] [I112/b] [k=2n]8c([hk])c([lz])0 c
    [k=2n+1] −8s([hk])s([lz])0 

Table A1.4.3.4| top | pdf |
Orthorhombic space groups

The expressions for A and B for the orthorhombic space groups in their standard settings [as in IT A (2005[link])] contain one, two or four terms of the form[{\rm pqr}={\rm p}(2\pi{}hx){\rm q}(2\pi{}ky){\rm r}(2\pi{}lz)\eqno({\rm A}1.4.3.2)] preceded by a signed numerical constant, where p, q and r can each be either a sine or a cosine function, and the arguments of the functions in any product of the form (A1.4.3.2[link]) are ordered as in (A1.4.3.2[link]). These products are given in this table as ccc, ccs, csc, scc, ssc, scs, css and/or sss, where c and s are abbreviations for `sin' and `cos', respectively.

Note that pqr vanishes if at least one of p, q and r is a sine, and the corresponding index h, k or l is zero.

No.SymbolOriginParity A B
16 P222  4ccc−4sss
17 [P222_{1}]  [l=2n]4ccc−4sss
    [l=2n+1]−4css4scc
18 [P2_{1}2_{1}2]  [h+k=2n]4ccc−4sss
    [h+k=2n+1]−4ssc4ccs
19 [P2_{1}2_{1}2_{1}]  [h+k=2n]; [k+l=2n]4ccc−4sss
    [h+k=2n]; [k+l=2n+1]−4css4scc
    [h+k=2n+1]; [k+l=2n]−4scs4csc
    [h+k=2n+1]; [k+l=2n+1]−4ssc4ccs
20 [C222_{1}]  [l=2n]8ccc−8sss
    [l=2n+1]−8css8scc
21 C222  8ccc−8sss
22 F222  16ccc−16sss
23 I222  8ccc−8sss
24 [I2_{1}2_{1}2_{1}]  [h,k,l] all even8ccc−8sss
    [h=2n]; [k,l=2n+1]−8scs8csc
    [k=2n]; [l,h=2n+1]−8ssc8ccs
    [l=2n]; [h,k=2n+1]−8css8scc
25 [Pmm]2  4ccc4ccs
26 [Pmc2_{1}]  [l=2n]4ccc4ccs
    [l=2n+1]−4css4csc
27 [Pcc]2  [l=2n]4ccc4ccs
    [l=2n+1]−4ssc−4sss
28 [Pma]2  [h=2n]4ccc4ccs
    [h=2n+1]−4ssc−4sss
29 [Pca2_{1}]  [h=2n]; [l=2n]4ccc4ccs
    [h=2n]; [l=2n+1]−4scs4scc
    [h=2n+1]; [l=2n]−4ssc−4sss
    [h=2n+1]; [l=2n+1]−4css4csc
30 [Pnc]2  [k+l=2n]4ccc4ccs
    [k+l=2n+1]−4ssc4sss
31 [Pmn2_{1}]  [h+l=2n]4ccc4ccs
    [h+l=2n+1]−4css4csc
32 [Pba]2  [h+k=2n]4ccc4ccs
    [h+k=2n+1]−4ssc−4sss
33 [Pna2_{1}]  [h+k=2n]; [l=2n]4ccc4ccs
    [h+k=2n]; [l=2n+1]−4scs4scc
    [h+k=2n+1]; [l=2n]−4ssc−4sss
    [h+k=2n+1]; [l=2n+1]−4css4csc
34 [Pnn]2  [h+k+l=2n]4ccc4ccs
    [h+k+l=2n+1]−4ssc−4sss
35 [Cmm]2  8ccc8ccs
36 [Cmc2_{1}]  [l=2n]8ccc8ccs
    [l=2n+1]−8css8csc
37 [Ccc]2  [l=2n]8ccc8ccs
    [l=2n+1]−8ssc−8sss
38 [Amm]2  8ccc8ccs
39 [Abm]2  [k=2n]8ccc8ccs
    [k=2n+1]−8ssc−8sss
40 [Ama]2  [h=2n]8ccc8ccs
    [h=2n+1]−8ssc−8sss
41 [Aba]2  [h+k=2n]8ccc8ccs
    [h+k=2n+1]−8ssc−8sss
42 [Fmm]2  16ccc16ccs
43 [Fdd]2  [h+k+l=4n]16ccc16ccs
    [h+k+l=4n+1]8(ccc − ssc −ccs − sss)8(ccs − sss [+] ccc [+]ssc)
    [h+k+l=4n+2]−16ssc−16sss
    [h+k+l=4n+3]8(ccc − ssc [+] ccs [+] sss)8(ccs − sss − ccc − ssc)
44 [Imm]2  8ccc8ccs
45 [Iba]2  [l=2n]8ccc8ccs
    [l=2n+1]−8ssc−8sss
46 [Iam]2  [h=2n]8ccc8ccs
    [h=2n+1]−8ssc−8sss
47 [Pmmm]  8ccc0
48 [Pnnn](1) [h+k+l=2n]8ccc0
    [h+k+l=2n+1]0−8sss
48 [Pnnn](2) [h+k=2n]; [k+l=2n]8ccc0
    [h+k=2n]; [k+l=2n+1]−8ssc0
    [h+k=2n+1]; [k+l=2n]−8css0
    [h+k=2n+1]; [k+l=2n+1]−8scs0
49 [Pccm]  [l=2n]8ccc0
    [l=2n+1]−8ssc0
50 [Pban](1) [h+k=2n]8ccc0
    [h+k=2n+1]0−8sss
50 [Pban](2) [h=2n]; [k=2n]8ccc0
    [h=2n]; [k=2n+1]−8scs0
    [h=2n+1]; [k=2n]−8css0
    [h=2n+1]; [k=2n+1]−8ssc0
51 [Pmma]  [h=2n]8ccc0
    [h=2n+1]−8scs0
52 [Pnna]  [h=2n]; [k+l=2n]8ccc0
    [h=2n]; [k+l=2n+1]−8ssc0
    [h=2n+1]; [k+l=2n]−8css0
    [h=2n+1]; [k+l=2n+1]−8scs0
53 [Pmna]  [h+l=2n]8ccc0
    [h+l=2n+1]−8css0
54 [Pcca]  [h=2n]; [l=2n]8ccc0
    [h=2n]; [l=2n+1]−8ssc0
    [h=2n+1]; [l=2n]−8scs0
    [h=2n+1]; [l=2n+1]−8css0
55 [Pbam]  [h+k=2n]8ccc0
    [h+k=2n+1]−8ssc0
56 [Pccn]  [h+k=2n]; [h+l=2n]8ccc0
    [h+k=2n]; [h+l=2n+1]−8ssc0
    [h+k=2n+1]; [h+l=2n]−8css0
    [h+k=2n+1]; [h+l=2n+1]−8scs0
57 [Pbcm]  [k=2n]; [l=2n]8ccc0
    [k=2n]; [l=2n+1]−8css0
    [k=2n+1]; [l=2n]−8ssc0
    [k=2n+1]; [l=2n+1]−8scs0
58 [Pnnm]  [h+k+l=2n]8ccc0
    [h+k+l=2n+1]−8ssc0
59 [Pmmn](1) [h+k=2n]8ccc0
    [h+k=2n+1]08ccs
59 [Pmmn](2) [h=2n]; [k=2n]8ccc0
    [h=2n]; [k=2n+1]−8css0
    [h=2n+1]; [k=2n]−8scs0
    [h=2n+1]; [k=2n+1]−8ssc0
60 [Pbcn]  [h+k=2n]; [l=2n]8ccc0
    [h+k=2n]; [l=2n+1]−8css0
    [h+k=2n+1]; [l=2n]−8scs0
    [h+k=2n+1]; [l=2n+1]−8ssc0
61 [Pbca]  [h+k=2n]; [k+l=2n]8ccc0
    [h+k=2n]; [k+l=2n+1]−8css0
    [h+k=2n+1]; [k+l=2n]−8scs0
    [h+k=2n+1]; [k+l=2n+1]−8ssc0
62 [Pnma]  [h+l=2n]; [k=2n]8ccc0
    [h+l=2n]; [k=2n+1]−8ssc0
    [h+l=2n+1]; [k=2n]−8scs0
    [h+l=2n+1]; [k=2n+1]−8css0
63 [Cmcm]  [l=2n]16ccc0
    [l=2n+1]−16css0
64 [Cmca]  [k+l=2n]16ccc0
    [k+l=2n+1]−16css0
65 [Cmmm]  16ccc0
66 [Cccm]  [l=2n]16ccc0
    [l=2n+1]−16ssc0
67 [Cmma]  [h=2n]16ccc0
    [h=2n+1]−16css0
68 [Ccca](1) [h+l=2n]16ccc0
    [h+l=2n+1]0−16sss
68 [Ccca](2) [k=2n]; [l=2n]16ccc0
    [k=2n]; [l=2n+1]−16ssc0
    [k=2n+1]; [l=2n]−16scs0
    [k=2n+1]; [l=2n+1]−16css0
69 [Fmmm]  32ccc0
70 [Fddd](1) [h+k+l=4n]32ccc0
    [h+k+l=4n+1]16(ccc − sss) A
    [h+k+l=4n+2]0−32sss
    [h+k+l=4n+3]16(ccc [+] sss) [-A]
70 [Fddd](2) [h+k=4n]; [k+l=4n]; [l+h=4n]32ccc0
    [h+k=4n]; [k+l=4n+2]; [l+h=4n+2]−32ssc0
    [h+k=4n+2]; [k+l=4n]; [l+h=4n+2]−32css0
    [h+k=4n+2]; [k+l=4n+2]; [l+h=4n]−32scs0
    [h+k=4n+2]; [k+l=4n+2]; [l+h=4n+2]− 16(ccc [+] ssc [+] scs [+] css)0
    [h+k=4n+2]; [k+l=4n]; [l+h=4n]16(ccc [+] ssc − scs − css)0
    [h+k=4n]; [k+l=4n+2]; [l+h=4n]16(ccc − ssc − scs [+] css)0
    [h+k=4n]; [k+l=4n]; [l+h=4n+2]16(ccc − ssc [+] scs − css)0
71 [Immm]  16ccc0
72 [Ibam]  [l=2n]16ccc0
    [l=2n+1]−16ssc0
73 [Ibca]  [h=2n]; [k=2n]16ccc0
    [h=2n]; [k=2n+1]−16scs0
    [h=2n+1]; [k=2n]−16ssc0
    [h=2n+1]; [k=2n+1]−16css0
74 [Imma]  [k=2n]16ccc0
    [k=2n+1]−16css0

Table A1.4.3.5| top | pdf |
Tetragonal space groups

The symbols appearing in this table are based on the factorization of the scalar product appearing in equations (1.4.2.19[link]) and (1.4.2.20[link]) into its plane-group and unique-axis components. The symbols are [\eqalignno{{\rm P}({\rm pq}) &={\rm p}(2\pi{}hx){\rm q}(2\pi{}ky) + {\rm p}(2\pi{}hy){\rm q}(2\pi{}kx)&\cr {\rm M}({\rm pq}) &={\rm p}(2\pi{}hx){\rm q}(2\pi{}ky)-{\rm p}(2\pi{}hy){\rm q}(2\pi{}kx),&({\rm A}1.4.3.3)\cr}] where p and q can each be a sine or a cosine.

