International
Tables for
Crystallography
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2006). Vol. B. ch. 2.1, pp. 200-203   | 1 | 2 |

Section 2.1.7.3. Application to centric and acentric distributions

U. Shmuelia* and A. J. C. Wilsonb

a School of Chemistry, Tel Aviv University, Tel Aviv 69 978, Israel, and bSt John's College, Cambridge, England
Correspondence e-mail:  ushmueli@post.tau.ac.il

2.1.7.3. Application to centric and acentric distributions

| top | pdf |

We shall summarize here the non-ideal centric and acentric distributions of the magnitude of the normalized structure factor E (e.g. Shmueli & Wilson, 1981[link]; Shmueli, 1982[link]). We assume that (i) all the atoms are located in general positions and have rationally independent coordinates, (ii) all the scatterers are dispersionless, and (iii) there is no noncrystallographic symmetry. Arbitrary atomic composition and space-group symmetry are admitted. The appropriate weight functions and the corresonding orthogonal polynomials are [\matrix {& & \hbox{Non-ideal} \cr p^{(0)}(|E|) & f_k(x) & \hbox{distribution} \cr\noalign{\hrule}\cr & & \cr (2/\pi)^{1/2}\exp(-|E|^2/2) & He_{2k}(|E|)/[(2k)!]^{1/2} & \hbox{Centric} \cr & & \cr 2|E|\exp(-|E|^2) & L_k(|E|^2) & \hbox{Acentric} \cr\noalign{\hrule} \cr} \eqno(2.1.7.4)] where [He_{k}] and [L_{k}] are Hermite and Laguerre polynomials, respectively, as defined, for example, by Abramowitz & Stegun (1972[link]). Equations (2.1.7.2)[link], (2.1.7.3)[link] and (2.1.7.4)[link] suffice for the general formulation of the above non-ideal p.d.f.'s of [|E|]. Their full derivation entails (i) the expression of a sufficient number of moments of [|E|] in terms of absolute moments of the trigonometric structure factor (e.g. Shmueli & Wilson, 1981[link]; Shmueli, 1982[link]) and (ii) calculation of the latter moments for the various symmetries (Wilson, 1978b[link]; Shmueli & Kaldor, 1981[link], 1983[link]). The notation below is similar to that employed by Shmueli (1982[link]).

