
Surprisingly, this theorem has a very wide applicability and
values of n as low as 30 are often large enough for the theorem to be
useful. Situations in which the normal p.d.f. must be modified or
replaced by an altogether different one are dealt with in Sections
2.1.7 and 2.1.8 of this chapter.

2.1.4.4. Conditions of validity

The above outline of a proof of the central-limit theorem
depended on the existence of moments of all orders. The
components of structure factors always possess finite moments of
all orders, but the existence of moments beyond the second is not
necessary for the validity of the theorem and it can be proved under
much less stringent conditions. In fact, if all the random variables in
equation (2.1.4.19) have the same distribution – as in a homoatomic
structure – the only requirement is that the second moments of the
distributions should exist [the Lindeberg–Lévy theorem (e.g.
Cramér, 1951)]. If the distributions are not the same – as in a
heteroatomic structure – some further condition is necessary to
ensure that no individual random variable dominates the sum. The
Liapounoff proof requires the existence of third absolute moments,
but this is regarded as aesthetically displeasing; a theorem that
ultimately involves only means and variances should require only
means and variances in the proof. The Lindeberg–Cramér
conditions meet this aesthetic criterion. Roughly, the conditions
are that S2, the variance of the sum, should tend to infinity and
�2

j �S2, where �2
j is the variance of the jth random variable, should

tend to zero for all j as n tends to infinity. The precise formulation is
quoted by Kendall & Stuart (1977, p. 207).

2.1.4.5. Non-independent variables

The central-limit theorem, under certain conditions, remains
valid even when the variables summed in equation (2.1.4.19) are not
independent. The conditions have been investigated by Bernstein
(1922, 1927); roughly they amount to requiring that the variables
should not be too closely correlated. The theorem applies, in
particular, when each xr is related to a finite number, f �n�, of its
neighbours, when the x’s are said to be f �n� dependent. The f �n�
dependence seems plausible for crystallographic applications, since
the positions of atoms close together in a structure are closely
correlated by interatomic forces, whereas those far apart will show
little correlation if there is any flexibility in the asymmetric unit
when unconstrained. Harker’s (1953) idea of ‘globs’ seems
equivalent to f �n� dependence. Long-range stereochemical effects,
as in pseudo-graphitic aromatic hydrocarbons, would presumably
produce long-range correlations and make f �n� dependence less
plausible. If Bernstein’s conditions are satisfied, the central-limit
theorem would apply, but the actual value of �x2� � �x�2 would
have to be used for the variance, instead of the sum of the variances
of the random variables in (2.1.4.19). Because of the correlations
the two values are no longer equal.

French & Wilson (1978) seem to have been the first to appeal
explicitly to the central-limit theorem extended to non-independent
variables, but many previous workers [for typical references, see
Wilson (1981)] tacitly made the replacement – in the X-ray case
substituting the local mean intensity for the sum of the squares of
the atomic scattering factors.

2.1.5. Ideal probability density distributions

In applications of the central-limit theorem, and its extensions, to
intensity statistics the xj’s of equation (2.1.4.19) have the form
(atomic scattering factor of the jth atom) times (a trigonometric
expression characteristic of the space group and Wyckoff position;
also known as the trigonometric structure factor). These trigono-

metric expressions for all the space groups, and general Wyckoff
positions, are given in Tables A1.4.3.1 through A1.4.3.7, and their
first few even moments (fixed-index averaging) are given in Table
2.1.7.1. One cannot, of course, conclude that the magnitudes of the
structure factor always have a normal distribution – even if the
structure is homoatomic; one must look at each problem and see
what components of the structure factor can be put in the form
(2.1.4.19), deduce the m and �2 to be used for each, and combine the
components to obtain the asymptotic (large N, not large x)
expression for the problem in question. Ordinarily the components
are the real and the imaginary parts of the structure factor; the
structure factor is purely real only if the structure is centrosym-
metric, the space-group origin is chosen at a crystallographic centre
and the atoms are non-dispersive.