Explicit trigonometric functions given in the table follow the convention[{\rm c}(u)=\cos(2\pi{}u)\quad{\rm s}(u)=\sin(2\pi{}u).] Conditions for vanishing symbols:[\displaylines{{\rm P}({\rm ss})={\rm M}({\rm ss})=0\;\;{\rm if\;\;}h=0{\;\; \rm or \;\;}k=0,\cr{\rm P}({\rm sc})={\rm M}({\rm sc})=0{\rm \;\;if\;\;}h=0,\cr{\rm P}({\rm cs})={\rm M}({\rm cs})=0{\rm \;\;if\;\;}k=0,\cr{\rm M}({\rm cc})={\rm M}({\rm ss})=0\;\;{\rm if\;\;}h=k{\;\; \rm or \;\;}h=-k,\cr}] and any explicit sine function vanishes if all the indices (h and k, or l) appearing in its argument are zero.

[P4] [No. 75]

[hkl] A B
All2[P(cc) − M(ss)]c([lz])2[P(cc) − M(ss)]s([lz])

[P4_{1}] [No. 76] (enantiomorphous to [P4_{3}] [No. 78])

l A B
4n 2[P(cc) − M(ss)]c([lz])2[P(cc) − M(ss)]s([lz])
4n [+] 1 −2[s([hx+ky])s([lz]) − s([hy-kx])c([lz])]2[s([hx+ky])c([lz]) [+] s([hy-kx])s([lz])]
4n [+] 2 2[M(cc) − P(ss)]c([lz])2[M(cc) − P(ss)]s([lz])
4n [+] 3 −2[s([hx+ky])s([lz]) [+] s([hy-kx])c([lz])]2[s([hx+ky])c([lz]) − s([hy-kx])s([lz])]

[P4_{2}] [No. 77]

l A B
2n2[P(cc) − M(ss)]c([lz])2[P(cc) − M(ss)]s([lz])
2n [+] 12[M(cc) − P(ss)]c([lz])2[M(cc) − P(ss)]s([lz])

[P4_{3}] [No. 78] (enantiomorphous to [P4_{1}] [No. 76])

l A B
4n 2[P(cc) − M(ss)]c([lz])2[P(cc) − M(ss)]s([lz])
4n [+] 1 −2[s([hx+ky])s([lz]) [+] s([hy-kx])c([lz])]2[s([hx+ky])c([lz]) − s([hy-kx])s([lz])]
4n [+] 2 2[M(cc) − P(ss)]c([lz])2[M(cc) − P(ss)]s([lz])
4n [+] 3 −2[s([hx+ky])s([lz])− s([hy-kx])c([lz])]2[s([hx+ky])c([lz]) [+] s([hy-kx])s([lz])]

I4 [No. 79]

[hkl] A B
All4[P(cc) − M(ss)]c([lz])4[P(cc) − M(ss)]s([lz])

[I4_{1}] [No. 80]

[2h+l] A B
4n4[P(cc) − M(ss)]c([lz])4[P(cc) − M(ss)]s([lz])
4n [+] 14[c([hx+ky])c([lz]) [+] c([hy-kx])s([lz])]4[c([hx+ky])s([lz]) − c([hy-kx])c([lz])]
4n [+] 24[M(cc) − P(ss)]c([lz])4[M(cc) − P(ss)]s([lz])
4n [+] 34[c([hx+ky])c([lz]) − c([hy-kx])s([lz])]4[c([hx+ky])s([lz]) [+] c([hy-kx])c([lz])]

[P\overline{4}] [No. 81]

[hkl] A B
All2[P(cc) − M(ss)]c([lz])2[M(cc) − P(ss)]s([lz])

[I\overline{4}] [No. 82]

[hkl] A B
All4[P(cc) − M(ss)]c([lz])4[M(cc) − P(ss)]s([lz])

[P4/m] [No. 83]

[hkl] A B
All4[P(cc) − M(ss)]c([lz])0

[P4_{2}/m] [No. 84] (B = 0 for all [h,k,l])

l A
2n4[P(cc) − M(ss)]c([lz])
2n [+] 14[M(cc) − P(ss)]c([lz])

[P4/n] [No. 85, Origin 1]

[h+k] A B
2n4[P(cc) − M(ss)]c([lz])0
2n [+] 104[M(cc) − P(ss)]s([lz])

[P4/n] [No. 85, Origin 2] (B = 0 for all [h,k,l])

h k A
2n2n 4[P(cc) − M(ss)]c([lz])
2n2n [+] 1 −4[P(cs) [+] M(sc)]s([lz])
2n [+] 12n −4[M(cs) [+] P(sc)]s([lz])
2n [+] 12n [+] 1 4[M(cc) − P(ss)]c([lz])

[P4_{2}/n] [No. 86, Origin 1]

[h+k+l] A B
2n4[P(cc) − M(ss)]c([lz])0
2n [+] 104[M(cc) − P(ss)]s([lz])

[P4_{2}/n] [No. 86, Origin 2] (B = 0 for all [h,k,l])

[h+k] [k+l] [h+l] A
2n2n2n 4[P(cc) − M(ss)]c([lz])
2n2n [+] 12n [+] 1 4[M(cc) − P(ss)]c([lz])
2n [+] 12n [+] 12n −4[M(cs) [+] P(sc)]s([lz])
2n [+] 12n2n [+] 1 −4[P(cs) [+] M(sc)]s([lz])

[I4/m] [No. 87]

[hkl] A B
All8[P(cc) − M(ss)]c([lz])0

[I4_{1}/a] [No. 88, Origin 1]

[2k+l] A B
4n8[P(cc) − M(ss)]c([lz]) 0
4n [+] 14[P(cc) − M(ss)]c([lz]) [+] [M(cc) − P(ss)]s([lz]) A
4n [+] 20 8[M(cc) − P(ss)]s([lz])
4n [+] 34[P(cc) − M(ss)]c([lz]) − [M(cc) − P(ss)]s([lz]) [-A]

[I4_{1}/a] [No. 88, Origin 2] (B = 0 for all [h,k,l])

h k [h+k+l] A
2n2n4n 8[P(cc) − M(ss)]c([lz])
2n2n [+] 14n −8[s([hx+ky])s([lz]) − c([hy-kx])c([lz])]
2n [+] 12n4n 8[c([hx+ky])c([lz]) − s([hy-kx])s([lz])]
2n [+] 12n [+] 14n −8[M(cs) [+] P(sc)]s([lz])
2n2n4n [+] 2 8[M(cc) − P(ss)]c([lz])
2n2n [+] 14n [+] 2 −8[s([hx+ky])s([lz]) [+] c([hy-kx])c([lz])]
2n [+] 12n4n [+] 2 8[c([hx+ky])c([lz]) [+] s([hy-kx])s([lz])]
2n [+] 12n [+] 14n [+] 2 −8[P(cs) [+] M(sc)]s([lz])

[P422] [No. 89]

[hkl] A B
All4P(cc)c([lz]) −4M(ss)s([lz])

[P42_{1}2] [No. 90]

[h+k] A B
2n 4P(cc)c([lz]) −4M(ss)s([lz])
2n [+] 1 −4P(ss)c([lz]) 4M(cc)s([lz])

[P4_{1}22] [No. 91] (enantiomorphous to [P4_{3}22] [No. 95])

l A B
4n 4P(cc)c([lz]) −4M(ss)s([lz])
4n [+] 1 −4[s([hx])c([ky])s([lz]) − c([kx])s([hy])c([lz])] 4[c([hx])s([ky])c([lz]) − s([kx])c([hy])s([lz])]
4n [+] 2 4M(cc)c([lz]) −4P(ss)s([lz])
4n [+] 3 −4[s([hx])c([ky])s([lz]) [+] c([kx])s([hy])c([lz])] 4[c([hx])s([ky])c([lz]) [+] s([kx])c([hy])s([lz])]

[P4_{1}2_{1}2] [No. 92] (enantiomorphous to [P4_{3}2_{1}2] [No. 96])

[2h+2k+l] A B
4n 4P(cc)c([lz]) −4M(ss)s([lz])
4n [+] 1 2{[P(sc) − P(cs)]c([lz]) − [M(cs) − M(sc)]s([lz])} 2{[P(sc) [+] P(cs)]c([lz]) [+] [M(cs) − M(sc)]s([lz])}
4n [+] 2 −4P(ss)c([lz]) 4M(cc)s([lz])
4n [+] 3 −2{[P(sc) − P(cs)]c([lz]) [+] [M(cs) [+] M(sc)]s([lz])} 2{[P(sc) [+] P(cs)]c([lz]) − [M(cs) − M(sc)s([lz])}

[P4_{2}22] [No. 93]

l A B
2n4P(cc)c([lz]) −4M(ss)s([lz])
2n [+]14M(cc)c([lz]) −4P(ss)s([lz])

[P4_{2}2_{1}2] [No. 94]

[h+k+l] A B
2n 4P(cc)c([lz]) −4M(ss)s([lz])
2n [+] 1 −4P(ss)c([lz]) 4M(cc)s([lz])