These non-ideal p.d.f.'s of [|E|], for which the first five expansion terms are available, are given by [p_{c}(|E|) = p_{c}^{(0)}(|E|)\left[1+\sum_{k = 2}^{\infty}{{A_{2k}}\over{(2k)!}} He_{2k}(|E|)\right] \eqno(2.1.7.5)] and [p_{a}(|E|) = p_{a}^{(0)}(|E|)\left[1+\sum_{k = 2}^{\infty}{{(-1)^{k}B_{2k}}\over{k!}} L_{k}(|E|^{2})\right] \eqno(2.1.7.6)] for centrosymmetric and noncentrosymmetric space groups, respectively, where [p_{c}^{(0)}(|E|)] and [p_{a}^{(0)}(|E|)] are the ideal centric and acentric p.d.f.'s [see (2.1.7.4)[link]] and the unified form of the coefficients [A_{2k}] and [B_{2k}], for [k =] 2, 3, 4 and 5, is [\eqalign{&A_{4}\cr &A_{6}\cr &A_{8}\cr &A_{10}\cr &\cr}\eqalign{&\hbox{ or } \cr &\hbox{ or } \cr &\hbox{ or } \cr &\hbox{ or }\cr &\cr}\eqalign{B_{4} & = a_{4}Q_{4} \cr B_{6} & = a_{6}Q_{6} \cr B_{8} & = a_{8}Q_{8} + U(a_{4}^{2}Q_{4}^{2}-\gamma_{4}^{2})\cr B_{10} & = a_{10}Q_{10} + V(a_{4}a_{6}Q_{4}Q_{6}-\gamma_{4}\gamma_{6}Q_{10})\cr &\quad{}+ W\gamma_{4}^{2}Q_{10} }\eqno(2.1.7.7)] (Shmueli, 1982[link]), where U = 35 or 18, V = 210 or 100 and W = 3150 or 900 according as [A_{2k}] or [B_{2k}] is required, respectively, and the other quantities in equation (2.1.7.7)[link] are given below. The composition-dependent terms in equations (2.1.7.7)[link] are [Q_{2k} = {{\sum_{j = 1}^{m}f_{j}^{2k}}\over{\left(\sum_{n = 1}^{m}f_{n}^{2}\right)^{k}}}, \eqno(2.1.7.8)] where m is the number of atoms in the asymmetric unit, [f_{j},\; j = 1,\ldots,m] are their scattering factors, and the symmetry dependence is expressed by the coefficients [a_{2k}] in equation (2.1.7.7)[link], as follows: [{a_{2k} = (-1)^{k-1}(k-1)!\alpha_{k0} +\textstyle\sum\limits_{p = 2}^{k}(-1)^{k-p}(k-p)!\alpha_{kp} \gamma_{2p},} \eqno(2.1.7.9)] where [\alpha_{kp} = \left(\matrix{ k \cr p } \right) {{(2k-1)!!}\over{(2p-1)!!}} \quad{\rm or}\quad\left(\matrix{ k \cr p } \right) {{k!}\over{p!}} \eqno(2.1.7.10)] according as the space group is centrosymmetric or noncentrosymmetric, respectively, and [\gamma_{2p}] in equation (2.1.7.9)[link] is given by [\gamma_{2p} = {{\langle |T|^{2p} \rangle}\over{\langle |T|^{2} \rangle^{p}}}, \eqno(2.1.7.11)] where [\langle |T|^{k} \rangle] is the kth absolute moment of the trigonometric structure factor [T({\bf h}) = \textstyle\sum\limits_{s = 1}^{g}\exp[2\pi i{\bf h}^{T}({\bf P}_{s}{\bf r}+{\bf t}_{s})] \equiv \xi({\bf h})+i\eta({\bf h}). \eqno(2.1.7.12)] In equation (2.1.7.12)[link], g is the number of general equivalent positions listed in IT A (2005)[link] for the space group in question, times the multiplicity of the Bravais lattice, [({\bf P}_{s},{\bf t}_{s})] is the sth space-group operator and [{\bf r}] is an atomic position vector.

The cumulative distribution functions, obtained by integrating equations (2.1.7.5)[link] and (2.1.7.6)[link], are given by [\eqalignno{N_{c}(|E|)& = {\rm erf}\left({{|E|}\over{\sqrt{2}}}\right)-{{2}\over{\sqrt{\pi}}} \exp\left(-{{|E|^{2}}\over{2}}\right) \cr &\quad\times \left[\sum_{k = 2}^{\infty}{{A_{2k}}\over{(2k)!}} He_{2k-1}(|E|)\right] &(2.1.7.13)}] and [\eqalignno{N_{a}(|E|) & = 1 - \exp(-|E|^{2}) + \exp(-|E|^{2}) \cr &\quad\times \left\{\sum_{k = 2}^{\infty}{{(-1)^{k}B_{2k}}\over{k!}}[L_{k-1}(|E|^{2}) - L_{k}(|E|^2)]\right\}\cr &&(2.1.7.14)}] for centrosymmetric and noncentrosymmetric space groups, respectively, where the coefficients are defined in equations (2.1.7.7)[link]–(2.1.7.12)[link] [link] [link] [link] [link]. Note that the first term on the right-hand side of equation (2.1.7.13)[link] and the first two terms on the right-hand side of equation (2.1.7.14)[link] are just the cumulative distributions derived from the ideal centric and acentric p.d.f.'s in Section 2.1.5.6[link].

The moments [\langle |T|^{2k} \rangle] were compiled for all the space groups by Wilson (1978b[link]) for [k =] 1 and 2, and by Shmueli & Kaldor (1981[link], 1983[link]) for [k =] 1, 2, 3 and 4. These results are presented in Table 2.1.7.1[link]. Closed expressions for the normalized moments [\gamma_{2p}] were obtained by Shmueli (1982[link]) for the triclinic, monoclinic and orthorhombic space groups except [Fdd2] and [Fddd] (see Table 2.1.7.2[link]). The composition-dependent terms, [Q_{2k}], are most conveniently computed as weighted averages over the ranges of [(\sin\theta)/\lambda] which were used in the construction of the Wilson plot for the computation of the [|E|] values.

