
For non-holosymmetric space groups the representation domain
� is a multiple of the basic domain �. CDML introduced new letters
for stars of k vectors in those parts of � which do not belong to �. If
one can make a new k vector uni-arm to some k vector of the basic
domain � by an appropriate choice of � and �, one can extend the
parameter range of this k vector of � to � instead of introducing
new letters. It turns out that indeed most of these new letters are
unnecessary. This restricts the introduction of new types of k
vectors to the few cases where it is indispensible. Extension of the
parameter range for k means that the corresponding representations
can also be obtained by parameter variation. Such representations
can be considered to belong to the same type. In this way a large
number of superfluous k-vector names, which pretend a greater
variety of types of irreps than really exists, can be avoided (Boyle,
1986). For examples see Section 1.5.5.1.

1.5.5. Examples and conclusions

1.5.5.1. Examples

In this section, four examples are considered in each of which the
crystallographic classification scheme for the irreps is compared
with the traditional one:†

(1) k-vector types of the arithmetic crystal class m�3mI (space
groups Im�3m and Ia�3d), reciprocal-space group isomorphic to
Fm�3m; � � �; see Table 1.5.5.1 and Fig. 1.5.5.1;

(2) k-vector types of the arithmetic crystal class m�3I (Im�3 and
Ia�3), reciprocal-space group isomorphic to Fm�3, � � �; see Table
1.5.5.2 and Fig. 1.5.5.2;

(3) k-vector types of the arithmetic crystal class
4�mmmI �I4�mmm, I4�mcm, I41�amd and I41�acd�, reciprocal-
space group isomorphic to I4�mmm. Here � � � changes for
different ratios of the lattice constants a and c; see Table 1.5.5.3 and
Fig. 1.5.5.3;

(4) k-vector types of the arithmetic crystal class mm2F (Fmm2
and Fdd2), reciprocal-space group isomorphic to Imm2. Here � �
� changes for different ratios of the lattice constants a, b and c; see
Table 1.5.5.4 and Fig. 1.5.5.4.

The asymmetric units of IT A are displayed in Figs. 1.5.5.1 to
1.5.5.4 by dashed lines. In Tables 1.5.5.1 to 1.5.5.4, the k-vector
types of CDML are compared with the Wintgen (Wyckoff)
positions of IT A. The parameter ranges are chosen such that each
star of k is represented exactly once. Sets of symmetry points, lines
or planes of CDML which belong to the same Wintgen position are
separated by horizontal lines in Tables 1.5.5.1 to 1.5.5.3. The uni-
arm description is listed in the last entry of each Wintgen position in
Tables 1.5.5.1 and 1.5.5.2. In Table 1.5.5.4, so many k-vector types
of CDML belong to each Wintgen position that the latter are used as
headings under which the CDML types are listed.

Table 1.5.5.1. The k-vector types for the space groups Im�3m and Ia�3d

Comparison of the k-vector labels and parameters of CDML with the Wyckoff positions of IT A for Fm�3m, �O5
h�, isomorphic to the reciprocal-space group �� of

m�3mI . The parameter ranges in the last column are chosen such that each star of k is represented exactly once. The sign � means symmetrically equivalent. The
coordinates x, y, z of IT A are related to the k-vector coefficients of CDML by x � 1�2�k2 � k3�, y � 1�2�k1 � k3�, z � 1�2�k1 � k2�.

k-vector label, CDML Wyckoff position, IT A Parameters (see Fig. 1.5.5.1b), IT A

� 0, 0, 0 4 a m�3m 0, 0, 0

H 1
2 , � 1

2 , 1
2 4 b m�3m 1

2 , 0, 0

P 1
4 , 1

4 , 1
4 8 c �43m 1

4 , 1
4 , 1

4

N 0, 0, 1
2 24 d m.mm 1

4 , 1
4 , 0

� �, ��, � 24 e 4m.m x, 0, 0 � 0 � x � 1
2

� �, �, � 32 f .3m x, x, x: 0 � x � 1
4

F 1
2 � �, � 1

2 � 3�, 1
2 � � 32 f .3m 1

2 � x, x, x: 0 � x � 1
4

� F1 (Fig. 1.5.5.1b) 32 f .3m x, x, x: 1
4 � x � 1

2

� F2 (Fig. 1.5.5.1b) 32 f .3m x, x, 1
2 � x � 0 � x � 1

4

� 	 F1 � �H2
P 32 f .3m x, x, x: 0 � x � 1
2 with x �� 1

4

D �,�, 1
2 � � 48 g 2.mm 1

4 , 1
4, z: 0 � z � 1

4

� 0, 0, � 48 h m.m2 x, x, 0: 0 � x � 1
4

G 1
2 � �, � 1

2 � �, 1
2 48 i m.m2 1

2 � x, x, 0: 0 � x � 1
4

A �, ��, � 96 j m.. x, y, 0: 0 � y � x � 1
2 � y

B �� �, � �� �, 1
2 � � 96 k ..m 1

4 � x, 1
4 � x, z: 0 � z � 1

4 � x � 1
4

� PH1N1 (Fig. 1.5.5.1b) 96 k ..m x, x, z: 0 � x � 1
2 � x � z � 1

2

C �, �, � 96 k ..m x, x, z: 0 � z � x � 1
4

J �, �, � 96 k ..m x, y, y: 0 � y � x � 1
2 � y

� �PH1 (Fig. 1.5.5.1b) 96 k ..m x, x, z: 0 � x � z � 1
2 � x

C 	 B 	 J � �NN1H1 96 k ..m x, x, z: 0 � x � 1
4, 0 � z � 1

2 with z �� x,
z �� 1

2 � x.

GP �, �, � 192 l 1 x, y, z: 0 � z � y � x � 1
2 � y

� Corresponding tables and figures for all space groups are available at http://
www.cryst.ehu.es/cryst/get_kvec.html.
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1.5.5.2. Results

(1) The higher the symmetry of the point group �� of �, the more
one is restricted in the choice of the boundaries of the minimal
domain. This is because a symmetry element (rotation or
rotoinversion axis, plane of reflection, centre of inversion) cannot
occur in the interior of the minimal domain but only on its
boundary. However, even for holosymmetric space groups of
highest symmetry, the description by Brillouin zone and representa-
tion domain is not as concise as possible, cf. CDML.