[P4_{3}22] [No. 95] (enantiomorphous to [P4_{1}22] [No. 91])

l A B
4n 4P(cc)c([lz]) −4M(ss)s([lz])
4n [+] 1 −4[s([hx])c([ky])s([lz]) [+] c([kx])s([hy])c([lz])] 4[c([hx])s([ky])c([lz]) [+] s([kx])c([hy])c([lz])]
4n [+] 2 4M(cc)c([lz]) −4P(ss)s([lz])
4n [+] 3 −4[s([hx])c([ky])s([lz]) − c([kx])s([hy])c([lz])] 4[c([hx])s([ky])c([lz]) − s([kx])c([hy])c([lz])]

[P4_{3}2_{1}2] [No. 96] (enantiomorphous to [P4_{1}2_{1}2] [No. 92])

[2h+2k+l] A B
4n 4P(cc)c([lz]) −4M(ss)s([lz])
4n [+] 1 −2{[P(sc) − P(cs)]c([lz]) [+] [M(cs) [+] M(sc)]s([lz])} 2{[P(sc) [+] P(cs)]c([lz]) − [M(cs) − M(sc)]s([lz])}
4n [+] 2 −4P(ss)c([lz]) 4M(cc)s([lz])
4n [+] 3 2{[P(sc) − P(cs)]c([lz]) − [M(cs) [+] M(sc)]s([lz])} 2{[P(sc) [+] P(cs)]c([lz]) [+] [M(cs) − M(sc)]s([lz])}

[I422] [No. 97]

[hkl] A B
All8P(cc)c([lz]) −8M(ss)s([lz])

[I4_{1}22] [No. 98]

[2k+l] A B
4n 8P(cc)c([lz]) −8M(ss)s([lz])
4n [+] 1 4{[P(cc) − P(ss)]c([lz]) [+] [M(cc) [+] M(ss)]s([lz])} 4{[P(cc) [+] P(ss)]c([lz]) [+] [M(cc) − M(ss)]s([lz])}
4n [+] 2 −8P(ss)c([lz]) 8M(cc)s([lz])
4n [+] 3 4{[P(cc) − P(ss)]c([lz]) − [M(cc) [+] M(ss)]s([lz])} −4{[P(cc) [+] P(ss)]c([lz]) − [M(cc) − M(ss)]s([lz])}

[P4mm] [No. 99]

[hkl] A B
All4P(cc)c([lz])4P(cc)s([lz])

[P4bm] [No. 100]

[h+k] A B
2n 4P(cc)c([lz]) 4P(cc)s([lz])
2n [+] 1 −4M(ss)c([lz]) −4M(ss)s([lz])

[P4_{2}cm] [No. 101]

l A B
2n 4P(cc)c([lz]) 4P(cc)s([lz])
2n [+] 1 −4P(ss)c([lz]) −4P(ss)s([lz])

[P4_{2}nm] [No. 102]

[h+k+l] A B
2n 4P(cc)c([lz]) 4P(cc)s([lz])
2n [+]1 −4P(ss)c([lz]) −4P(ss)s([lz])

[P4cc] [No. 103]

l A B
2n 4P(cc)c([lz]) 4P(cc)s([lz])
2n [+] 1 −4M(ss)c([lz]) −4M(ss)s([lz])

P[4nc] [No. 104]

[h+k+l] A B
2n 4P(cc)c([lz]) 4P(cc)s([lz])
2n [+] 1 −4M(ss)c([lz]) −4M(ss)s([lz])

[P4_{2}mc] [No. 105]

l A B
2n4P(cc)c([lz])4P(cc)s([lz])
2n [+] 14M(cc)c([lz])4M(cc)s([lz])

[P4_{2}bc] [No. 106]

[h+k] l A B
2n2n 4P(cc)c([lz]) 4P(cc)s([lz])
2n [+] 12n −4M(ss)c([lz]) −4M(ss)s([lz])
2n2n [+] 1 4M(cc)c([lz]) 4M(cc)s([lz])
2n [+] 12n [+] 1 −4P(ss)c([lz]) −4P(ss)s([lz])

[I4mm] [No. 107]

[hkl] A B
All8P(cc)c([lz])8P(cc)s([lz])

[I4cm] [No. 108]

l A B
2n 8P(cc)c([lz]) 8P(cc)s([lz])
2n [+] 1 −8M(ss)c([lz]) −8M(ss)s([lz])

[I4_{1}md] [No. 109]

[2k+l] A B
4n8P(cc)c([lz])8P(cc)s([lz])
4n [+] 18[c([hx])c([ky])c([lz]) − c([kx])c([hy])s([lz])]8[c([hx])c([ky])s([lz]) [+] c([kx])c([hy])c([lz])]
4n [+] 28M(cc)c([lz])8M(cc)s([lz])
4n [+] 38[c([hx])c([ky])c([lz]) [+] c([kx])c([hy])s([lz])]8[c([hx])c([ky])s([lz]) − c([kx])c([hy])c([lz])]

[I4_{1}cd] [No. 110]

[2k+l] A B
4n 8P(cc)c([lz]) 8P(cc)s([lz])
4n [+] 1 −8[s([hx])s([ky])c([lz]) [+] s([kx])s([hy])s([lz])] −8[s([hx])s([ky])s([lz]) − s([kx])s([hy])c([lz])]
4n [+] 2 8M(cc)c([lz]) 8M(cc)s([lz])
4n [+] 3 −8[s([hx])s([ky])c([lz]) − s([kx])s([hy])s([lz])] −8[s([hx])s([ky])s([lz]) [+] s([kx])s([hy])c([lz])]

[P\overline{4}2m] [No. 111]

[hkl] A B
All4P(cc)c([lz]) −4P(ss)s([lz])

[P\overline{4}2c] [No. 112]

l A B
2n 4P(cc)c([lz]) −4P(ss)s([lz])
2n [+] 1 −4M(ss)c([lz]) 4M(cc)s([lz])

[P\overline{4}2_{1}m] [No. 113]

[h+k] A B
2n 4P(cc)c([lz]) −4P(ss)s([lz])
2n [+] 1 −4M(ss)c([lz]) 4M(cc)s([lz])

[P\overline{4}2_{1}c] [No. 114]

[h+k+l] A B
2n 4P(cc)c([lz]) −4P(ss)s([lz])
2n [+] 1 −4M(ss)c([lz]) 4M(cc)s([lz])

[P\overline{4}m2] [No. 115]

[hkl] A B
All4P(cc)c([lz])4M(cc)s([lz])

[P\overline{4}c2] [No. 116]

l A B
2n 4P(cc)c([lz]) 4M(cc)s([lz])
2n [+] 1 −4M(ss)c([lz]) −4P(ss)s([lz])

[P\overline{4}b2] [No. 117]

[h+k] A B
2n 4P(cc)c([lz]) 4M(cc)s([lz])
2n [+] 1 −4M(ss)c([lz]) −4P(ss)s([lz])

[P\overline{4}n2] [No. 118]

[h+k+l] A B
2n 4P(cc)c([lz]) 4M(cc)s([lz])
2n [+] 1 −4M(ss)c([lz]) −4P(ss)s([lz])

[I\overline{4}m2] [No. 119]

[hkl] A B
All8P(cc)c([lz])8M(cc)s([lz])

[I\overline{4}c2] [No. 120]

l A B
2n 8P(cc)c([lz]) 8M(cc)s([lz])
2n [+] 1 −8M(ss)c([lz]) −8P(ss)s([lz])

[I\overline{4}2m] [No. 121]

[hkl] A B
All8P(cc)c([lz]) −8P(ss)s([lz])

[I\overline{4}2d] [No. 122]

[2h+l] A B
4n 8P(cc)c([lz]) −8P(ss)s([lz])
4n [+] 1 4{[P(cc) − M(ss)]c([lz]) − [M(cc) [+] P(ss)]s([lz])} −4{[P(cc) [+] M(ss)]c([lz]) − [M(cc) − P(ss)]s([lz])}
4n [+] 2 −8M(ss)c([lz]) 8M(cc)s([lz])
4n [+] 3 4{[P(cc) − M(ss)]c([lz]) [+] [M(cc) [+] P(ss)]s([lz])} 4{[P(cc) [+] M(ss)]c([lz]) [+] [M(cc) − P(ss)]s([lz])}

[P4/mmm] [No. 123]

[hkl] A B
All8P(cc)c([lz])0

[P4/mcc] [No. 124] (B = 0 for all [h,k,l])

l A
2n 8P(cc)c([lz])
2n [+] 1 −8M(ss)c([lz])

[P4/nbm] [No. 125, Origin 1]

[h+k] A B
2n8P(cc)c([lz])0
2n [+] 10 −8M(ss)s([lz])

[P4/nbm] [No. 125, Origin 2] (B = 0 for all [h,k,l])

h k A
2n2n 8P(cc)c([lz])
2n2n [+] 1 −8M(sc)s([lz])
2n [+] 12n −8M(cs)s([lz])
2n [+] 12n [+] 1 −8P(ss)c([lz])

[P4/nnc] [No. 126, Origin 1]

[h+k+l] A B
2n8P(cc)c([lz])0
2n [+] 10 −8M(ss)s([lz])

[P4/nnc] [No. 126, Origin 2] (B = 0 for all [h,k,l])

h k l A
2n2n2n 8P(cc)c([lz])
2n2n2n [+] 1 −8M(ss)c([lz])
2n2n [+] 12n −8M(sc)s([lz])
2n2n [+] 12n [+] 1 −8P(cs)s([lz])
2n [+] 12n2n −8M(cs)s([lz])
2n [+] 12n2n [+] 1 −8P(sc)s([lz])
2n [+] 12n [+] 12n −8P(ss)c([lz])
2n [+] 12n [+] 12n [+] 1 8M(cc)c([lz])

[P4/mbm] [No. 127] (B = 0 for all [h,k,l])

[h+k] A
2n 8P(cc)c([lz])
2n [+] 1 −8M(ss)c([lz])

[P4/mnc] [No. 128] (B = 0 for all [h,k,l])

[h+k+l] A
2n 8P(cc)c([lz])
2n [+] 1 −8M(ss)c([lz])

[P4/nmm] [No. 129, Origin 1]

[h+k] A B
2n8P(cc)c([lz])0
2n [+] 108M(cc)s([lz])

[P4/nmm] [No. 129, Origin 2] (B = 0 for all [h,k,l])

h k A
2n2n 8P(cc)c([lz])
2n2n [+] 1 −8P(cs)s([lz])
2n [+] 12n −8P(sc)s([lz])
2n [+] 12n [+] 1 −8P(ss)c([lz])