Table 2.1.7.1| top | pdf |
Some even absolute moments of the trigonometric structure factor

The symbols p, q, r and s denote the second, fourth, sixth and eighth absolute moments of the trigonometric structure factor T [equation (2.1.7.12)[link]], respectively, and the columns of the table contain (for some conciseness) [p, q, r/p] and [s/p^{2}]. The numbers in parentheses, appearing beside some space-group entries, refer to hkl subsets which are defined in the note at the end of the table. These subset references are identical with those given by Shmueli & Kaldor (1981[link], 1983[link]). The symbols q, r and s are also equivalent to [\gamma_{4}P^{2}], [\gamma_{6}P^{3}] and [\gamma_{8}P^{4}], respectively, where [\gamma_{2n}] are the normalized absolute moments given by equation (2.1.7.11)[link].

Space groups(s)pq[r/p][s/p^{2}]
Point group: 1    
P11111
Point group: [\bar{\bf 1}]    
[P\bar{1}]261017½
Point groups: 2, m    
All P261017½
All C448160560
Point group: [{\bf 2/}{\bi m}]    
All P436100306¼
All C828816009800
Point group: 222    
All P42864169¾
All C and I822410245432
F22216179216384173824
Point group: mm2    
All P436100306¼
All A, C and I828816009800
Fmm216230425600313600
Fdd2 (1)16230425600313600
Fdd2 (2)161280716843264
Point group: mmm    
All P821610005359[3\over8]
All C and I16172816000171500
Fmmm32138242560005488000
Fddd (1)32138242560005488000
Fddd (2)32768071680757120
Point group: 4    
[P4, P4_{2}]436100306¼
[P4_{1}] (3)436100306¼
[P4_{1}] (4)4202842¼
[I4]828816009800
[I4_{1}] (5)828816009800
[I4_{1}] (6)81604481352
Point group: [\bar{\bf 4}]    
[P\bar{4}]42864169¾
[I\bar{4}]822410245432
Point group: [{\bf 4}/{\bi m}]    
All P821610005359[3\over8]
[I4/m]16172816000171500
[I4_{1}/a] (7)16172816000171500
[I4_{1}/a] (8)16960448023660
Point group: 422    
[P422], [P42_{1}2], [P4_{2}22], [P4_{2}2_{1}2]81364241682[1\over8];
[P4_{1}22], [P4_{1}2_{1}2] (3)81364241682[1\over8]
[P4_{1}22], [P4_{1}2_{1}2] (4)8104208470[1\over8]
I422161088678453828
[I4_{1}22] (7)161088678453828
[I4_{1}22] (8)16832332815044
Point group: 4mm    
All P81686402970[5\over8]
I4mm, I4cm1613441024095060
[I4_{1}md, I4_{1}cd] (7)1613441024095060
[I4_{1}md, I4_{1}cd] (8)16832332815188
Point groups: [\bar{\bf 4}{\bf 2}{\bi m},\bar{\bf 4}{\bi m}{\bf 2}]    
All P81364241682[1\over8]
[I\bar{4}m2, I\bar{4}2m, I\bar{4}c2]161088678453828
[I\bar{4}2d] (5)161088678453828
[I\bar{4}2d] (6)16832332815044
Point group: 4/mmm    
All P161008640051985[15\over16]
[I4/mmm], [I4/mcm]3280641024001663550
[I4_{1}/amd, I4_{1}/acd] (5)3280641024001663550
[I4_{1}/amd, I4_{1}/acd] (6)32499233280265790
Point group: 3    
All P and R3153171
Point group: [\bar{\bf 3}]    
All P and R6903101242½
Point group: 32    
All P and R666166508½
Point group: 3m    
P3m1, P31m, R3m666178604½
P3c1, P31c, (3); R3c (1)666178604½
P3c1, P31c, (4); R3c (2)666154412½
Point group: [\bar{\bf 3}{\bi m}]    
[P\bar{3}1m, P\bar{3}m1, R\bar{3}m]12396178010578¾
[P\bar{3}1c, P\bar{3}c1] (3);12396178010578¾
[R\bar{3}c] (1)    
[P\bar{3}1c, P\bar{3}c1] (4);1239615407218¾
[R\bar{3}c] (2)    
Point group: 6    