Examples:
(a) In m�3mI and m�3I there are the � and F lines of k vectors

k1��,�,�� and k2�1
2 � �, � 1

2 � 3�, 1
2 � �� in CDML, see Tables

1.5.5.1 and 1.5.5.2, Figs. 1.5.5.1 and 1.5.5.2. Do they belong to the
same Wintgen position, i.e. do their irreps belong to the same type?
There is a twofold rotation 2 x, 1

4 , 1
4 which maps k2 onto k�2 ��1

2 � �, 1
2 � �, 1

2 � � 
 F1� (the rotation 2 is described in the
primitive basis of CDML by k�1 � k3, k�2 � �k1 � k2 � k3 � 1,
k�3 � k1). The k vectors k1 and k�2 are uni-arm and form the line
�H2
P � � 	 F1 � � 	 F which protrudes from the body of the
asymmetric unit like a flagpole. This proves that k1 and k2 belong to
the same Wintgen position, which is 32 f .3m x, x, x.

Owing to the shape of the asymmetric unit of IT A (which is
similar here to that of the representation domain in CDML), the line
x, x, x is kinked into the parts � and F. One may choose even
between F1 (uni-arm to �) or F2 (completing the plane C � �NP).
The latter transformation is performed by applying the symmetry
operation 3� x, x, x for F � F2.

Remark. The uni-arm description unmasks those k vectors (e.g.
those of line F) which lie on the boundary of the Brillouin zone but
belong to a Wintgen position which also contains inner k vectors
(line �). Such k vectors cannot give rise to little-group
representations obtained from projective representations of the
little co-group ��k.

(b) In Table 1.5.5.1 for m�3mI , see also Fig. 1.5.5.1, the k-vector
planes B � HNP, C � �NP and J � �HP of CDML belong to the
same Wintgen position 96 k ..m. In the asymmetric unit of IT A (as
in the representation domain of CDML) the plane x, x, z is kinked
into parts belonging to different arms of the star of k. Transforming,
e.g., B and J to the plane of C by 2 1

4 , y, 1
4 �B � PN1H1� and

3� x, x, x �J � �PH1�, one obtains a complete plane (�NN1H1 for
C, B and J) as a uni-arm description of the Wintgen position 96 k
..m. This plane protrudes from the body of the asymmetric unit like
a wing.

Remark. One should avoid the term equivalent for the relation
between � and F or between B, C and J as it is used by Stokes et al.
(1993). BC, p. 95 give the definition: ‘Two k vectors k1 and k2 are
equivalent if k1 � k2 �K, where K 
 L�’. One can also express
this by saying: ‘Two k vectors are equivalent if they differ by a
vector K of the (reciprocal) lattice.’ We prefer to extend this
equivalence by saying: ‘Two k vectors k1 and k2 are equivalent if
and only if they belong to the same orbit of k’, i.e. if there is a
matrix part W and a vector K 
 L� belonging to �� such that
k2 � Wk1 �K, see equation (1.5.3.13). Alternatively, this can be
expressed as: ‘Two k vectors are equivalent if and only if they
belong to the same or to translationally equivalent stars of k.’ The k
vectors of � and F or of B, C and J are not even equivalent under
this broader definition, see Davies & Dirl (1987). If the
representatives of the k-vector stars are chosen uni-arm, as in the
examples, their non-equivalence is evident.

(2) In general two trends can be observed:
(a) The lower the symmetry of the crystal system, the more irreps

of CDML, recognized by different letters, belong to the same
Wintgen position. This trend is due to the splitting of lines and
planes into pieces because of the more and more complicated shape
of the Brillouin zone. Faces and lines on the surface of the Brillouin
zone may appear or disappear depending on the lattice parameters,
causing different descriptions of Wintgen positions. This does not
happen in unit cells or their asymmetric units; see Sections 1.5.4.1
and 1.5.4.2.

Examples:
(i) The boundary conditions (parameter ranges) for the special

lines and planes of the asymmetric unit and for general k vectors of

Fig. 1.5.5.1. Symmorphic space group Fm�3m (isomorphic to the reciprocal-
space group �� of m�3mI). (a) The asymmetric unit (thick dashed edges)
imbedded in the Brillouin zone, which is a cubic rhombdodecahedron.
(b) The asymmetric unit �HNP, IT A, p. 678. The representation domain
�NH3P of CDML is obtained by reflecting �HNP through the plane of
�NP. Coordinates of the points: � � 0, 0, 0; N � 1

4 , 1
4 , 0 � N1 = 1

4 , 1
4 , 1

2;
H � 1

2 , 0, 0 � H1 � 0, 0, 1
2 � H2 � 1

2 , 1
2 , 1

2 � H3 � 0, 1
2 , 0; P � 1

4 , 1
4 , 1

4;
the sign � means symmetrically equivalent. Lines: � � �P � x, x, x;
F � HP � 1

2 � x, x, x � F1 � PH2 � x, x, x � F2 � PH1 � x, x, 1
2 � x;

� � �H � x, 0, 0; � � �N � x, x, 0; D � NP � 1
4 , 1

4 , z; G � NH �
x, 1

2 � x, 0. Planes: A � �HN � x, y, 0; B � HNP � x, 1
2 � x, z

� PN1H1 � x, x, z; C � �NP � x, x, z; J � �HP � x, y, y � �PH1 �
x, x, z. Large black circles: corners of the asymmetric unit (special
points); small open circles: other special points; dashed lines: edges of
the asymmetric unit (special lines). For the parameter ranges see Table
1.5.5.1.
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the reciprocal-space group �F4�mmm�� (setting I4�mmm) are listed
in Table 1.5.5.3. The main condition of the representation domain is
that of the boundary plane x, y, z � �1� �c�a�2�1� 2�x� y����4,
which for c�a � 1 forms the triangle Z0Z1P (Figs. 1.5.5.3a,b) but
for c�a � 1 forms the pentagon S1RPGS (Figs. 1.5.5.3c,d). The
inner points of these boundary planes are points of the general
position GP with the exception of the line Q � x, 1

2 � x, 1
4, which is

a twofold rotation axis. The boundary conditions for the
representation domain depend on c�a; they are much more
complicated than those for the asymmetric unit (for this the
boundary condition is simply x, y, 1

4).
(ii) In the reciprocal-space group �Imm2��, see Figs. 1.5.5.4(a) to

(c), the lines � and Q belong to Wintgen position 2 a mm2; G and H
belong to 2 b mm2; � and R, � and U, A and C, and B and D belong
to the general position GP. The decisive boundary plane is
x�a2 � y�b2 � z�c2 � d2�4, where d2 � 1�a2 � 1�b2 � 1�c2, or
xa�2 � yb�2 � zc�2 � d�2�4, where d�2 � a�2 � b�2 � c�2. There is
no relation of the lattice constants for which all the above-
mentioned lines are realized on the surface of the representation
domain simultaneously, either two or three of them do not appear
and the length of the others depends on the boundary plane; see
Table 1.5.5.4 and Figs. 1.5.5.4(a) to (c). Again, the boundary
conditions for the asymmetric unit are independent of the lattice
parameters, all lines mentioned above are present and their
parameters run from 0 to 1

2.