[P4/ncc] [No. 130, Origin 1]

[h+k] l A B
2n2n 8P(cc)c([lz]) 0
2n2n [+] 1 −8M(ss)c([lz]) 0
2n [+]12n 0 8M(cc)s([lz])
2n [+] 12n [+] 1 0 −8P(ss)s([lz])

[P4/ncc] [No. 130, Origin 2] (B = 0 for all [h,k,l])

h k l A
2n2n2n 8P(cc)c([lz])
2n2n2n [+] 1 −8M(ss)c([lz])
2n2n [+] 12n −8P(cs)s([lz])
2n2n [+] 12n [+] 1 −8M(sc)s([lz])
2n [+] 12n2n −8P(sc)s([lz])
2n [+] 12n2n [+] 1 −8M(cs)s([lz])
2n [+] 12n [+] 12n −8P(ss)c([lz])
2n [+] 12n [+] 12n [+] 1 8M(cc)c([lz])

[P4_{2}/mmc] [No. 131] (B = 0 for all [h,k,l])

l A
2n8P(cc)c([lz])
2n [+] 18M(cc)c([lz])

[P4_{2}/mcm] [No. 132] (B = 0 for all [h,k,l])

l A
2n 8P(cc)c([lz])
2n [+] 1 −8P(ss)c([lz])

[P4_{2}/nbc] [No. 133, Origin 1]

[h+k+l] l A B
2n2n 8P(cc)c([lz]) 0
2n2n [+] 1 −8M(ss)c([lz]) 0
2n [+]12n 0 −8P(ss)s([lz])
2n [+] 12n [+] 1 0 8M(cc)s([lz])

[P4_{2}/nbc] [No. 133, Origin 2] (B = 0 for all [h,k,l])

h k l A
2n2n2n 8P(cc)c([lz])
2n2n2n [+] 1 8M(cc)c([lz])
2n2n [+] 12n −8M(sc)s([lz])
2n2n [+] 12n [+] 1 −8P(sc)s([lz])
2n [+] 12n2n −8M(cs)s([lz])
2n [+] 12n2n [+] 1 −8P(cs)s([lz])
2n [+] 12n [+] 12n −8P(ss)c([lz])
2n [+] 12n [+] 12n [+] 1 −8M(ss)c([lz])

[P4_{2}/nnm] [No. 134, Origin 1]

[h+k+l] A B
2n8P(cc)c([lz])0
2n [+] 10 −8P(ss)s([lz])

[P4_{2}/nnm] [No. 134, Origin 2] (B = 0 for all [h,k,l])

[h+k] [k+l] [h+l] A
2n2n2n 8P(cc)c([lz])
2n2n [+] 12n [+] 1 −8P(ss)c([lz])
2n [+] 12n [+] 12n −8M(sc)s([lz])
2n [+] 12n2n [+] 1 −8M(cs)s([lz])

[P4_{2}/mbc] [No. 135] (B = 0 for all [h,k,l])

[h+k] l A
2n2n 8P(cc)c([lz])
2n2n [+] 1 8M(cc)c([lz])
2n [+] 12n −8M(ss)c([lz])
2n [+] 12n [+] 1 −8P(ss)c([lz])

[P4_{2}/mnm] [No. 136] (B = 0 for all [h,k,l])

[h+k+l] A
2n 8P(cc)c([lz])
2n [+] 1 −8P(ss)c([lz])

[P4_{2}/nmc] [No. 137, Origin 1]

[h+k+l] A B
2n8P(cc)c([lz])0
2n [+] 108M(cc)s([lz])

[P4_{2}/nmc] [No. 137, Origin 2] (B = 0 for all [h,k,l])

h k l A
2n2n2n 8P(cc)c([lz])
2n2n2n [+] 1 8M(cc)c([lz])
2n2n [+] 12n −8P(cs)s([lz])
2n2n [+] 12n [+] 1 −8M(cs)s([lz])
2n [+] 12n2n −8P(sc)s([lz])
2n [+] 12n2n [+] 1 −8M(sc)s([lz])
2n [+] 12n [+] 12n −8P(ss)c([lz])
2n [+] 12n [+] 12n [+] 1 −8M(ss)c([lz])

[P4_{2}/ncm] [No. 138, Origin 1]

[h+k] l A B
2n2n 8P(cc)c([lz]) 0
2n [+] 12n [+] 1 −8M(ss)c([lz]) 0
2n [+] 12n 0 8M(cc)s([lz])
2n2n [+] 1 0 −8P(ss)s([lz])

[P4_{2}/ncm] [No. 138, Origin 2] (B = 0 for all [h,k,l])

[h+k] [k+l] [h+l] A
2n2n2n 8P(cc)c([lz])
2n2n [+] 12n [+] 1 −8P(ss)c([lz])
2n [+] 12n [+] 12n −8P(cs)s([lz])
2n [+] 12n2n [+] 1 −8P(sc)s([lz])

[I4/mmm] [No. 139]

[hkl] A B
All16P(cc)c([lz])0

[I4/mcm] [No. 140] (B = 0 for all [h,k,l])

l A
2n 16P(cc)c([lz])
2n [+] 1 −16M(ss)c([lz])

[I4_{1}/amd] [No. 141, Origin 1]

[2h+l] A B
4n16P(cc)c([lz]) 0
4n [+] 18[P(cc)c([lz]) − M(cc)s([lz])] [-A]
4n [+] 20 16M(cc)s([lz])
4n [+] 38[P(cc)c([lz]) [+] M(cc)s([lz])] A

[I4_{1}/amd] [No. 141, Origin 2] (B = 0 for all [h,k,l])

h k [h+k+l] A
2n2n4n 16P(cc)c([lz])
2n2n [+] 14n −16[c([hx])s([ky])s([lz]) [+] c([kx])c([hy])c([lz])]
2n [+] 12n4n 16[c([hx])c([ky])c([lz]) [+] c([kx])s([hy])s([lz])]
2n [+] 12n [+] 14n −16[c([hx])s([ky])s([lz]) [+] c([kx])s([hy])s([lz])]
2n2n4n [+] 2 16M(cc)c([lz])
2n2n [+] 14n [+] 2 −16[c([hx])s([ky])s([lz]) − c([kx])c([hy])c([lz])]
2n [+] 12n4n [+] 2 16[c([hx])c([ky])c([lz]) − c([kx])s([hy])s([lz])]
2n [+] 12n [+] 14n [+] 2 −16[c([hx])s([ky])s([lz]) − c([kx])s([hy])s([lz])]

[I4_{1}/acd] [No. 142, Origin 1]

[2h+l] A B
4n 16P(cc)c([lz]) 0
4n [+] 1 −8[M(ss)c([lz]) − P(ss)s([lz])] [-A]
4n [+] 2 0 16M(cc)s([lz])
4n [+] 3 −8[M(ss)c([lz]) [+] P(ss)s([lz])] A

[I4_{1}/acd] [No. 142, Origin 2] (B = 0 for all [h,k,l])

h k [h+k+l] A
2n2n4n 16P(cc)c([lz])
2n2n [+]14n −16[s([hx])c([ky])s([lz]) [+] s([kx])s([hy])c([lz])]
2n [+] 12n4n −16[s([hx])s([ky])c([lz]) [+] s([kx])c([hy])s([lz])]
2n [+] 12n [+] 14n −16[c([hx])s([ky])s([lz]) [+] c([kx])s([hy])s([lz])]
2n2n4n [+] 2 16M(cc)c([lz])
2n2n [+] 14n [+] 2 −16[s([hx])c([ky])s([lz]) − s([kx])s([hy])c([lz])]
2n [+] 12n4n [+] 2 −16[s([hx])s([ky])c([lz]) − s([kx])c([hy])s([lz])]
2n [+] 12n [+] 14n [+] 2 −16[c([hx])s([ky])s([lz]) − c([kx])s([hy])s([lz])]

Table A1.4.3.6| top | pdf |
Trigonal and hexagonal space groups

The table lists the expressions for A and B for the space groups belonging to the hexagonal family. For the space groups that are referred to hexagonal axes the expressions are given in terms of symbols related to the decomposition of the scalar products into their plane-group and unique-axis components [cf. equations (1.4.3.10)[link]–(1.4.3.12)[link] [link]]. The symbols for the seven rhombohedral space groups in their rhombohedral-axes representation are the same as those used for the cubic space groups [cf. equations (1.4.3.4)[link] and (1.4.3.5)[link], and the notes at the start of Table A1.4.3.7[link]]. Factors of the forms [\cos(2\pi{}x)] and [\sin(2\pi{}x)] are abbreviated by c(x) and s(x), respectively. All the symbols used in this table are repeated below. Most expressions are given in terms of[\eqalignno{{\rm C}(hki) &= {\rm c}(p_1)+{\rm c}(p_2)+{\rm c}(p_3),\cr{\rm C}(khi)&={\rm c}(q_1)+{\rm c}(q_2)+{\rm c}(q_3)\;\; {\rm and}&\cr{\rm S}(hki) &= {\rm s}(p_1)+{\rm s}(p_2)+{\rm s}(p_3),\cr {\rm S}(khi)&={\rm s}(q_1)+{\rm s}(q_2)+{\rm s}(q_3),&({\rm A}1.4.3.4)\cr}]where[\eqalignno{p_1&=hx+ky,\;\;p_2=kx+iy,\;\;p_3=ix+hy,&\cr q_1&=kx+hy,\;\;q_2=hx+iy,\;\;q_3=ix+ky,&({\rm A}1.4.3.5)\cr}] and the abbreviations[\eqalignno{{\rm PH}({\rm cc})&={\rm C}(hki)+{\rm C}(khi),\cr{\rm PH}({\rm ss})&={\rm S}(hki)+{\rm S}(khi),&\cr {\rm MH}({\rm cc})&={\rm C}(hki)-{\rm C}(khi)\;\; {\rm and}\cr{\rm MH}({\rm ss})&={\rm S}(hki)-{\rm S}(khi).&({\rm A}1.4.3.6)\cr}] In addition, the following abbreviations are employed for some space groups:[u_1=lz,\;\;u_2=lz+\textstyle{1 \over 3}\;\;{\rm and}\;\;u_3=lz-{1 \over 3}.] Conditons for vanishing symbols:[\displaylines{{\rm S}(hki)={\rm S}(khi)=0\;\;{\rm if}\;\;h=k=0,\cr{\rm PH}({\rm ss})=0\;\;{\rm if}\;\;h=-k\;\;({\rm or}\;\;k=-i\;\;{\rm or}\;\;i=-h),\cr{\rm MH}({\rm cc})=0\;\;{\rm if}\;\;|h|=|k|\;\;({\rm or}\;\;|k|=|i|\;\;{\rm or}\;\;|i|=|h|)\cr}] and any explicit sine function vanishes if all the indices (h and k, or l) appearing in its argument are zero.

