International
Tables for
Crystallography
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2006). Vol. B, ch. 2.5, pp. 276-345   | 1 | 2 |
https://doi.org/10.1107/97809553602060000558

Chapter 2.5. Electron diffraction and electron microscopy in structure determination

J. M. Cowley,a P. Goodman,b B. K. Vainshtein,c B. B. Zvyagind and D. L. Dorsete

aArizona State University, Box 871504, Department of Physics and Astronomy, Tempe, AZ 85287-1504, USA, bSchool of Physics, University of Melbourne, Parkville, Australia 3052, cInstitute of Crystallography, Academy of Sciences of Russia, Leninsky prospekt 59, Moscow B-117333, Russia, dInstitute of Ore Mineralogy (IGEM), Academy of Sciences of Russia, Staromonetny 35, 109017 Moscow, Russia, and  eExxonMobil Research and Engineering Co., 1545 Route 22 East, Clinton Township, Annandale, New Jersey 08801, USA

References

Avilov, A. S. (1979). Electrical measurement of reflection intensities on electron diffraction from mosaic single crystals. Sov. Phys. Crystallogr. 24, 103–104.Google Scholar
Avilov, A. S., Kuligin, A. K., Pietsch, U., Spence, J. C. H., Tsirelson, V. G.& Zuo, J. M. (1999). Scanning system for high-energy electron diffractometry. J. Appl. Cryst. 32, 1033–1038.Google Scholar
Avilov, A. S., Parmon, V. S., Semiletov, S. A. & Sirota, M. I. (1984). Calculation of reflected intensities in multiple-beam diffraction of fast electrons by polycrystalline specimens. Sov. Phys. Crystallogr. 29, 5–7.Google Scholar
Bando, Y. (1981). Weak asymmetry in β-Si3N4 as revealed by convergent beam electron diffraction. Acta Cryst. B39, 185–189.Google Scholar
Bethe, H. A. (1928). Theorie der Beugung von Elektronen an Kristallen. Ann. Phys. (Leipzig), 87, 55–129.Google Scholar
Bilhorn, D. E., Foldy, L. L., Thaler, R. M. & Tobacman, W. (1964). Remarks concerning reciprocity in quantum mechanics. J. Math. Phys. 5, 435–441.Google Scholar
Blackman, M. (1939). On the intensities of electron diffraction rings. Proc. R. Soc. London Ser. A, 173, 68–82.Google Scholar
Bracewell, B. N. (1956). Strip integration in radio astronomy. Austr. J. Phys. 9, 198–217.Google Scholar
Bricogne, G. & Gilmore, C. J. (1990). A multisolution method of phase determination by combined maximization of entropy and likelihood. I. Theory, algorithms and strategy. Acta Cryst. A46, 284–297.Google Scholar
Brisse, F. (1989). Electron diffraction of synthetic polymers: the model compound approach to polymer structure. J. Electron Microsc. Tech. 11, 272–279.Google Scholar
Buxton, B., Eades, J. A., Steeds, J. W. & Rackham, G. M. (1976). The symmetry of electron diffraction zone axis patterns. Philos. Trans. R. Soc. London Ser. A, 181, 171–193.Google Scholar
Carpenter, R. W. & Spence, J. C. H. (1982). Three-dimensional strain-field information in convergent-beam electron diffraction patterns. Acta Cryst. A38, 55–61.Google Scholar
Chou, C. T., Anderson, S. C., Cockayne, D. J. H., Sikorski, A. Z. & Vaughan, M. R. (1994). Ultramicroscopy, 55, 334–347.Google Scholar
Cochran, W., Crick, F. H. C. & Vand, V. (1952). The structure of synthetic polypeptides. 1. The transform of atoms on a helix. Acta Cryst. 5, 581–586.Google Scholar
Cowley, J. M. (1953). Structure analysis of single crystals by electron diffraction. II. Disordered boric acid structure. Acta Cryst. 6, 522–529.Google Scholar
Cowley, J. M. (1956). A modified Patterson function. Acta Cryst. 9, 397–398.Google Scholar
Cowley, J. M. (1961). Diffraction intensities from bent crystals. Acta Cryst. 14, 920–927.Google Scholar
Cowley, J. M. (1969). Image contrast in transmission scanning electron microscopy. Appl. Phys. Lett. 15, 58–59.Google Scholar
Cowley, J. M. (1981). Diffraction physics, 2nd ed. Amsterdam: North-Holland.Google Scholar
Cowley, J. M. (1995). Diffraction physics, 3rd ed. Amsterdam: North-Holland.Google Scholar
Cowley, J. M. & Au, A. Y. (1978). Image signals and detector configurations for STEM. In Scanning electron microscopy, Vol. 1, pp. 53–60. AMF O'Hare, Illinois: SEM Inc.Google Scholar
Cowley, J. M. & Moodie, A. F. (1957). The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Cryst. 10, 609–619.Google Scholar
Cowley, J. M. & Moodie, A. F. (1959). The scattering of electrons by atoms and crystals. III. Single-crystal diffraction patterns. Acta Cryst. 12, 360–367.Google Scholar
Cowley, J. M. & Moodie, A. F. (1960). Fourier images. IV. The phase grating. Proc. Phys. Soc. London, 76, 378–384.Google Scholar
Cowley, J. M., Moodie, A. F., Miyake, S., Takagi, S. & Fujimoto, F. (1961). The extinction rules for reflections in symmetrical electron diffraction spot patterns. Acta Cryst. 14, 87–88.Google Scholar