(b) The more symmetry a space group has lost compared to its
holosymmetric space group, the more letters of irreps are
introduced, cf. CDML. In most cases these additional labels can
be easily avoided by extension of the parameter range in the k-
vector space of the holosymmetric group.

Example. Extension of the plane A � �NH , Wintgen position
96 j m.. of �Fm�3m��, to A 	 AA � �1NH in the reciprocal-space
group �Fm�3�� of the arithmetic crystal class m�3I , cf. Tables 1.5.5.1
and 1.5.5.2 and Fig. 1.5.5.2. Both planes, A and AA, belong to
Wintgen position 48 h m.. of �Fm�3��.

In addition, in the transition from a holosymmetric space group
� to a non-holosymmetric space group �, the order of the little co-
group ��k of a special k vector of�� may be reduced in ��k. Such a k
vector may then be incorporated into a more general Wintgen
position of ��k and described by an extension of the parameter range.

Example. Plane �H�1 � x, y, 0: In �Fm�3m��, see Fig. 1.5.5.1, all
points ��, H , N� and lines ��,�, G� of the boundary of the
asymmetric unit are special. In �Fm�3��, see Fig. 1.5.5.2, the lines
� and H�1 � � (� means equivalent) are special but �, G and
N�1 � N� � � belong to the plane �A 	 AA�. The free parameter
range on the line ��1 is 1

2 of the full parameter range of ��1, see
Section 1.5.5.3. Therefore, the parameter ranges of �A 	 AA 	 G 	
�� in x, y, 0 can be taken as: 0 � y � x � 1

2 for A 	 AA 	 G and (for
�) 0 � y � x � 1

4.

Table 1.5.5.2. The k-vector types for the space groups Im�3 and Ia�3

Comparison of the k-vector labels and parameters of CDML with the Wyckoff positions of IT A for Fm�3 �T3
h �, isomorphic to the reciprocal-space group �� of m�3I .

The parameter ranges in Fm�3 are obtained by extending those of Fm�3m such that each star of k is represented exactly once. The k-vector types of �Fm�3m��, see
Table 1.5.5.1, are also listed. The sign � means symmetrically equivalent. Lines in parentheses are not special lines but belong to special planes. As in Table
1.5.5.1, the coordinates x, y, z of IT A are related to the k-vector coefficients of CDML by x � 1�2�k2 � k3�, y � 1�2�k1 � k3�, z � 1�2�k1 � k2�.

k-vector label, CDML Wyckoff position, IT A Parameters (see Fig. 1.5.5.2b), IT A

�Fm�3m�� �Fm�3�� Fm�3

� � 4 a m�3. 0, 0, 0

H H 4 b m�3. 1
2 , 0, 0

P P 8 c 23. 1
4 , 1

4 , 1
4

N N 24 d 2�m�� 1
4 , 1

4 , 0

� � 24 e mm2.. x, 0, 0: 0 � x � 1
2

� � 32 f .3. x, x, x: 0 � x � 1
4

F F 32 f .3. 1
2 � x, x, x: 0 � x � 1

4

� F1 � F1 32 f .3. x, x, x: 1
4 � x � 1

2

� 	 F1 � �H2
P � 	 F1 � �H2
P 32 f .3. x, x, x: 0 � x � 1
2 with x �� 1

4

D D 48 g 2.. 1
4 , 1

4 , z: 0 � z � 1
4

� � 48 h m.. x, y, 0 � 0 � x � y � 1
4

G G 48 h m.. x, y, 0 � 0 � y � 1
2 � x � 1

4

A A 48 h m.. x, y, 0 � 0 � y � x � 1
2 � y

AA ��, �, � 48 h m.. x, y, 0 � 0 � 1
2 � x � y � x

A 	 AA 	 � 	 G 48 h m.. x, y, 0 � 0 � y � x � 1
2 	

	 0 � y � x � 1
4

C � GP 96 i 1 x, y, z � 0 � z � x � y � 1
4

B � GP 96 i 1 x, y, z � 0 � z � y � 1
2 � x � 1

4

J � GP 96 i 1 x, y, z � 0 � z � y � x � 1
2 � y

GP � GP 96 i 1 x, y, z � 0 � z � y � x � 1
2 � y

� GP 96 i 1 x, y, z � 0 � z � 1
2 � x � y � x

GP 96 i 1 x, y, z � 0 � z � y � x � 1
2 � y 	

	 x, y, z � 0 � z � 1
2 � x � y � x
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Is it easy to recognize those letters of CDML which belong to the
same Wintgen position? In �I4�mmm��, the lines � and V (V exists
for c�a � 1 only) are parallel, as are � and F, but the lines Y and U
are not (F and U exist for c�a � 1 only). The planes C � x, y, 0 and
D � x, y, 1

2 (D for c�a � 1 only) are parallel but the planes A �
0, y, z and E � x, 1

2 , z are not. Nevertheless, each of these pairs
belongs to one Wintgen position, i.e. describes one type of k vector.

1.5.5.3. Parameter ranges

For the uni-arm description of a Wintgen position it is easy to
check whether the parameter ranges for the general or special
constituents of the representation domain or asymmetric unit have
been stated correctly. For this purpose one may define the field of k
as the parameter space (point, line, plane or space) of a Wintgen
position. For the check, one determines that part of the field of k
which is inside the unit cell. The order of the little co-group ��k (��k

represents those operations which leave the field of k fixed
pointwise) is divided by the order of the stabilizer [which is the
set of all symmetry operations (modulo integer translations) that
leave the field invariant as a whole]. The result gives the
independent fraction of the above-determined volume of the unit
cell or the area of the plane or length of the line.

If the description is not uni-arm, the uni-arm parameter range
will be split into the parameter ranges of the different arms. The
parameter ranges of the different arms are not necessarily equal; see
the second of the following examples.