[P3] [No. 143]

[hkl] A B
AllC([hki])c([lz]) − S([hki])s([lz])C([hki])s([lz]) [+] S([hki])c([lz])

[P3_{1}] [No. 144] (enantiomorphous to [P3_{2}] [No. 145])

l A B
3nas for [P3] [No. 143]
3n [+] 1c([p_{1}+u_{1}]) [+] c([p_{2}+u_{2}]) [+] c([p_{3}+u_{3}])s([p_{1}+u_{1}]) [+] s([p_{2}+u_{2}]) [+] s([p_{3}+u_{3}])
3n [+] 2c([p_{1}+u_{1}]) [+] c([p_{2}+u_{3}]) [+] c([p_{3}+u_{2}])s([p_{1}+u_{1}]) [+] s([p_{2}+u_{3}]) [+] s([p_{3}+u_{2}])

[P3_{2}] [No. 145] (enantiomorphous to [P3_{1}] [No. 144])

l [A,B]
3nas for [P3] [No. 143]
3n [+] 1as for l = 3n [+] 2 in [P3_{1}] [No. 144]
3n [+] 2as for l = 3n [+] 1 in [P3_{1}] [No. 144]

[R3] [No. 146] (rhombohedral axes)

[hkl] A B
Allc([hx+ky+lz]) [+] c([kx+ly+hz]) [+] c([lx+hy+kz])s([hx+ky+lz]) [+] s([kx+ly+hz]) [+] s([lx+hy+kz])

[R3] [No. 146] (hexagonal axes)

[hkl] A B
All3[C([hki])c([lz]) − S([hki])s([lz])]3[C([hki])s([lz]) [+] S([hki])c([lz])]

[P\overline{3}] [No. 147]

[hkl] A B
All2[C([hki])c([lz]) − S([hki])s([lz])]0

[R\overline{3}] [No. 148] (rhombohedral axes)

[hkl] A B
All2[c([hx+ky+lz]) [+] c([kx+ly+hz]) [+] c([lx+hy+kz])]0

[R\overline{3}] [No. 148] (hexagonal axes)

[hkl] A B
All6[C([hki])c([lz]) − S([hki])s([lz])]0

[P312] [No. 149]

[hkl] A B
AllPH(cc)c([lz]) − PH(ss)s([lz])MH(cc)s([lz]) [+] MH(ss)c([lz])

[P321] [No. 150]

[hkl] A B
AllPH(cc)c([lz]) − MH(ss)s([lz])PH(ss)c([lz]) [+] MH(cc)s([lz])

[P3_{1}12] [No. 151] (enantiomorphous to [P3_{2}12] [No. 153])

l A B
3nas for [P312] [No. 149]
3n [+] 1 [\hbox{c}(p_{1}+u_{1}) + \hbox{c}(p_{2}+u_{2}) + \hbox{c}(p_{3}+u_{3}) + \hbox{c}(q_{1}+u_{2}) ] [+\;\hbox{c}(q_{2}+u_{3}) +\hbox{c}(q_{3}+u_{1})]] [\hbox{s}(p_{1}+u_{1}) + \hbox{s}(p_{2}+u_{2}) + \hbox{s}(p_{3}+u_{3}) -\hbox{s}(q_{1}+u_{2}) ] [-\;\hbox{s}(q_{2}+u_{3}) - \hbox{s}(q_{3}+u_{1})]
3n [+]2 [\hbox{c}(p_{1}+u_{1}) + \hbox{c}(p_{2}+u_{3}) + \hbox{c}(p_{3}+u_{2}) + \hbox{c}(q_{1}+u_{3}) ] [+\; \hbox{c}(q_{2}+u_{2}) + \hbox{c}(q_{3}+u_{1})] [\hbox{s}(p_{1}+u_{1}) + \hbox{s}(p_{2}+u_{3}) + \hbox{s}(p_{3}+u_{2}) - \hbox{s}(q_{1}+u_{3})] [ -\;\hbox{s}(q_{2}+u_{2}) - \hbox{s}(q_{3}+u_{1})]

[P3_{1}21] [No. 152] (enantiomorphous to [P3_{2}21] [No. 154])

l A B
3nas for [P321] [No. 150]
3n [+] 1 [\hbox{c}(p_{1}+u_{1}) + \hbox{c}(p_{2}+u_{2}) + \hbox{c}(p_{3}+u_{3}) + \hbox{c}(q_{1} - u_{1})] [ +\; \hbox{c}(q_{2}-u_{2}) +\hbox{c}(q_{3} - u_{3})]s([p_{1}+u_{1}]) [+] s([p_{2}+u_{2}]) [+] s([p_{3}+u_{3}]) [+] s([q_{1}][u_{1}]) [+\hbox{ s}(q_{2}-u_{2}]) [+] s([q_{3}][u_{3}])
3n [+] 2 [\hbox{c}(p_{1}+u_{1}) + \hbox{c}(p_{2}+u_{3}) + \hbox{c}(p_{3}+u_{2}) + \hbox{c}(q_{1} - u_{1})] [ +\hbox{ c}(q_{2} -\; u_{3}) + \hbox{c}(q_{3} -u_{2})] [\hbox{s}(p_{1}+u_{1}) + \hbox{s}(p_{2}+u_{3}) + \hbox{s}(p_{3}+u_{2}) + \hbox{s}(q_{1} - u_{1}) ] [+\; \hbox{s}(q_{2} - u_{3}) + \hbox{s}(q_{3} - u_{2})]

[P3_{2}12] [No. 153] (enantiomorphous to [P3_{1}12] [No. 151])

l [A,B]
3nas for [P312] [No. 149]
3n [+] 1as for l = 3n [+] 2 in [P3_{1}12] [No. 151]
3n [+] 2as for l = 3n [+] 1 in [P3_{1}12] [No. 151]

[P3_{2}21] [No. 154] (enantiomorphous to [P3_{1}21] [No. 152])

l [A,B]
3nas for [P321] [No. 150]
3n [+] 1as for l = 3n [+] 2 in [P3_{1}21] [No. 152]
3n [+] 2as for l = 3n [+] 1 in [P3_{1}21] [No. 152]

[R32] [No. 155] (rhombohedral axes)

[hkl] A B
AllEccc − Ecss − Escs − Essc [+] Occc − Ocss − Oscs − OsscEscc [+] Ecsc [+] Eccs − Esss − Oscc − Ocsc − Occs [+] Osss

[R32] [No. 155] (hexagonal axes)

[hkl] A B
All3[PH(cc)c([lz]) − MH(ss)s([lz])]3[PH(ss)c([lz]) [+] MH(cc)s([lz])]

[P3m1] [No. 156]

[hkl] A B
AllPH(cc)c([lz]) − MH(ss)s([lz])PH(cc)s([lz]) [+] MH(ss)c([lz])

[P31m] [No. 157]

[hkl] A B
AllPH(cc)c([lz]) − PH(ss)s([lz])PH(cc)s([lz]) [+] PH(ss)c([lz])

[P3c1] [No. 158]

l A B
2nPH(cc)c([lz]) − MH(ss)s([lz])PH(cc)s([lz]) [+] MH(ss)c([lz])
2n [+] 1MH(cc)c([lz]) − PH(ss)s([lz])PH(ss)c([lz]) [+] MH(cc)s([lz])

[P31c] [No. 159]

l A B
2nPH(cc)c([lz]) − PH(ss)s([lz])PH(cc)s([lz]) [+] PH(ss)c([lz])
2n [+] 1MH(cc)c([lz]) − MH(ss)s([lz])MH(cc)s([lz]) [+] MH(ss)c([lz])

[R3m] [No. 160] (rhombohedral axes)

[hkl] A B
AllEccc − Ecss − Escs − Essc [+] Occc − Ocss − Oscs − OsscEscc [+] Ecsc [+] Eccs − Esss [+] Oscc [+] Ocsc [+] Occs − Osss

[R3m] [No. 160] (hexagonal axes)

[hkl] A B
All3[PH(cc)c([lz]) − MH(ss)s([lz])]3[PH(cc)s([lz]) [+] MH(ss)c([lz])]

[R3c] [No. 161] (rhombohedral axes)

[h+k+l] A B
2nEccc − Ecss − Escs − Essc [+] Occc − Ocss − Oscs − OsscEscc [+] Ecsc [+] Eccs − Esss [+] Oscc [+] Ocsc [+] Occs − Osss
2n [+] 1Eccc − Ecss − Escs − Essc − Occc [+] Ocss [+] Oscs [+] OsscEscc [+] Ecsc [+] Eccs − Esss − Oscc − Ocsc − Occs [+] Osss

[R3c] [No. 161] (hexagonal axes)

l A B
2n3[PH(cc)c([lz]) − MH(ss)s([lz])]3[PH(cc)s([lz]) [+] MH(ss)c([lz])]
2n [+] 13[MH(cc)c([lz]) − PH(ss)s([lz])]3[PH(ss)c([lz]) [+] MH(cc)s([lz])]

[P\overline{3}1m] [No. 162] ([B=0] for all [h,k,l])

A
2[PH(cc)c([lz]) − PH(ss)s([lz])]

[P\overline{3}1c] [No. 163] ([B=0] for all [h,k,l])

l A
2n2[PH(cc)c([lz]) − PH(ss)s([lz])]
2n [+] 12[MH(cc)c([lz]) − MH(ss)s([lz])]

[P\overline{3}m1] [No. 164] ([B=0] for all [h,k,l])

A
2[PH(cc)c([lz]) − MH(ss)s([lz])]

[P\overline{3}c1] [No. 165] ([B=0] for all [h,k,l])

l A
2n2[PH(cc)c([lz]) − MH(ss)s([lz])]
2n [+] 12[MH(cc)c([lz]) − PH(ss)s([lz])]