P66903401522½
[P6_{1}] (9)6903401522½
[P6_{1}] (10)65491161½
[P6_{1}] (11)65497193½
[P6_{1}] (12)690280962½
[P6_{2}] (13)6903401522½
[P6_{2}] (14)65497193½
[P6_{3}] (3)6903401522½
[P6_{3}] (4)690280962½
Point group: [\bar{\bf 6}]    
[P\bar{6}]6903101242½
Point group: [{\bf 6/{\bi m}}]    
[P6/m]12540340026643¾
[P6_{3}/m] (3)12540340026643¾
[P6_{3}/m] (4)12540280016843¾
Point group: 622    
P6221232411505506¼
[P6_{1}22] (9)1232411505506¼
[P6_{1}22] (10)122525771537¾
[P6_{1}22] (11)122525831601¾
[P6_{1}22] (12)1232410904746¼
[P6_{2}22] (13)1232411505506¼
[P6_{2}22] (14)122525831601¾
[P6_{3}22] (3)1232411505506¼
[P6_{3}22] (4)1232410904746¼
Point group: 6mm    
P6mm12396193012818¾
P6cc (3)12396193012818¾
P6cc (4)1239614506098¾
[P6_{3}cm, P6_{3}mc] (3)12396193012818¾
[P6_{3}cm, P6_{3}mc] (4)1239616308338¾
Point groups: [\bar{\bf 6}{\bi m}{\bf 2}, \bar{\bf 6}{\bf 2}{\bi m}]    
[P\bar{6}m2, P\bar{6}2m]12396178010578¾
[P\bar{6}c2, P\bar{6}2c] (3)12396178010578¾
[P\bar{6}c2, P\bar{6}2c] (4)1239615407218¾
Point group: 6/mmm    
P6/mmm24237619300224328[1\over8]
P6/mcc (3)24237619300224328[1\over8]
P6/mcc (4)24237614500106728[1\over8]
P6/mcm, P6/mmc (3)24237619300224328[1\over8]
[P6/mcm], [P6/mmc] (4)24237616300145928[1\over8]
Point group: 23    
P23, [P2_{1}3]122767602695¼
I23, [I2_{1}3]2422081216086248
F2348176641945602759936
Point group: [{\bi m}\bar{\bf 3}]    
[Pm\bar{3}, Pn\bar{3}, Pa3]241800940067703[1\over8]
[Im\bar{3}, Ia\bar{3}]48144001504002166500
[Fm\bar{3}]96115200240640069328000
[Fd\bar{3}] (1)96115200240640069328000
[Fd\bar{3}] (2)9696768148480028183680
Point group: 432    
[P432, P4_{2}32]241272464825216[7\over8]
[P4_{1}32] (15)241272464825216[7\over8]
[P4_{1}32] (16)241176356813916[7\over8]
[P4_{1}32] (17)24108027768664[7\over8]
[P4_{1}32] (18)2498422726580[7\over8]
I432481017674368806940
[I4_{1}32] (15)481017674368806940
[I4_{1}32] (17)48864044416277276
F4329681408118988825822080
[F4_{1}32] (15)9681408118988825822080
[F4_{1}32] (18)96629765816326738816
Point group: [\bar{\bf 4}{\bf 3}{\bi m}]    
[P\bar{4}3m]241272512832896[7\over8]
[P\bar{4}3n] (1)241272512832896[7\over8]
[P\bar{4}3n] (2)241272416817536[7\over8]
[I\bar{4}3m]4810176820481052700
[I\bar{4}3d] (15); (20)4810176820481052700
[I\bar{4}3d] (15); (21)481017666688561180
[I\bar{4}3d] (17)48864044416277276
[F\bar{4}3m]9681408131276833686400
[F\bar{4}3c] (15)9681408131276833686400
[F\bar{4}3c] (18)9681408106700817957760
Point group: [{\bi m}\bar{\bf 3}{\bi m}]    
[Pm\bar{3}m, Pn\bar{3}m]48878472160972717[13\over16]
[Pn\bar{3}n, Pm\bar{3}n] (1)48878472160972717[13\over16]
[Pn\bar{3}n, Pm\bar{3}n] (2)48878456800488877[13\over16]
[Im\bar{3}m]9670272115456031126970
[Ia\bar{3}d] (15); (20)9670272115456031126970
[Ia\bar{3}d] (15); (21)96518404326404497850
[Ia\bar{3}d] (17)967027290880015644090
[Fm\bar{3}m]19256217618472960996063040
[Fm\bar{3}c] (1)19256217618472960996063040
[Fm\bar{3}c] (2)19256217614540800500610880
[Fd\bar{3}m] (1)19256217618472960996063040
[Fd\bar{3}m] (2)1924147207782400205432640
[Fd\bar{3}c] (1)19256217618472960996063040
[Fd\bar{3}c] (2)1924147206799360136619840

