International
Tables for
Crystallography
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2006). Vol. B, ch. 1.4, pp. 99-161   | 1 | 2 |
https://doi.org/10.1107/97809553602060000552

Chapter 1.4. Symmetry in reciprocal space

U. Shmueli,a* S. R. Hallb and R. W. Grosse-Kunstlevec

aSchool of Chemistry, Tel Aviv University, 69 978 Tel Aviv, Israel, bCrystallography Centre, University of Western Australia, Nedlands 6907, WA, Australia, and  cLawrence Berkeley National Laboratory, 1 Cyclotron Road, Mailstop 4-230, Berkeley, CA 94720, USA
Correspondence e-mail:  ushmueli@post.tau.ac.il

References

Altermatt, U. D. & Brown, I. D. (1987). A real-space computer-based symmetry algebra. Acta Cryst. A43, 125–130.Google Scholar
Authier, A. (1981). The reciprocal lattice. Edited by the IUCr Commission on Crystallographic Teaching. Cardiff: University College Cardiff Press.Google Scholar
Bertaut, E. F. (1964). On the symmetry of phases in the reciprocal lattice: a simple method. Acta Cryst. 17, 778–779.Google Scholar
Bienenstock, A. & Ewald, P. P. (1962). Symmetry of Fourier space. Acta Cryst. 15, 1253–1261.Google Scholar
Bourne, P. E., Berman, H. M., McMahon, B., Watenpaugh, K. D., Westbrook, J. D. & Fitzgerald, P. M. D. (1997). mmCIF: macromolecular crystallographic information file. Methods Enzymol. 277, 571–590.Google Scholar
Bragg, L. (1966). The crystalline state. Vol. I. A general survey. London: Bell.Google Scholar
Buerger, M. J. (1942). X-ray crystallography. New York: John Wiley.Google Scholar
Buerger, M. J. (1949). Crystallographic symmetry in reciprocal space. Proc. Natl Acad. Sci. USA, 35, 198–201.Google Scholar
Buerger, M. J. (1960). Crystal structure analysis. New York: John Wiley.Google Scholar
Computers in the New Laboratory – a Nature Survey (1981). Nature (London), 290, 193–200.Google Scholar
Dowty, E. (2000). ATOMS: a program for the display of atomic structures. Commercial software available from http://www.shapesoftware.com .Google Scholar
Ewald, P. P. (1921). Das `reziproke Gitter' in der Strukturtheorie. Z. Kristallogr. Teil A, 56, 129–156.Google Scholar
Grosse-Kunstleve, R. W. (1995). SGINFO: a comprehensive collection of ANSI C routines for the handling of space-group symmetry. Freely available from http://cci.lbl.gov/sginfo/ .Google Scholar
Grosse-Kunstleve, R. W. (1999). Algorithms for deriving crystallographic space-group information. Acta Cryst. A55, 383–395.Google Scholar
Hall, S. R. (1981a). Space-group notation with an explicit origin. Acta Cryst. A37, 517–525.Google Scholar
Hall, S. R. (1981b). Space-group notation with an explicit origin: erratum. Acta Cryst. A37, 921.Google Scholar
Hall, S. R. (1997). LoopX: a script used to loop Xtal. Copyright University of Western Australia. Freely available from http://www.crystal.uwa.edu.au/~syd/symmetry/ .Google Scholar
Hall, S. R., du Boulay, D. J. & Olthof-Hazekamp, R. (2000). Xtal: a system of crystallographic programs. Copyright University of Western Australia. Freely available from http://xtal.crystal.uwa.edu.au .Google Scholar
Hearn, A. C. (1973). REDUCE 2.0 user's manual. University of Utah, Salt Lake City, Utah, USA.Google Scholar
Hovmöller, S. (1992). CRISP: crystallographic image processing on a personal computer. Ultramicroscopy, 41, 121–135.Google Scholar
International Tables for Crystallography (1983). Vol. A. Space-group symmetry, edited by Th. Hahn. Dordrecht: Reidel. (Present distributor Kluwer Academic Publishers, Dordrecht.)Google Scholar
International Tables for Crystallography (1987). Vol. A. Space-group symmetry, edited by Th. Hahn, 2nd ed. Dordrecht: Reidel. (Present distributor Kluwer Academic Publishers, Dordrecht.)Google Scholar
International Tables for Crystallography (1992). Vol. A. Space-group symmetry, edited by Th. Hahn, 3rd ed. Dordrecht: Kluwer Academic Publishers.Google Scholar
International Tables for Crystallography (1995). Vol. A. Space-group symmetry, edited by Th. Hahn, 4th ed. Dordrecht: Kluwer Academic Publishers.Google Scholar
International Tables for Crystallography (2002). Vol. A. Space-group symmetry, edited by Th. Hahn, 5th ed. Dordrecht: Kluwer Academic Publishers.Google Scholar
International Tables for Crystallography (2005). Vol. A. Space-group symmetry, edited by Th. Hahn, 5th ed., corrected reprint. Heidelberg: Springer.Google Scholar
International Tables for Crystallography (1993). Vol. B. Reciprocal space, edited by U. Shmueli, 1st ed. Dordrecht: Kluwer Academic Publishers.Google Scholar
International Tables for X-ray Crystallography (1952). Vol. I. Symmetry groups, edited by N. F. M. Henry & K. Lonsdale. Birmingham: Kynoch Press.Google Scholar
International Tables for X-ray Crystallography (1965). Vol. I. Symmetry groups, edited by N. F. M. Henry & K. Lonsdale, 2nd ed. Birmingham: Kynoch Press.Google Scholar
Internationale Tabellen zur Bestimmung von Kristallstrukturen (1935). 1. Band. Edited by C. Hermann. Berlin: Borntraeger.Google Scholar
Koch, E. & Fischer, W. (2005). In International tables for crystallography, Vol. A, Part 11, Symmetry operations. Heidelberg: Springer.Google Scholar
Larine, M., Klimkovich, S., Farrants, G., Hovmöller, S. & Xiaodong, Z. (1995). Space Group Explorer: a computer program for obtaining extensive information about any of the 230 space groups. Freely available from http://www.calidris-em.com/ .Google Scholar
Lipson, H. & Cochran, W. (1966). The crystalline state. Vol. II. The determination of crystal structures. London: Bell.Google Scholar
Lipson, H. & Taylor, C. A. (1958). Fourier transforms and X-ray diffraction. London: Bell.Google Scholar
Seitz, F. (1935). A matrix-algebraic development of crystallographic groups. III. Z. Kristallogr. 90, 289–313.Google Scholar
Shmueli, U. (1984). Space-group algorithms. I. The space group and its symmetry elements. Acta Cryst. A40, 559–567.Google Scholar
Waser, J. (1955). Symmetry relations between structure factors. Acta Cryst. 8, 595.Google Scholar
Wells, M. (1965). Computational aspects of space-group symmetry. Acta Cryst. 19, 173–179.Google Scholar
Zachariasen, W. H. (1945). Theory of X-ray diffraction in crystals. New York: John Wiley.Google Scholar