Examples:
(1) Line � 	 F1: In �Fm�3m�� the line x, x, x has stabilizer �3m and

little co-group ��k � 3m. Therefore, the divisor is 2 and x runs from
0 to 1

2 in 0 � x � 1.
(2) Plane B 	 C 	 J : In �Fm�3m��, the stabilizer of x, x, z is

generated by m.mm and the centring translation t�1
2 , 1

2 , 0� modulo
integer translations �mod Tint�. They generate a group of order 16;
��k is ..m of order 2. The fraction of the plane is 2

16 � 1
8 of the area

21�2a�2, as expressed by the parameter ranges 0 � x � 1
4, 0 � z � 1

2.
There are six arms of the star of x, x, z: x, x, z; �x, x, z; x, y, x; x, y, �x;
x, y, y; x, �y, y. Three of them are represented in the boundary of the
representation domain: B � HNP, C � �NP and J � �HP; see Fig.
1.5.5.1. The areas of their parameter ranges are 1

32 , 1
32 and 1

16,
respectively; the sum is 1

8.
The same result holds for �Fm�3��: the stabilizer is generated by

2�m�� and t�1
2 , 1

2 , 0�mod Tint and is of order 8, ���k� � ��1�� � 1, the
quotient is again 1

8, the parameter range is the same as for �Fm�3m��.
The planes H�1P and N�1P are equivalent to J � �HP and
C � �NP, and do not contribute to the parameter ranges.

(3) Plane x, y, 0: In �Fm�3m�� the stabilizer of plane A is generated
by 4�mmm and t�1

2 , 1
2 , 0�, order 32, ��k (site-symmetry group) m..,

order 2. Consequently, �HN is 1
16 of the unit square

a�2 � 0 � y � x � 1
2 � y. In �Fm�3��, the stabilizer of A 	 AA is

mmm. plus t�1
2 , 1

2 , 0�, order 16, with the same group ��k. Therefore,
�H�1 is 1

8 of the unit square a�2 in �Fm�3�� � 0 � y � x � 1
2.

(4) Line x, x, 0: In �Fm�3m�� the stabilizer is generated by m.mm
and t�1

2 , 1
2 , 0� mod Tint, order 16, ��k is m.2m of order 4. The divisor

is 4 and thus 0 � x � 1
4. In �Fm�3�� the stabilizer is generated by

2�m�� and t�1
2 , 1

2 , 0� mod Tint, order 8, and ��k � m��, order 2; the
divisor is 4 again and 0 � x � 1

4 is restricted to the same range.†
Data for the independent parameter ranges are essential to make

sure that exactly one k vector per orbit is represented in the
representation domain � or in the asymmetric unit. Such data are

Fig. 1.5.5.2. Symmorphic space group F�3m (isomorphic to the reciprocal-
space group �� of m�3I). (a) The asymmetric unit (thick dashed edges)
half imbedded in and half protruding from the Brillouin zone, which is a
cubic rhombdodecahedron (as in Fig. 1.5.5.1). (b) The asymmetric unit
�H�1P, IT A, p. 610. The representation domain of CDML is �HH3P.
Both bodies have �HNP in common; H�1NP is mapped onto �NH3P by
a twofold rotation around NP. The representation domain as the
asymmetric unit would be the better choice because it is congruent to the
asymmetric unit of IT A and is fully imbedded in the Brillouin zone.
Coordinates of the points: � � 0, 0, 0 � �1 � 1

2 , 1
2 , 0; P � 1

4 , 1
4 , 1

4;
H � 1

2 , 0, 0 � H1 � 0, 0, 1
2 � H2 � 1

2 , 1
2 , 1

2 � H3 � 0, 1
2 , 0; N � 1

4 , 1
4 , 0

� N1 � 1
4 , 1

4 , 1
2; the sign � means symmetrically equivalent. Lines:

� � �P � x, x, x � P�1 � x, x, 1
2 � x; F � HP � 1

2 � x, x, x � F1 �
PH2 � x, x, x � F2 � PH1 � x, x, 1

2 � x; � � �H � x, 0, 0 � H�1 �
1
2 , y, 0; D � PN � 1

4 , 1
4 , z. (G � NH � x, 1

2 � x, 0 and � � �N �
x, x, 0 � N�1 � x, x, 0 are not special lines.) Planes: A � �HN �
x, y, 0; AA � �1NH � x, y, 0; B � HNP � x, 1

2 � x, z � PN1H1 �
x, x, z; C � �NP � x, x, z; J � �HP � x, y, y � �PH1 � x, x, z. (The
boundary planes B, C and J are parts of the general position GP.)
Large black circles: special points of the asymmetric unit; small black
circle: special point �1 � �; small open circles: other special points;
dashed lines: edges and special line D of the asymmetric unit. The edge
��1 is not a special line but is part of the boundary plane A 	 AA. For the
parameter ranges see Table 1.5.5.2.

� Boyle & Kennedy (1988) propose general rules for the parameter ranges of k-
vector coefficients referred to a primitive basis. The ranges listed in Tables 1.5.5.1
to 1.5.5.4 possibly do not follow these rules.
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much more difficult to calculate for the representation domains and
cannot be found in the cited tables of irreps.

In the way just described the inner parameter range can be fixed.
In addition, the boundaries of the parameter range must be
determined:

(5) Line x, x, x: In (Fm�3m)* and (Fm�3)* the points 0, 0, 0; 1
2 , 1

2 , 1
2

(and 1
4 , 1

4 , 1
4) are special points; the parameter ranges are open:

0 � x � 1
4 , 1

4 � x � 1
2.

(6) Plane x, x, z: In �Fm�3m�� all corners �, N, N1, H1 and all edges
are either special points or special lines. Therefore, the parameter
ranges are open: x, x, z: 0 � x � 1

4, 0 � z � 1
2, where the lines x, x, x:

0 � x � 1
4 and x, x, 1

2 � x: 0 � x � 1
4 are special lines and thus

excepted.
(7) Plane x, y, 0: In both �Fm�3m�� and �Fm�3��, 0 � x and 0 � y

holds. The k vectors of line x, x, 0 have little co-groups of higher
order and belong to another Wintgen position in the representation
domain (or asymmetric unit) of �Fm�3m��. Therefore, x, y, 0 is open
at its boundary x, x, 0 in the range 0 � x � 1

4. In the asymmetric unit

of �Fm�3�� the line x, x, 0: 0 � x � 1
4 belongs to the plane, in this

range the boundary of plane A is closed. The other range x, x, 0:
1
4 � x � 1

2 is equivalent to the range 0 � x � 1
4 and thus does not

belong to the asymmetric unit; here the boundary of AA is open.