Note. hkl subsets: (1) [h + k + l = 2n]; (2) [h + k + l = 2n + 1]; (3) [l = 2n]; (4) [l = 2n + 1]; (5) [2h + l = 2n]; (6) [2h + l = 2n + 1]; (7) [2k + l = 2n]; (8) [2k + l = 2n + 1]; (9) [l = 6n]; (10) [l = 6n + 1, 6n + 5]; (11) [l = 6n + 2, 6n + 4]; (12) [l = 6n + 3]; (13) [l = 3n]; (14) [l = 3n + 1, 3n + 2]; (15) hkl all even; (16) only one index odd; (17) only one index even; (18) hkl all odd; (19) two indices odd; (20) [h + k + l = 4n]; (21) [h + k + l = 4n + 2].
And the enantiomorphous space group.

Table 2.1.7.2| top | pdf |
Closed expressions for [\gamma_{2k}] [equation (2.1.7.11)[link]] for space groups of low symmetry

The normalized moments [\gamma_{2k}] are expressed in terms of [M_{k}], where [M_{k} = {(2k)! \over 2^{k}(k!)^{2}} = {(2k - 1)!! \over k!},] and [l'], which takes on the values 1, 2 or 4 according as the Bravais lattice is of type P, one of the types A, B, C or I, or type F, respectively. The expressions for [\gamma_{2k}] are identical for all the space groups based on a given point group, except Fdd2 and Fddd. The expressions are valid for general reflections and under the restrictions given in the text.

Point group(s)Expression for [\gamma_{2k}]
11
[\bar{1}, 2, m][l'^{k - 1} M_{k}]
[2/m, mm2][l'^{k - 1} M_{k}^{2}]
mmm[l'^{k - 1} M_{k}^{3}]
222[{l'^{k - 1} \over 2^{k} (k!)^{2}} \sum\limits_{p=0}^{k} (M_{p}M_{k - p})^{3}[p! (k - p)!]^{2}]

References

First citation International Tables for Crystallography (2005). Vol. A. Space-group symmetry, edited by Th. Hahn. Heidelberg: Springer.Google Scholar
First citation Abramowitz, M. & Stegun, I. A. (1972). Handbook of mathematical functions. New York: Dover.Google Scholar
First citation Shmueli, U. (1982). A study of generalized intensity statistics: extension of the theory and practical examples. Acta Cryst. A38, 362–371.Google Scholar
First citation Shmueli, U. & Kaldor, U. (1981). Calculation of even moments of the trigonometric structure factor. Methods and results. Acta Cryst. A37, 76–80.Google Scholar
First citation Shmueli, U. & Kaldor, U. (1983). Moments of the trigonometric structure factor. Acta Cryst. A39, 615–621.Google Scholar
First citation Shmueli, U. & Wilson, A. J. C. (1981). Effects of space-group symmetry and atomic heterogeneity on intensity statistics. Acta Cryst. A37, 342–353.Google Scholar
First citation Wilson, A. J. C. (1978b). Variance of X-ray intensities: effect of dispersion and higher symmetries. Acta Cryst. A34, 986–994.Google Scholar








































to end of page
to top of page