2.1.5.1. Ideal acentric distributions

The ideal acentric distributions are obtained by applying the
central-limit theorem to the real and the imaginary parts of the
structure factor, as given by equation (2.1.1.1). Consider first a
crystal with no rotational symmetry (space group P1). The real part,
A, of the structure factor is then given by

A ��N

j�1
fj cos�j, �2�1�5�1�

where N is the number of atoms in the unit cell and �j is the phase
angle of the jth atom. The central-limit theorem then states that A
tends to be normally distributed about its mean value with variance
equal to its mean-square deviation from its mean. Under the
assumption that the phase angles �j are uniformly distributed on the
0–2� range, the mean value of each cosine is zero, so that its
variance is

�2 ��N

j�1
f 2
j �cos2 �j�� �2�1�5�2�

Under the same assumption, the mean value of each cos2 � is one-
half, so that the variance becomes

�2 � �1�2��
N

j�1
f 2
j � �1�2��, �2�1�5�3�

where � is the sum of the squares of the atomic scattering factors
[cf. equation (2.1.2.4)]. The asymptotic form of the distribution of A
is therefore given by

p�A� dA � �����1�2 exp��A2��� dA� �2�1�5�4�
A similar calculation, with sines instead of cosines, gives an
analogous distribution for the imaginary part B, so that the joint
probability of the real and imaginary parts of F is

p�A, B� dA dB � �����1 exp���A2 � B2���	 dA dB� �2�1�5�5�
Ordinarily, however, we are more interested in the distribution of
the magnitude, 
F
, of the structure factor than in the distribution of
A and B. Using polar coordinates in equation (2.1.5.5)
[A � 
F
 cos�, B � 
F
 sin�] and integrating over the angle � gives

p�
F
� d
F
 � �2
F
��� exp��
F
2��� d
F
� �2�1�5�6�
It is usually convenient, in structure-factor and intensity statistics, to
express the results in terms of the normalized structure factor E and
its magnitude 
E
. If 
F
 has been put on an absolute scale (see
Section 2.2.4.3), we have

E � F
����
�

� and 
E
 � 
F

����
�

� , �2�1�5�7�
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so that

p�
E
� d
E
 � 2
E
 exp��
E
2� d
E
 �2�1�5�8�
is the normalized-structure-factor version of (2.1.5.6).

Distributions resulting from noncentrosymmetric crystals are
known as acentric distributions; those arising from centrosym-
metric crystals are known as centric. These adjectives are used to
describe distributions, not crystal symmetry.

2.1.5.2. Ideal centric distributions

When a non-dispersive crystal is centrosymmetric, and the space-
group origin is chosen at a crystallographic centre of symmetry, the
imaginary part B of its structure amplitude is zero. In the simplest
case, space group P�1, the contribution of the jth atom plus its
centrosymmetric counterpart is 2fj cos�j. The calculation of p�A�
goes through as before, with allowance for the fact that there are
N�2 pairs instead of N independent atoms, giving

p�A� dA � �2����1�2 exp��A2��2��	 dA �2�1�5�9�
or equivalently

p�
F
� d
F
 � �2�����	1�2 exp��
F
2��2��	 d
F
 �2�1�5�10�
or

p�
E
� d
E
 � �2���1�2 exp��
E
2�2� d
E
� �2�1�5�11�

2.1.5.3. Effect of other symmetry elements on the ideal
acentric and centric distributions

Additional crystallographic symmetry elements do not produce
any essential alterations in the ideal centric or acentric distribution;
their main effect is to replace the parameter � by a ‘distribution
parameter’, called S by Wilson (1950) and Rogers (1950), in certain
groups of reflections. In addition, in noncentrosymmetric space
groups, the distribution of certain groups of reflections becomes
centric, though the general reflections remain acentric. The changes
are summarized in Tables 2.1.3.1 and 2.1.3.2. The values of S are
integers for lattice centring, glide planes and those screw axes that
produce absences, and approximate integers for rotation axes and
mirror planes; the modulations of the average intensity in reciprocal
space outlined in Section 2.1.3.2 apply.