[R\overline{3}m] [No. 166] (rhombohedral axes, [B=0] for all [h,k,l])

A
2(Eccc − Ecss − Escs − Essc [+] Occc − Ocss − Oscs − Ossc)

[R\overline{3}m] [No. 166] (hexagonal axes, [B=0] for all [h,k,l])

A
6[PH(cc)c([lz]) − MH(ss)s([lz])]

[R\overline{3}c] [No. 167] (rhombohedral axes, [B=0] for all [h,k,l])

[h+k+l] A
2n2(Eccc − Ecss − Escs − Essc [+] Occc − Ocss − Oscs − Ossc)
2n [+] 12(Eccc − Ecss − Escs − Essc − Occc [+] Ocss [+] Oscs [+] Ossc)

[R\overline{3}c] [No. 167] (hexagonal axes, [B=0] for all [h,k,l])

l A
2n6[PH(cc)c([lz]) − MH(ss)s([lz])]
2n [+] 16[MH(cc)c([lz]) − PH(ss)s([lz])]

[P6] [No. 168]

[hkl] A B
All2C([hki])c([lz])2C([hki])s([lz])

[P6_{1}] [No. 169] (enantiomorphous to [P6_{5}] [No. 170])

l A B
6nas for [P6] [No.168]
6n [+] 1 −2[s([p_{1}])s([u_{1}]) [+] s([p_{2}])s([u_{2}]) [+] s([p_{3}])s([u_{3}])]2[s([p_{1}])c([u_{1}]) [+] s([p_{2}])c([u_{2}]) [+] s([p_{3}])c([u_{3}])]
6n [+] 2 2[c([p_{1}])c([u_{1}]) [+] c([p_{2}])c([u_{3}]) [+] c([p_{3}])c([u_{2}])]2[c([p_{1}])s([u_{1}]) [+] c([p_{2}])s([u_{3}]) [+] c([p_{3}])s([u_{2}])]
6n [+] 3 −2S([hki])s([lz])2S([hki])c([lz])
6n [+] 4 2[c([p_{1}])c([u_{1}]) [+] c([p_{2}])c([u_{2}]) [+] c([p_{3}])c([u_{3}])]2[c([p_{1}])s([u_{1}]) [+] c([p_{2}])s([u_{2}]) [+] c([p_{3}])s([u_{3}])]
6n [+] 5 −2[s([p_{1}])s([u_{1}]) [+] s([p_{2}])s([u_{3}]) [+] s([p_{3}])s([u_{2}])]2[s([p_{1}])c([u_{1}]) [+] s([p_{2}])c([u_{3}]) [+] s([p_{3}])c([u_{2}])]

[P6_{5}] [No. 170] (enantiomorphous to [P6_{1}] [No. 169])

l [A,B]
6nas for [P6] [No. 168]
6n [+] 1as for l = 6n [+] 5 in [P6_{1}] [No. 169]
6n [+] 2as for l = 6n [+] 4 in [P6_{1}] [No. 169]
6n [+] 3as for l = 6n [+] 3 in [P6_{1}] [No. 169]
6n [+] 4as for l = 6n [+] 2 in [P6_{1}] [No. 169]
6n [+] 5as for l = 6n [+] 1 in [P6_{1}] [No. 169]

[P6_{2}] [No. 171] (enantiomorphous to [P6_{4}] [No. 172])

l [A,B]
3nas for [P6] [No. 168]
3n [+] 1as for l = 6n [+] 2 in [P6_{1}] [No. 169]
3n [+] 2as for l = 6n [+] 4 in [P6_{1}] [No. 169]

[P6_{4}] [No. 172] (enantiomorphous to [P6_{2}] [No. 171])

l [A,B]
3nas for [P6] [No. 168]
3n [+] 1as for l = 6n [+] 4 in [P6_{1}] [No.169]
3n [+] 2as for l = 6n [+] 2 in [P6_{1}] [No. 169]

[P6_{3}] [No. 173]

l [A,B]
2nas for [P6] [No. 168]
2n [+] 1as for l = 6n [+] 3 in [P6_{1}] [No. 169]

[P\overline{6}] [No. 174]

[hkl] A B
All2C([hki])c([lz])2S([hki])c([lz])

[P6/m] [No. 175]

[hkl] A B
All4C([hki])c([lz])0

[P6_{3}/m] [No. 176]

l A B
2n 4C([hki])c([lz])0
2n [+] 1 −4S([hki])s([lz])0

[P622] [No. 177]

[hkl] A B
All2PH(cc)c([lz])2MH(cc)s([lz])

[P6_{1}22] [No. 178] (enantiomorphous to [P6_{5}22] [No. 179])

l A B
6nas for [P622] [No. 177]
6n [+] 1 [-2[\hbox{s}(p_{1})\hbox{s}(u_{1}) + \hbox{s}(p_{2})\hbox{s}(u_{2}) + \hbox{s}(p_{3})\hbox{s}(u_{3}) - \hbox{s}(q_{1})\hbox{s}(u_{3})] [ -\; \hbox{s}(q_{2})\hbox{s}(u_{1}) - \hbox{s}(q_{3})\hbox{s}(u_{2})]] [2[\hbox{s}(p_{1})\hbox{c}(u_{1}) + \hbox{s}(p_{2})\hbox{c}(u_{2}) + \hbox{s}(p_{3})\hbox{c}(u_{3}) + \hbox{s}(q_{1})\hbox{c}(u_{3}) ] [+\; \hbox{s}(q_{2})\hbox{c}(u_{1}) + \hbox{s}(q_{3})\hbox{c}(u_{2})]]
6n [+] 2 [2[\hbox{c}(p_{1})\hbox{c}(u_{1}) + \hbox{c}(p_{2})\hbox{c}(u_{3}) + \hbox{c}(p_{3})\hbox{c}(u_{2}) + \hbox{c}(q_{1})\hbox{c}(u_{2}) ] [+\; \hbox{c}(q_{2})\hbox{c}(u_{1}) + \hbox{c}(q_{3})\hbox{c}(u_{3})]] [2[\hbox{c}(p_{1})\hbox{s}(u_{1}) + \hbox{c}(p_{2})\hbox{s}(u_{3}) + \hbox{c}(p_{3})\hbox{s}(u_{2}) - \hbox{c}(q_{1})\hbox{s}(u_{2}) ] [-\; \hbox{c}(q_{2})\hbox{s}(u_{1}) - \hbox{c}(q_{3})\hbox{s}(u_{3})]]
6n [+] 3 −2MH(ss)s([lz])2PH(ss)c([lz])
6n [+] 4 [2[\hbox{c}(p_{1})\hbox{c}(u_{1}) + \hbox{c}(p_{2})\hbox{c}(u_{2}) + \hbox{c}(p_{3})\hbox{c}(u_{3}) + \hbox{c}(q_{1})\hbox{c}(u_{3}) ] [+\; \hbox{c}(q_{2})\hbox{c}(u_{1}) + \hbox{c}(q_{3})\hbox{c}(u_{2})]] [2[\hbox{c}(p_{1})\hbox{s}(u_{1}) + \hbox{c}(p_{2})\hbox{s}(u_{2}) + \hbox{c}(p_{3})\hbox{s}(u_{3}) - \hbox{c}(q_{1})\hbox{s}(u_{3})] [ -\; \hbox{c}(q_{2})\hbox{s}(u_{1}) - \hbox{c}(q_{3})\hbox{s}(u_{2})]]
6n [+] 5 [-2[\hbox{s}(p_{1})\hbox{s}(u_{1}) + \hbox{s}(p_{2})\hbox{s}(u_{3}) + \hbox{s}(p_{3})\hbox{s}(u_{2}) - \hbox{s}(q_{1})\hbox{s}(u_{2})] [ -\; \hbox{s}(q_{2})\hbox{s}(u_{1}) - \hbox{s}(q_{3})\hbox{s}(u_{3})]] [2[\hbox{s}(p_{1})\hbox{c}(u_{1}) + \hbox{s}(p_{2})\hbox{c}(u_{3}) + \hbox{s}(p_{3})\hbox{c}(u_{2}) + \hbox{s}(q_{1})\hbox{c}(u_{2})] [ +\; \hbox{s}(q_{2})\hbox{c}(u_{1}) + \hbox{s}(q_{3})\hbox{c}(u_{3})]]

[P6_{5}22] [No. 179] (enantiomorphous to [P6_{1}22] [No. 178])

l [A,B]
6nas for [P622] [No. 177]
6n [+] 1as for l = 6n [+] 5 in [P6_{1}22] [No. 178]
6n [+] 2as for l = 6n [+] 4 in [P6_{1}22] [No. 178]
6n [+] 3as for l = 6n [+] 3 in [P6_{1}22] [No. 178]
6n [+] 4as for l = 6n [+] 2 in [P6_{1}22] [No. 178]
6n [+] 5as for l = 6n [+] 1 in [P6_{1}22] [No. 178]

[P6_{2}22] [No. 180] (enantiomorphous to [P6_{4}22] [No. 181])

l [A,B]
nas for [P622] [No. 177]
3n [+] 1as for l = 6n [+] 2 in [P6_{1}22] [No. 178]
3n [+] 2as for l = 6n [+] 4 in [P6_{1}22] [No.178]

[P6_{4}22] [No. 181] (enantiomorphous to [P6_{2}22] [No. 180])

l [A,B]
3nas for [P622] [No. 177]
3n [+] 1as for l = 6n [+] 4 in [P6_{1}22] [No. 178]
3n [+] 2as for l = 6n [+] 2 in [P6_{1}22] [No. 178]

[P6_{3}22] [No. 182]

l [A,B]
2nas for [P622] [No. 177]
2n [+] 1as for l = 6n [+] 3 in [P6_{1}22] [No. 178]

[P6mm] [No. 183]

[hkl] A B
All2PH(cc)c([lz])2PH(cc)s([lz])

[P6cc] [No. 184]

l A B
2n2PH(cc)c([lz])2PH(cc)s([lz])
2n [+] 12MH(cc)c([lz])2MH(cc)s([lz])

[P6_{3}cm] [No. 185]

l A B
2n 2PH(cc)c([lz])2PH(cc)s([lz])
2n [+] 1 −2PH(ss)s([lz])2PH(ss)c([lz])