1.5.5.4. Conclusions

As has been shown, IT A can serve as a basis for the classification
of irreps of space groups by using the concept of reciprocal-space
groups:

(a) The asymmetric units of IT A are minimal domains of k space
which are in many cases simpler than the representation domains of
the Brillouin zones. However, the asymmetric units of IT A are not
designed particularly for this use, cf. Section 1.5.4.2. Therefore, it
should be checked whether they are the optimal choice for this
purpose. Otherwise, other asymmetric units could easily be
introduced.

Table 1.5.5.3. The k-vector types for the space groups I4�mmm, I4�mcm, I41�amd and I41�acd

Comparison of the k-vector labels and parameters of CDML with the Wyckoff positions of IT A for I4�mmm �D17
4h�, isomorphic to the reciprocal-space group �� of

4�mmmI. For the asymmetric unit, see Fig. 1.5.5.3. Two ratios of the lattice constants are distinguished for the representation domains of CDML: a � c and a � c,
see Figs. 1.5.5.3(a, b) and (c, d). The sign � means symmetrically equivalent. The parameter ranges for the planes and the general position GP refer to the
asymmetric unit. The coordinates x, y, z of IT A are related to the k-vector coefficients of CDML by x � 1�2��k1 � k2�, y � 1�2�k1 � k2 � 2k3�,
z � 1�2�k1 � k2�.

k-vector labels, CDML Wyckoff position, IT A Parameters (see Fig. 1.5.5.3), IT A

a � c a � c a � c a � c†

� 0, 0, 0 � 0, 0, 0 2 a 4�mmm 0, 0, 0

M � 1
2 , 1

2 , 1
2 M 1

2 , 1
2 , � 1

2 2 b 4�mmm 1
2 , 1

2 , 0 0, 0, 1
2

X 0, 0, 1
2 X 0, 0, 1

2 4 c mmm. 0, 1
2 , 0

P 1
4 , 1

4 , 1
4 P 1

4 , 1
4 , 1

4 4 d �4m2 0, 1
2 , 1

4

N 0, 1
2 , 0 N 0, 1

2 , 0 8 f ..2�m 1
4 , 1

4 , 1
4

� �, �, �� � �, �, �� 4 e 4mm 0, 0, z: 0 � z � z0‡ 0 � z � 1
2

V � 1
2 � �, 1

2 � �, 1
2 � � — 4 e 4mm 1

2 , 1
2 , z � 0 � z � z1 � 1

2 � z0 —

W �,�, 1
2 � � W �,�, 1

2 � � 8 g 2mm. 0, 1
2, z: 0 � z � 1

4

� ��, �, � � ��, �, � 8 h m.2m x, x, 0 � 0 � x � 1
2 0 � x � s1

— F 1
2 � �, 1

2 � �, � 1
2 � � 8 h m.2m — x, x, 1

2 � 0 � x � s � 1
2 � s1

� 0, 0, � � 0, 0, � 8 i m2m. 0, y, 0: 0 � y � 1
2

Y ��,�, 1
2 Y ��,�, 1

2 8 j m2m. x, 1
2 , 0� 0 � x � 1

2 0 � x � r

— U 1
2 , 1

2 , � 1
2 � � 8 j m2m. — 0, y, 1

2� 0 � y � g � 1
2 � r

Q 1
4 � �, 1

4 � �, 1
4 � � Q 1

4 � �, 1
4 � �, 1

4 � � 16 k ..2 x, 1
2 � x, 1

4� 0 � x � 1
4

C ��, �, � C ��, �, � 16 l m.. x, y, 0: 0 � x � y � 1
2§ —

— D 1
2 � �, 1

2 � �, � 1
2 � � 16 l m.. — x, y, 1

2

B �, �, �� B �, �, �� 16 m ..m x, x, z: 0 � x � 1
2, 0 � z � 1

4 	 0 � x � 1
4, z � 1

4

A �, �, � A �, �, � 16 n .m. 0, y, z: 0 � y � 1
2, 0 � z � 1

2¶

E �� �,�� �, 1
2 � � E �� �,�� �, 1

2 � � 16 n .m. x, 1
2, z: transferred to A � 0, y, z

GP �, �, � GP �, �, � 32 o 1 x, y, z: 0 � x � y � 1
2, 0 � z � 1

4 	 0 � x � y � 1
2 � x, z � 1

4

† If the parameter range is different from that for a � c.
‡ z0 is a coordinate of point Z0 etc., see Figs. 1.5.5.3(b), (d).
§ For a � c, the parameter range includes the equivalent of D � MSG.
¶ The parameter range includes A and the equivalent of E.
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Fig. 1.5.5.3. (a), (b). Symmorphic space group I4�mmm (isomorphic to the reciprocal-space group �� of 4�mmmI). Diagrams for a � c, i.e. c� � a�. In
the figures a � 1�25c, i.e. c� � 1�25a�. (a) Representation domain (thick lines) and asymmetric unit (thick dashed lines, partly protruding) imbedded in
the Brillouin zone, which is a tetragonal elongated rhombdodecahedron. (b) Representation domain �MXZ1PZ0 and asymmetric unit �MXTT1P of
I4�mmm, IT A, p. 468. The part �MXTNZ1P is common to both bodies; the part TNPZ0 is equivalent to the part NZ1PT1 by a twofold rotation around
the axis Q � NP. Coordinates of the points: � � 0, 0, 0; X � 0, 1

2 , 0; M � 1
2 , 1

2 , 0; P � 0, 1
2 , 1

4; N � 1
4 , 1

4 , 1
4; T � 0, 0, 1

4 � T1 � 1
2 , 1

2 , 1
4; Z0 � 0, 0, z0 �

Z1 � 1
2 , 1

2 , z1 with z0 � �1� �c�a�2��4; z1 � 1
2 � z0; the sign � means symmetrically equivalent. Lines: � � �Z0 � 0, 0, z; V � Z1M � 1

2 , 1
2 , z;