It should be noted that if intensities are normalized to the average
of the group to which they belong, rather than to the general
average, the distributions given in equations (2.1.5.8) and (2.1.5.11)
are not affected.

2.1.5.4. Other ideal distributions

The distributions just derived are asymptotic, as they are limiting
values for large N. They are the only ideal distributions, in this
sense, when there is only strict crystallographic symmetry and no
dispersion. However, other ideal (asymptotic) distributions arise
when there is noncrystallographic symmetry, or if there is
dispersion. The subcentric distribution,

p�
E
� d
E
 � 2
E

�1� k2�1�2

exp��
E
2��1� k2�	

� I0
k
E
2

1� k2

� �

d
E
, �2�1�5�12�

where I0�x� is a modified Bessel function of the first kind and k is
the ratio of the scattering from the centrosymmetric part to the total
scattering, arises when a noncentrosymmetric crystal contains
centrosymmetric parts or when dispersion introduces effective

noncentrosymmetry into the scattering from a centrosymmetric
crystal (Srinivasan & Parthasarathy, 1976, ch. III; Wilson, 1980a,b;
Shmueli & Wilson, 1983). The bicentric distribution

p�
E
� d
E
 � ��3�2 exp��
E
2�8�K0�
E
2�8� d
E
 �2�1�5�13�
arises, for example, when the ‘asymmetric unit in a centrosym-
metric crystal is a centrosymmetric molecule’ (Lipson & Woolfson,
1952); K0�x� is a modified Bessel function of the second kind. There
are higher hypercentric, hyperparallel and sesquicentric analogues
(Wilson, 1952; Rogers & Wilson, 1953; Wilson, 1956). The ideal
subcentric and bicentric distributions are expressed in terms of
known functions, but the higher hypercentric and the sesquicentric
distributions have so far been studied only through their moments
and integral representations. Certain hypersymmetric distributions
can be expressed in terms of Meijer’s G functions (Wilson, 1987b).

2.1.5.5. Relation to distributions of I

When only the intrinsic probability distributions are being
considered, it does not greatly matter whether the variable chosen
is the intensity of reflection (I), or its positive square root, the
modulus of the structure factor (
F
), since both are necessarily real
and non-negative. In an obvious notation, the relation between the
intensity distribution and the structure-factor distribution is

pI�I� � �1�2�I�1�2p
F
�I1�2� �2�1�5�14�
or

p
F
�
F
� � 2
F
pI�
F
2�� �2�1�5�15�
Statistical fluctuations in counting rates, however, introduce a small
but finite probability of negative observed intensities (Wilson,
1978a, 1980a) and thus of imaginary structure factors. This
practical complication is treated in IT C (1999, Parts 7 and 8).

Both the ideal centric and acentric distributions are simple
members of the family of gamma distributions, defined by

�n�x� dx � ���n�	�1xn�1 exp��x� dx, �2�1�5�16�
where n is a parameter, not necessarily integral, and ��n� is the
gamma function. Thus the ideal acentric intensity distribution is

p�I� dI � exp��I��� d�I��� �2�1�5�17�
� �1�I��� d�I��� �2�1�5�18�

and the ideal centric intensity distribution is

p�I� dI � �2����1�2 exp��I��2��	 d�I��2��	 �2�1�5�19�
� �1�2�I��2��	 d�I��2��	� �2�1�5�20�

The properties of gamma distributions and of the related beta
distributions, summarized in Table 2.1.5.1, are used in Section 2.1.6
to derive the probability density functions of sums and of ratios of
intensities drawn from one of the ideal distributions.

2.1.5.6. Cumulative distribution functions

The integral of the probability density function f �x� from the
lower end of its range up to an arbitrary value x is called the
cumulative probability distribution, or simply the distribution
function, F�x�, of x. It can always be written

F�x� � �x

�

f �u� du; �2�1�5�21�

if the lower end of its range is not actually �
 one takes f �x� as
identically zero between �
 and the lower end of its range. For the
distribution of A [equation (2.1.5.4) or (2.1.5.9)] the lower limit is in
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