[P6_{3}mc] [No. 186]

l A B
2n 2PH(cc)c([lz])2PH(cc)s([lz])
2n [+] 1 −2MH(ss)s([lz])2MH(ss)c([lz])

[P\overline{6}m2] [No. 187]

[hkl] A B
All2PH(cc)c([lz])2MH(ss)c([lz])

[P\overline{6}c2] [No. 188]

l A B
2n 2PH(cc)c([lz])2MH(ss)c([lz])
2n [+] 1 −2PH(ss)s([lz])2MH(cc)s([lz])

[P\overline{6}2m] [No. 189]

[hkl] A B
All2PH(cc)c([lz])2PH(ss)c([lz])

[P\overline{6}2c] [No. 190]

l A B
2n 2PH(cc)c([lz])2PH(ss)c([lz])
2n [+] 1 −2MH(ss)s([lz])2MH(cc)s([lz])

[P6/mmm] [No. 191]

[hkl] A B
All4PH(cc)c([lz])0

[P6/mcc] [No. 192] ([B=0] for all [h,k,l])

l A
2n4PH(cc)c([lz])
2n [+] 14MH(cc)c([lz])

[P6_{3}/mcm] [No. 193] ([B=0] for all [h,k,l])

l A
2n 4PH(cc)c([lz])
2n [+] 1 −4PH(ss)s([lz])

[P6_{3}/mmc] [No. 194] ([B=0] for all [h,k,l])

l A
2n 4PH(cc)c([lz])
2n [+] 1 −4MH(ss)s([lz])

Table A1.4.3.7| top | pdf |
Cubic space groups

The symbols appearing in this table are related to the pqr representation used with the orthorhombic space groups as follows: Each of the symbols defined below is a sum of three pqr terms, where the order of hkl is fixed in each of the three terms and that of xyz is permuted.

This table and parts of Table A1.4.3.6[link] (rhombohedral space groups referred to rhombohedral axes) are given in terms of the following two symbols:[{{\rm Epqr}={\rm p}(hx){\rm q}(ky){\rm r}(lz)+{\rm p}(hy){\rm q}(kz){\rm r}(lx)+{\rm p}(hz){\rm q}(kx){\rm r}(ly)}\eqno({\rm A}1.4.3.7)]and[{{\rm Opqr}={\rm p}(hx){\rm q}(kz){\rm r}(ly)+{\rm p}(hz){\rm q}(ky){\rm r}(lx)+{\rm p}(hy){\rm q}(kx){\rm r}(lz),}\eqno({\rm A}1.4.3.8)] where p, q and r can each be a sine or a cosine, and the factor [2\pi{}] has been absorbed in the abbreviations (see text). As in Tables A1.4.3.1[link]–A1.4.3.6[link] [link] [link] [link] [link], cosine and sine are abbreviated by c and s, respectively. The permutation of the coordinates is even in Epqr and odd in Opqr.

Conditions for vanishing symbols:

Epqr = Opqr = 0 if at least one of p, q, r is a sine and the index h, k or l in its argument is zero,[\displaylines{{\rm Eccc}-{\rm Occc}=0\;\;{\rm if}\;\;|h|=|k|\;\;({\rm or}\;\;|k|=|l|\;\;{\rm or}\;\;|l|=|h|),\cr{\rm Esss}-{\rm Osss}=0\;\;{\rm if}\;\;|h|=|k|\;\;({\rm or}\;\;|k|=|l|\;\;{\rm or}\;\;|l|=|h|),\cr{\rm Ecss}-{\rm Ocss}={\rm Escc}-{\rm Oscc}=0\;\;{\rm if}\;\;|k|=|l|,\cr{\rm Escs}-{\rm Oscs}={\rm Ecsc}-{\rm Ocsc}=0\;\;{\rm if}\;\;|l|=|h|\;\;{\rm and}\cr{\rm Essc}-{\rm Ossc}={\rm Eccs}-{\rm Occs}=0\;\;{\rm if}\;\;|h|=|k|.}]

[P23] [No. 195]

[hkl] A B
All4Eccc −4Esss

[F23] [No. 196]

[hkl] A B
All16Eccc −16Esss

[I23] [No. 197]

[hkl] A B
All8Eccc −8Esss

[P2_{1}3] [No. 198]

[h+k] [k+l] [h+l] A B
2n2n2n 4Eccc −4Esss
2n2n [+] 12n [+] 1 −4Ecss 4Escc
2n [+] 12n2n [+] 1 −4Escs 4Ecsc
2n [+] 12n [+] 12n −4Essc 4Eccs

[I2_{1}3] [No. 199]

[h+k] [k+l] [h+l] A B
2n2n2n 8Eccc −8Esss
2n [+] 12n2n [+] 1 −8Escs 8Ecsc
2n [+] 12n [+] 12n −8Essc 8Eccs
2n2n [+] 12n [+] 1 −8Ecss 8Escc

[Pm\overline{3}] [No. 200]

[hkl] A B
All8Eccc0

[Pn\overline{3}] (Origin 1) [No. 201]

[h+k+l] A B
2n8Eccc0
2n [+] 10 −8Esss

[Pn\overline{3}] (Origin 2) [No. 201] (B = 0 for all [h,k,l])

[h+k] [k+l] [h+l] A
2n2n2n 8Eccc
2n2n [+] 12n [+] 1 −8Essc
2n [+] 12n2n [+] 1 −8Ecss
2n [+] 12n [+] 12n −8Escs

[Fm\overline{3}] [No. 202]

[hkl] A B
All32Eccc0

[Fd\overline{3}] (Origin 1) [No. 203]

[h+k+l] A B
4n32Eccc 0
4n [+] 116(Eccc − Esss) A
4n [+] 20 −32Esss
4n [+] 316(Eccc [+] Esss) [-A]

[Fd\overline{3}] (Origin 2) [No. 203] (B = 0 for all [h,k,l])

[h+k] [k+l] [h+l] A
4n4n4n 32Eccc
4n4n [+] 24n [+] 2 −32Essc
4n [+] 24n4n [+] 2 −32Ecss
4n [+] 24n [+] 24n −32Escs
4n [+] 24n [+] 24n [+] 2 −16(Eccc [+] Ecss [+] Escs [+] Essc)
4n [+] 24n4n 16(Eccc − Ecss − Escs [+] Essc)
4n4n [+] 24n 16(Eccc [+] Ecss − Escs − Essc)
4n4n4n [+] 2 16(Eccc − Ecss [+] Escs −Essc)

[Im\overline{3}] [No. 204]

[hkl] A B
All16Eccc0

[Pa\overline{3}] [No. 205] (B = 0 for all [h,k,l])

[h+k] [k+l] [h+l] A
2n2n2n 8Eccc
2n2n [+] 12n [+] 1 −8Ecss
2n [+] 12n2n [+] 1 −8Escs
2n [+] 12n [+] 12n −8Essc

[Ia\overline{3}] [No. 206] (B = 0 for all [h,k,l])

[h+k] [k+l] [h+l] A
2n2n2n 16Eccc
2n2n [+] 12n [+] 1 −16Ecss
2n [+] 12n2n [+] 1 −16Escs
2n [+] 12n [+] 12n −16Essc

[P432] [No. 207]

[hkl] A B
All4(Eccc [+] Occc) −4(Esss − Osss)

[P4_{2}32] [No. 208]

[h+k+l] A B
2n4(Eccc [+] Occc) −4(Esss − Osss)
2n [+] 14(Eccc − Occc) −4(Esss [+] Osss)

[F432] [No. 209]

[hkl] A B
All16(Eccc [+] Occc) −16(Esss − Osss)

[F4_{1}32] [No. 210]

[h+k+l] A B
4n16(Eccc [+] Occc) −16(Esss − Osss)
4n [+] 116(Eccc − Osss) −16(Esss − Occc)
4n [+] 216(Eccc − Occc) −16(Esss [+] Osss)
4n [+] 316(Eccc [+] Osss) −16(Esss [+] Occc)

[I432] [No. 211]

[hkl] A B
All8(Eccc [+] Occc) −8(Esss − Osss)

[P4_{3}32] [No. 212] (enantiomorphous to [P4_{1}32] [No. 213])

[h+k] [k+l] [h+l] [h+k+l] A B
2n2n2n4n 4(Eccc [+] Occc) −4(Esss − Osss)
2n2n [+] 12n [+] 14n −4(Ecss [+] Oscs) 4(Escc − Ocsc)
2n [+] 12n2n [+] 14n −4(Escs [+] Ossc) 4(Ecsc − Occs)
2n [+] 12n [+] 12n4n −4(Essc [+] Ocss) 4(Eccs − Oscc)
2n2n2n4n [+] 1 4(Eccc − Osss) −4(Esss − Occc)
2n2n [+] 12n [+] 14n [+] 1 −4(Ecss − Ocsc) 4(Escc − Oscs)
2n [+] 12n2n [+] 14n [+] 1 −4(Escs − Occs) 4(Ecsc − Ossc)
2n [+] 12n [+] 12n4n [+] 1 −4(Essc − Oscc) 4(Eccs − Ocss)
2n2n2n4n [+] 2 4(Eccc − Occc) −4(Esss [+] Osss)
2n2n [+] 12n [+] 14n [+] 2 −4(Ecss − Oscs) 4(Escc [+] Ocsc)
2n [+] 12n2n [+] 14n [+] 2 −4(Escs − Ossc) 4(Ecsc [+] Occs)
2n [+] 12n [+] 12n4n [+] 2 −4(Essc − Ocss) 4(Eccs [+] Oscc)
2n2n2n4n [+] 3 4(Eccc [+] Osss) −4(Esss [+] Occc)
2n2n [+] 12n [+] 14n [+] 3 −4(Ecss [+] Ocsc) 4(Escc [+] Oscs)
2n [+] 12n2n [+] 14n [+] 3 −4(Escs [+] Occs) 4(Ecsc [+] Ossc)
2n [+] 12n [+] 12n4n [+] 3 −4(Essc [+] Oscc) 4(Eccs [+] Ocss)