W � XP � 0, 1
2 , z; � � �M � x, x, 0; � � �X � 0, y, 0; Y � XM � x, 1

2 , 0; Q � PN � x, 1
2 � x, 1

4. The lines Z0Z1, Z1P and PZ0 have no special
symmetry but belong to special planes. Planes: C � �MX � x, y, 0; B � �Z0Z1M � x, x, z; A � �XPZ0 � 0, y, z; E � MXPZ1 � x, 1

2 , z. The plane
Z0Z1P belongs to the general position GP. Large black circles: special points belonging to the representation domain; small open circles: T � T1 and
Z0 � Z1 belonging to special lines; thick lines: edges of the representation domain and special line Q � NP; dashed lines: edges of the asymmetric unit.
For the parameter ranges see Table 1.5.5.3.
(c), (d). Symmorphic space group I4�mmm (isomorphic to the reciprocal-space group �� of 4�mmmI). Diagrams for c � a, i.e. a� � c�. In the
figures c � 1�25a, i.e. a� � 1�25c�. (c) Representation domain (thick lines) and asymmetric unit (dashed lines, partly protruding) imbedded in the
Brillouin zone, which is a tetragonal cuboctahedron. (d) Representation domain �S1RXPMSG and asymmetric unit �M2XTT1P of I4�mmm, IT A, p.
468. The part �S1RXTNP is common to both bodies; the part TNPMSG is equivalent to the part T1NPM2S1R by a twofold rotation around the axis
Q � NP. Coordinates of the points: � � 0, 0, 0; X � 0, 1

2 , 0; N � 1
4 , 1

4 , 1
4; M � 0, 0, 1

2 � M2 � 1
2 , 1

2 , 0; T � 0, 0, 1
4 � T1 � 1

2 , 1
2 , 1

4; P � 0, 1
2 , 1

4; S �
s, s, 1

2 � S1 � s1, s1, 0 with s � �1� �a�c�2��4; s1 � 1
2 � s; R � r, 1

2 , 0 � G � 0, g, 1
2 with r � �a�c�2�2; g � 1

2 � r; the sign � means symmetrically
equivalent. Lines: � � �M � 0, 0, z; W � XP � 0, 1

2 , z; � � �S1 � x, x, 0; F � MS � x, x, 1
2; � � �X � 0, y, 0; Y � XR � x, 1

2 , 0;
U � MG � 0, y, 1

2; Q � PN � x, 1
2 � x, 1

4. The lines GS � S1R, SN � NS1 and GP � PR have no special symmetry but belong to special planes.
Planes: C � �S1RX � x, y, 0; D � MSG � x, y, 1

2; B � �S1SM � x, x, z; A � �XPGM � 0, y, z; E � RXP � x, 1
2 , z. The plane S1RPGS belongs to the

general position GP. Large black circles: special points belonging to the representation domain; small open circles: M2 � M ; the points T � T1, S � S1

and G � R belong to special lines; thick lines: edges of the representation domain and special line Q � NP; dashed lines: edges of the asymmetric unit.
For the parameter ranges see Table 1.5.5.3.
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(b) All k-vector stars giving rise to the same type of irreps belong
to the same Wintgen position. In the tables they are collected in one
box and are designated by the same Wintgen letter.

(c) The Wyckoff positions of IT A, interpreted as Wintgen
positions, provide a complete list of the special k vectors in the
Brillouin zone; the site symmetry of IT A is the little co-group ��k of
k; the multiplicity per primitive unit cell is the number of arms of
the star of k.

(d) The Wintgen positions with 0, 1, 2 or 3 variable parameters
correspond to special k-vector points, k-vector lines, k-vector
planes or to the set of all general k vectors, respectively.

(e) The complete set of types of irreps is obtained by considering
the irreps of one k vector per Wintgen position in the uni-arm
description or one star of k per Wintgen position otherwise. A
complete set of inequivalent irreps of � is obtained from these irreps
by varying the parameters within the asymmetric unit or the
representation domain of ��.

(f) For listing each irrep exactly once, the calculation of the
parameter range of k is often much simpler in the asymmetric unit
of the unit cell than in the representation domain of the Brillouin
zone.

(g) The consideration of the basic domain � in relation to the
representation domain � is unnecessary. It may even be misleading,
because special k-vector subspaces of � frequently belong to more
general types of k vectors in �. Space groups �with non-holohedral
point groups can be referred to their reciprocal-space groups ��
directly without reference to the types of irreps of the corresponding
holosymmetric space group. If � is used, and if the representation
domain � is larger than �, then in most cases the irreps of � can be
obtained from those of � by extending the parameter ranges of k.

(h) The classification by Wintgen letters facilitates the derivation
of the correlation tables for the irreps of a group–subgroup chain.
The necessary splitting rules for Wyckoff (and thus Wintgen)
positions are well known.

In principle, both approaches are equivalent: the traditional one
by Brillouin zone, basic domain and representation domain, and the
crystallographic one by unit cell and asymmetric unit of IT A.
Moreover, it is not difficult to relate one approach to the other, see
the figures and Tables 1.5.5.1 to 1.5.5.4. The conclusions show that
the crystallographic approach for the description of irreps of space
groups has several advantages as compared to the traditional

Table 1.5.5.4. The k-vector types for the space groups Fmm2 and Fdd2

Comparison of the k-vector labels and parameters of CDML with the Wyckoff positions of IT A for Imm2 �C20
2h�, isomorphic to the reciprocal-space group �� of

mm2F. For the asymmetric unit see Fig. 1.5.5.4. Four ratios of the lattice constants are distinguished in CDML, Fig. 3.6 for the representation domains: (a)
a�2 � b�2 � c�2, b�2 � c�2 � a�2 and c�2 � a�2 � b�2 (see Fig. 1.5.5.4a); (b) c�2 � a�2 � b�2 (see Fig. 1.5.5.4b); (c) b�2 � c�2 � a�2 [not displayed because
essentially the same as (d)]; (d) a�2 � b�2 � c�2 (see Fig. 1.5.5.4c). The vertices of the Brillouin zones of Fig. 3.6(a)–(d) with a variable coordinate are not
designated in CDML. In Figs. 1.5.5.4 (a), (b) and (c) they are denoted as follows: the end point of the line � is �0, of line � is �0, of line � is �0, of line A is A0 etc.
The variable coordinate of the end point is �0, 	0, 
0, a0 etc., respectively. The line A0B0 is called ab etc. The plane (111) is called �. It has the equation in the a�,
b�, c� basis �: a�2x� b�2y � c�2z � d�2�4 with d�2 � a�2 � b�2 � c�2. From this equation one calculates the variable coordinates of the vertices of the Brillouin
zone: �0 0, 0,�0 with �0 � d�2�4c�2; Q0