[P4_{1}32] [No. 213] (enantiomorphous to [P4_{3}32] [No. 212])

h k l [h+k+l] A B
2n2n2n4n 4(Eccc [+] Occc) −4(Esss − Osss)
2n2n [+] 12n [+] 14n −4(Escs [+] Ossc) 4(Ecsc − Occs)
2n [+]12n2n [+] 14n −4(Essc [+] Ocss) 4(Eccs − Oscc)
2n [+] 12n [+] 12n4n −4(Ecss [+] Oscs) 4(Escc − Ocsc)
2n [+] 12n [+] 12n [+] 14n [+] 1 4(Eccc [+] Osss) −4(Esss [+] Occc)
2n2n2n [+] 14n [+] 1 −4(Ecss [+] Ocsc) 4(Escc [+] Oscs)
2n [+] 12n2n4n [+] 1 −4(Escs [+] Occs) 4(Ecsc [+] Ossc)
2n2n [+] 12n4n [+] 1 −4(Essc [+] Oscc) 4(Eccs [+] Ocss)
2n2n2n4n [+] 2 4(Eccc − Occc) −4(Esss [+] Osss)
2n2n [+] 12n [+] 14n [+] 2 −4(Escs − Ossc) 4(Ecsc [+] Occs)
2n [+] 12n2n [+] 14n [+] 2 −4(Essc − Ocss) 4(Eccs [+] Oscc)
2n [+] 12n [+] 12n4n [+] 2 −4(Ecss − Oscs) 4(Escc [+] Ocsc)
2n [+] 12n [+] 12n [+] 14n [+] 3 4(Eccc − Osss) −4(Esss − Occc)
2n2n2n [+] 14n [+] 3 −4(Ecss − Ocsc) 4(Escc − Oscs)
2n [+] 12n2n4n [+] 3 −4(Escs − Occs) 4(Ecsc − Ossc)
2n2n [+] 12n4n [+] 3 −4(Essc − Oscc) 4(Eccs − Ocss)

[I4_{1}32] [No. 214]

h k l [h+k+l] A B
2n2n2n4n 8(Eccc [+] Occc) −8(Esss − Osss)
2n2n [+] 12n [+] 14n −8(Escs [+] Ossc) 8(Ecsc − Occs)
2n [+] 12n2n [+] 14n −8(Essc [+] Ocss) 8(Eccs − Oscc)
2n [+] 12n [+] 12n4n −8(Ecss [+] Oscs) 8(Escc − Ocsc)
2n2n2n4n [+] 2 8(Eccc − Occc) −8(Esss [+] Osss)
2n2n [+] 12n [+] 14n [+] 2 −8(Escs − Ossc) 8(Ecsc [+] Occs)
2n [+] 12n2n [+] 14n [+] 2 −8(Essc − Ocss) 8(Eccs [+] Oscc)
2n [+] 12n [+] 12n4n [+] 2 −8(Ecss − Oscs) 8(Escc [+] Ocsc)

[P\overline{4}3m] [No. 215]

[hkl] A B
All4(Eccc [+] Occc) −4(Esss [+] Osss)

[F\overline{4}3m] [No. 216]

[hkl] A B
All16(Eccc [+] Occc) −16(Esss [+] Osss)

[I\overline{4}3m] [No. 217]

[hkl] A B
All8(Eccc [+] Occc) −8(Esss [+]Osss)

[P\overline{4}3n] [No. 218]

[h+k+l] A B
2n4(Eccc [+] Occc) −4(Esss [+] Osss)
2n [+] 14(Eccc − Occc) −4(Esss − Osss)

[F\overline{4}3c] [No. 219]

[h+k+l] A B
2n16(Eccc [+] Occc) −16(Esss [+] Osss)
2n [+] 116(Eccc − Occc) −16(Esss − Osss)

[I\overline{4}3d] [No. 220]

h k l [h+k+l] A B
2n2n2n4n 8(Eccc [+] Occc) −8(Esss [+] Osss)
2n2n [+] 12n [+] 14n −8(Escs [+] Ossc) 8(Ecsc [+] Occs)
2n [+] 12n2n [+] 14n −8(Essc [+] Ocss) 8(Eccs [+] Oscc)
2n [+] 12n [+] 12n4n −8(Ecss [+] Oscs) 8(Escc [+] Ocsc)
2n2n2n4n [+] 2 8(Eccc − Occc) −8(Esss − Osss)
2n2n [+] 12n [+] 14n [+] 2 −8(Escs − Ossc) 8(Ecsc − Occs)
2n [+] 12n2n [+] 14n [+] 2 −8(Essc − Ocss) 8(Eccs − Oscc)
2n [+] 12n [+] 12n4n [+] 2 −8(Ecss − Oscs) 8(Escc −Ocsc)

[Pm\overline{3}m] [No. 221]

[hkl] A B
All8(Eccc [+] Occc)0

[Pn\overline{3}n] (Origin 1) [No. 222]

[h+k+l] A B
2n8(Eccc [+] Occc)0
2n [+] 10 −8(Esss − Osss)

[Pn\overline{3}n] (Origin 2) [No. 222] (B = 0 for all [h,k,l])

h k l A
2n2n2n 8(Eccc [+] Occc)
2n2n [+] 12n [+] 1 −8(Ecss [+] Ocss)
2n [+] 12n2n [+] 1 −8(Escs [+] Oscs)
2n [+] 12n [+] 12n −8(Essc [+] Ossc)
2n [+] 12n [+] 12n [+] 1 8(Eccc − Occc)
2n [+] 12n2n −8(Ecss − Ocss)
2n2n [+] 12n −8(Escs − Oscs)
2n2n2n [+] 1 −8(Essc − Ossc)

[Pm\overline{3}n] [No. 223] (B = 0 for all [h,k,l])

[h+k+l] A
2n8(Eccc [+] Occc)
2n [+] 18(Eccc − Occc)

[Pn\overline{3}m] (Origin 1) [No. 224]

[h+k+l] A B
2n8(Eccc [+\ ]Occc)0
2n [+] 10 −8(Esss [+] Osss)

[Pn\overline{3}m] (Origin 2) [No. 224] (B = 0 for all [h,k,l])

[h+k] [k+l] [h+l] A
2n2n2n 8(Eccc [+] Occc)
2n2n [+] 12n [+] 1 −8(Essc [+] Ossc)
2n [+] 12n2n [+] 1 −8(Ecss [+] Ocss)
2n [+] 12n [+] 12n −8(Escs [+] Oscs)

[Fm\overline{3}m] [No. 225]

[hkl] A B
All32(Eccc [+] Occc)0

[Fm\overline{3}c] [No. 226] (B = 0 for all [h,k,l])

[h+k+l] A
2n32(Eccc [+] Occc)
2n [+] 132(Eccc − Occc)

[Fd\overline{3}m] (Origin 1) [No. 227]

[h+k+l] A B
4n32(Eccc [+] Occc) 0
4n [+] 116(Eccc − Esss [+] Occc − Osss) A
4n [+] 20 −32(Esss [+] Osss)
4n [+] 316(Eccc [+] Esss [+] Occc [+] Osss) [-A]

[Fd\overline{3}m] (Origin 2) [No. 227] (B = 0 for all [h,k,l])

[h+k] [k+l] [h+l] A
4n4n4n 32(Eccc [+] Occc)
4n4n [+] 24n [+] 2 −32(Essc [+] Ossc)
4n [+] 24n4n [+] 2 −32(Ecss [+] Ocss)
4n [+] 24n [+] 24n −32(Escs [+] Oscs)
4n [+] 24n [+] 24n [+] 2 −16(Eccc [+] Ecss [+] Escs [+] Essc [+] Occc [+] Ocss [+] Oscs [+] Ossc)
4n [+] 24n4n 16(Eccc − Ecss − Escs [+] Essc [+] Occc − Ocss − Oscs [+] Ossc)
4n4n [+] 24n 16(Eccc [+] Ecss − Escs − Essc [+] Occc [+] Ocss − Oscs − Ossc)
4n4n4n [+] 2 16(Eccc − Ecss [+] Escs − Essc [+] Occc − Ocss [+] Oscs − Ossc)

[Fd\overline{3}c] (Origin 1) [No. 228]

[h+k+l] A B
4n32(Eccc [+] Occc) 0
4n [+] 116(Eccc [+] Esss − Occc − Osss) [-A]
4n [+] 20 −32(Esss [+] Osss)
4n [+] 316(Eccc − Esss − Occc [+] Osss) A

[Fd\overline{3}c] (Origin 2) [No. 228] (B = 0 for all [h,k,l])

[h+k] [k+l] [h+l] A
4n4n4n 32(Eccc [+] Occc)
4n4n [+] 24n [+] 2 −32(Essc [+] Ossc)
4n [+] 24n4n [+] 2 −32(Ecss [+] Ocss)
4n [+] 24n [+] 24n −32(Escs [+] Oscs)
4n [+] 24n [+] 24n [+] 2 −16(Eccc [+] Ecss [+] Escs [+] Essc − Occc − Ocss − Oscs −Ossc)
4n [+] 24n4n 16(Eccc − Ecss − Escs [+] Essc − Occc [+] Ocss [+] Oscs − Ossc)
4n4n [+] 24n 16(Eccc [+] Ecss − Escs − Essc − Occc − Ocss [+] Oscs [+] Ossc)
4n4n4n [+] 2 16(Eccc − Ecss [+] Escs − Essc −Occc [+] Ocss − Oscs [+] Ossc)

[Im\overline{3}m] [No. 229]

[hkl] A B
All16(Eccc [+] Occc)0

[Ia\overline{3}d] [No. 230] (B = 0 for all [h,k,l])

h k l [h+k+l] A
2n2n2n4n 16(Eccc [+] Occc)
2n2n [+] 12n [+] 14n −16(Escs [+] Ossc)
2n [+] 12n2n [+] 14n −16(Essc [+] Ocss)
2n [+] 12n [+] 12n4n −16(Ecss [+] Oscs)
2n2n2n4n [+] 2 16(Eccc − Occc)
2n2n [+] 12n [+] 14n [+] 2 −16(Escs − Ossc)
2n [+] 12n2n [+] 14n [+] 2 −16(Essc − Ocss)
2n [+] 12n [+] 12n4n [+] 2 −16(Ecss − Oscs)

References

First citation International Tables for Crystallography (2005). Vol. A. Space-group symmetry, edited by Th. Hahn, 5th ed., corrected reprint. Heidelberg: Springer.Google Scholar








































to end of page
to top of page