1
2 , 1

2 , q0 with q0 � 1
2 � �0; �0 0, 	0, 0 with 	0 � d�2�4b�2; R0

1
2 , r0, 1

2 with r0 � 1
2 � 	0; �0 
0, 0, 0 with


0 � d�2�4a�2; U0 u0, 1
2 , 1

2 with u0 � 1
2 � 
0; A0 a0, 0, 1

2 with a0 � 1
4 � �b�2 � c�2��4a�2; C0 c0, 1

2 , 0 with c0 � 1
2 � a0; B0 0, b0, 1

2 with
b0 � 1

4 � �a�2 � c�2��4b�2; D0
1
2 , d0, 0 with d0 � 1

2 � b0; G0
1
2 , 0, g0 with g0 � 1

4 � �b�2 � a�2��4c�2; H0 0, 1
2 , h0 with h0 � 1

2 � g0. The coordinates x, y, z
of IT A are related to the k-vector coefficients of CDML by x � 1�2��k1 � k2 � k3�, y � 1�2�k1 � k2 � k3�, z � 1�2�k1 � k2 � k3�. If necessary, a lattice vector
has been added or a twofold screw rotation around the axis 1

4,
1
4, z has been performed in order to shift the range of coordinates to 0 � x, y, z � 1

2. For example,
��, � �, 0 � 0, 0, � z� with 0 � z� � �0 is replaced by 1

2 , 1
2 , 1

2 � z� � 1
2 , 1

2, z with 1
2 � �0 � z � 1

2. (The sign � means symmetrically equivalent.)

Wyckoff position: 2 a mm2. Parameter range in asymmetric unit: 0, 0, z and 1
2,

1
2, z: 0 � z � 1

2 (or 0, 0, z: 0 � z � 1).

k-vector label, CDML

Type of Brillouin zone as in:

Fig. 1.5.5.4(a) Fig. 1.5.5.4(b) Fig. 1.5.5.4(c)

CDML IT A CDML IT A CDML IT A

� 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

Z 1
2,

1
2, 0 0, 0, 1

2
1
2,

1
2, 1 1

2,
1
2, 0 1

2,
1
2, 0 0, 0, 1

2

� �, �, 0 0, 0, z: 0 � z � 1
2 �, �, 0 0, 0, z: 0 � z � �0 �, �, 0 0, 0, z: 0 � z � 1

2

LE ��, ��, 0 1
2,

1
2, z: 0 � z � 1

2 ��, ��, 0 1
2,

1
2, z: 1

2 � �0 � z � 1
2 ��, ��, 0 1

2,
1
2, z: 0 � z � 1

2

Q 1
2 � �, 1

2 � �, 1 1
2,

1
2, z: 0 � z � q0

QA 1
2 � �, 1

2 � �, 1 0, 0, z: 1
2 � q0 � z � 1

2

Wyckoff position: 2 b mm2. Parameter range in asymmetric unit: 1
2, 0, z and 0, 1

2, z: 0 � z � 1
2 (or uni-arm 1

2, 0, z: 0 � z � 1).

k-vector label, CDML

Type of Brillouin zone as in:

Fig. 1.5.5.4(a) Fig. 1.5.5.4(b) Fig. 1.5.5.4(c)

CDML IT A CDML IT A CDML IT A

T 0, 1
2,

1
2

1
2, 0, 0 0, 1

2,
1
2

1
2, 0, 0 1, 1

2,
1
2 0, 1

2,
1
2

Y 1
2, 0, 1

2 0, 1
2, 0 1

2, 0, 1
2 0, 1

2, 0 1
2, 0, 1

2 0, 1
2, 0

G �, 1
2 � �, 1

2
1
2, 0, z: 0 � z � g0 �, 1

2 � �, 1
2

1
2, 0, z: 0 � z � g0

GA ��, 1
2 � �, 1

2 0, 1
2, z: 1

2 � g0 � z � 1
2 ��, 1

2 � �, 1
2 0, 1

2, z: 1
2 � g0 � z � 1

2

H 1
2 � �, �, 1

2 0, 1
2, z: 0 � z � h0

1
2 � �, �, 1

2 0, 1
2, z: 0 � z � h0

1
2 � �, �, 1

2 0, 1
2, z: 0 � z � 1

2

HA 1
2 � �, ��, 1

2
1
2, 0, z: 1

2 � h0 � z � 1
2

1
2 � �, ��, 1

2
1
2, 0, z: 1

2 � h0 � z � 1
2

1
2 � �, ��, 1

2
1
2, 0, z: 0 � z � 1

2
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approach. Owing to these advantages, CDML have already
accepted the crystallographic approach for triclinic and monoclinic
space groups. However, the advantages are not restricted to such
low symmetries. In particular, the simple boundary conditions and
shapes of the asymmetric units result in simple equations for the
boundaries and shapes of volume elements, and facilitate numerical
calculations, integrations etc. If there are special reasons to prefer k
vectors inside or on the boundary of the Brillouin zone to those

outside, then the advantages and disadvantages of both approaches
have to be compared again in order to find the optimal method for
the solution of the problem.

The crystallographic approach may be realized in three different
ways:

(1) In the uni-arm description one lists each k-vector star exactly
once by indicating the parameter field of the representing k vector.
Advantages are the transparency of the presentation and the

Wyckoff position: 4 c .m. Parameter range in asymmetric unit: x, 0, z and x, 1
2 , z: 0 � x � 1

2 ; 0 � z � 1
2 (or x, 0, z: 0 � x � 1

2; 0 � z � 1).

k-vector
label,
CDML

Type of Brillouin zone as in:

Fig. 1.5.5.4(a) Fig. 1.5.5.4(b) Fig. 1.5.5.4(c)

CDML IT A CDML IT A CDML IT A

� 0, �, � x, 0, 0: 0 � x � 1
2 0, �, � x, 0, 0: 0 � x � 1

2 0, �, � x, 0, 0: 0 � x � 
0

U 1, 1
2 � �, 1

2 � � x, 0, 0:
1
2 � u0 � x � 1

2

A 1
2,

1
2 � �, � x, 0, 1

2; 0 � x � a0
1
2,

1
2 � �, � x, 0, 1

2: 0 � x � a0

C 1
2, �, 1

2 � � x, 0, 1
2:

1
2 � c0 � x � 1

2
1
2, �, 1

2 � � x, 0, 1
2: 0 � x � 1

2
1
2, �, 1

2 � � x, 0, 1
2:

1
2 � c0 � x � 1

2

J �, �� �, � x, 0, z: 0 � x � 1
2;

0 � z � 1
2, ga†

�, �� �, � x, 0, z:
0 � x � 1

2;
0 � z � �g

�, �� �, � x, 0, z: 0 � z � 1
2;

0 � x � 
a

JA ��, ��� �, � x, 1
2, z: 0 � x � 1

2;
0, ch � z � 1

2

��, ��� �, � x, 1
2, z: 0 � x � 1

2;
qh � z � 1

2

��, ��� �, � x, 1
2, z: 0 � z � 1

2;
cu � x � 1

2

K 1
2 � �, �� �, 1

2 � � x, 1
2, z: 0 � x � c0;
0 � z � ch

1
2 � �, �� �, 1

2 � � x, 1
2, z: 0 � x � 1

2;
0 � z � qh

1
2 � �, �� �,

1
2 � �

x, 1
2, z: 0 � z � 1

2;
0 � x � cu

KA 1
2 � �, ��� �, 1

2 � � x, 0, z:
a0 � 1

2 � c0 � x � 1
2;

ga � z � 1
2

1
2 � �, ��� �, 1

2 � � x, 0, z:
0 � x � 1

2;
g� � z � 1

2

1
2 � �, ��� �,

1
2 � �

x, 0, z: 0 � z � 1
2;

a
 � x � 1
2

† 0 � z � 1
2, ga means 0 � z � minimum �12 and ga� where ga is the line G0A0.

Wyckoff position: 4 d m.. . Parameter range in asymmetric unit: 0, y, z and 1
2, y, z: 0 � y � 1

2; 0 � z � 1
2 (or uni-arm 0, y, z: 0 � y � 1

2; 0 � z � 1).

k-vector
label,
CDML

Type of Brillouin zone as in:

Fig. 1.5.5.4(a) Fig. 1.5.5.4(b) Fig. 1.5.5.4(c)

CDML IT A CDML IT A CDML IT A

� �, 0, � 0, y, 0: 0 � y � 1
2 �, 0, � 0, y, 0: 0 � y � 1

2 �, 0, � 0, y, 0: 0 � y � 1
2

B 1
2 � �, 1

2, � 0, y, 1
2� 0 � y � b0

1
2 � �, 1

2, � 0, y, 1
2: 0 � y � 1

2

D �, 1
2,

1
2 � � 0, y, 1

2:
b0 � 1

2 � d0 � y � 1
2

�, 1
2,

1
2 � � 1

2, y, 0: 0 � y � 1
2

E �� �, �, � 0, y, z: 0 � y � 1
2;

0 � z � 1
2, hb

�� �, �, � 0, y, z:
0 � y � 1

2;
0 � z � h�

�� �, �, � 0, y, z: 0 � y, z � 1
2

EA ��� �, ��, � 1
2, y, z: 0 � y � 1

2;
gd, 0 � z � 1

2

��� �, ��, � 1
2, y, z: 0 � y � 1

2;
qg � z � 1

2

��� �, ��, � 1
2, y, z: 0 � y, z � 1

2

F �� �, 1
2 � �, 1

2 � � 1
2, y, z: 0 � y � d0;

0 � z � dg
�� �, 1

2 � �, 1
2 � � 1

2, y, z: 0 � y � 1
2;

0 � z � qg

FA ��� �, 1
2 � �, 1

2 � � 0, y, z:
b0 � 1

2 � d0 � y � 1
2;

hb � z � 1
2

��� �, 1
2 � �, 1

2 � � 0, y, z:
0 � y � 1

2;
h� � z � 1

2

Wyckoff position: (general position) 8 e 1 x, y, z. Parameter range in asymmetric unit: 0 � x, y � 1
2; 0 � z � 1

2.

k-vector label, CDML

Type of Brillouin zone as in:

Fig. 1.5.5.4(a) Fig. 1.5.5.4(b) Fig. 1.5.5.4(c)

CDML IT A CDML IT A CDML IT A

GP �, �, � x, y, z �, �, � x, y, z �, �, � x, y, z

Table 1.5.5.4. The k-vector types for the space groups Fmm2 and Fdd2 (cont.)
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relatively small effort required to derive the list. A disadvantage
may be that there are protruding flagpoles or wings. Points of these
lines or planes are no longer neighbours of inner points (an inner
point has a full three-dimensional sphere of neighbours which
belong to the asymmetric unit).

(2) In the compact description one lists each k vector exactly
once such that each point of the asymmetric unit is either an inner
point itself or has inner points as neighbours. Such a description
may not be uni-arm for some Wintgen positions, and the
determination of the parameter ranges may become less straightfor-
ward. Under this approach, all points fulfil the conditions for the
asymmetric units of IT A, which are always closed. The boundary
conditions of IT A have to be modified: in reality the boundary is not
closed everywhere; there are frequently open parts (see Section
1.5.5.3).

(3) In the non-unique description one gives up the condition that
each k vector is listed exactly once. The uni-arm and the compact
descriptions are combined but the equivalence relations (�) are
stated explicitly for those k vectors which occur in more than one
entry. Such tables are most informative and not too complicated for
practical applications.
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Appendix 1.5.1.

Reciprocal-space groups ��
This table is based on Table 1 of Wintgen (1941).
In order to obtain the Hermann–Mauguin symbol of �� from that

of �, one replaces any screw rotations by rotations and any glide
reflections by reflections. The result is the symmorphic space group
�0 assigned to �. For most space groups �, the reciprocal-space
group �� is isomorphic to �0, i.e. �� and � belong to the same
arithmetic crystal class. In the following cases the arithmetic crystal
classes of � and �� are different, i.e. �� can not be obtained in this
simple way:

(1) If the lattice symbol of � is F or I, it has to be replaced by I or
F. The tetragonal space groups form an exception to this rule; for
these the symbol I persists.

(2) The other exceptions are listed in the following table (for the
symbols of the arithmetic crystal classes see IT A, Section 8.2.2):

Arithmetic crystal class of � Reciprocal-space group ��
�4m2I I�42m
�42mI I�4m2

321P P312

312P P321

3m1P P31m

31mP P3m1
�31mP P�3m1
�3m1P P�31m
�6m2P P�62m
�62mP P�6m2
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