Cowley, J. M., Rees, A. L. G. & Spink, J. A. (1951). Secondary elastic scattering in electron diffraction. Proc. Phys. Soc. London Sect. A, 64, 609–619.Google Scholar
Cramér, H. (1954). Mathematical methods of statistics. University of Princeton.Google Scholar
Creek, R. C. & Spargo, A. E. C. (1985). Electron optical study of rutile. J. Appl. Cryst. 18, 197–204.Google Scholar
Crowther, R. A. & Amos, L. A. (1971). Harmonic analysis of electron microscope images with rotational symmetry. J. Mol. Biol. 60, 123–130.Google Scholar
Crowther, R. A., Amos, L. A., Finch, J. T., DeRosier, D. J. & Klug, A. (1970). Three dimensional reconstruction of spherical viruses by Fourier synthesis from electron micrographs. Nature (London), 226, 421–425.Google Scholar
Crowther, R. A., DeRosier, D. J. & Klug, A. (1970). The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. R. Soc. London Ser. A, 317, 319–340.Google Scholar
Crowther, R. A. & Klug, A. (1974). Three dimensional image reconstruction on an extended field – a fast, stable algorithm. Nature (London), 251, 490–492.Google Scholar
Dawson, B., Goodman, P., Johnson, A. W. S., Lynch, D. F. & Moodie, A. F. (1974). Some definitions and units in electron diffraction. Acta Cryst. A30, 297–298.Google Scholar
Deans, S. R. (1983). The Radon transform and some of its applications. New York: John Wiley.Google Scholar
DeRosier, D. J. & Klug, A. (1968). Reconstruction of three dimensional structures from electron micrographs. Nature (London), 217, 130–134.Google Scholar
DeRosier, D. J. & Moore, P. B. (1970). Reconstruction of three-dimensional images from electron micrographs of structure with helical symmetry. J. Mol. Biol. 52, 355–369.Google Scholar
De Titta, G. T., Edmonds, J. W., Langs, D. A. & Hauptman, H. (1975). Use of negative quartet cosine invariants as a phasing figure of merit: NQEST. Acta Cryst. A31, 472–479.Google Scholar
Dong, W., Baird, T., Fryer, J. R., Gilmore, C. J., MacNicol, D. D., Bricogne, G., Smith, D. J., O'Keefe, M. A. & Hovmöller, S. (1992). Electron microscopy at 1 Å resolution by entropy maximization and likelihood ranking. Nature (London), 355, 605–609.Google Scholar
Dorset, D. L. (1976). The interpretation of quasi-kinematical single-crystal electron diffraction intensity data from paraffins. Acta Cryst. A32, 207–215.Google Scholar
Dorset, D. L. (1987). Electron diffraction structure analysis of phospholipids. J. Electron Microsc. Tech. 7, 35–46.Google Scholar
Dorset, D. L. (1990a). Direct structure analysis of a paraffin solid solution. Proc. Natl Acad. Sci. USA, 87, 8541–8544.Google Scholar
Dorset, D. L. (1990b). Direct determination of crystallographic phases for diffraction data from phospholipid multilamellar arrays. Biophys. J. 58, 1077–1087.Google Scholar
Dorset, D. L. (1991a). Electron diffraction structure analysis of diketopiperazine – a direct phase determination. Acta Cryst. A47, 510–515.Google Scholar
Dorset, D. L. (1991b). Is electron crystallography possible? The direct determination of organic crystal structures. Ultramicroscopy, 38, 23–40.Google Scholar
Dorset, D. L. (1991c). Electron diffraction structure analysis of polyethylene. A direct phase determination. Macromolecules, 24, 1175–1178.Google Scholar
Dorset, D. L. (1991d). Electron crystallography of linear polymers: direct structure analysis of poly([epsilon]-caprolactone). Proc. Natl Acad. Sci. USA, 88, 5499–5502.Google Scholar
Dorset, D. L. (1991e). Direct determination of crystallographic phases for diffraction data from lipid bilayers. I. Reliability and phase refinement. Biophys. J. 60, 1356–1365.Google Scholar
Dorset, D. L. (1991f). Direct determination of crystallographic phases for diffraction data from lipid bilayers. II. Refinement of phospholipid structures. Biophys. J. 60, 1366–1373.Google Scholar
Dorset, D. L. (1992a). Direct phasing in electron crystallography: determination of layer silicate structures. Ultramicroscopy, 45, 5–14.Google Scholar
Dorset, D. L. (1992b). Direct methods in electron crystallography – structure analysis of boric acid. Acta Cryst. A48, 568–574.Google Scholar
Dorset, D. L. (1992c). Electron crystallography of linear polymers: direct phase determination for zonal data sets. Macromolecules, 25, 4425–4430.Google Scholar
Dorset, D. L. (1992d). Automated phase determination in electron crystallography: thermotropic phases of thiourea. Ultramicroscopy, 45, 357–364.Google Scholar
Dorset, D. L. (1994a). Electron crystallography of organic molecules. Adv. Electron. Electron Phys. 88, 111–197.Google Scholar
Dorset, D. L. (1994b). Electron crystallography of linear polymers. In Characterization of solid polymers. New techniques and developments, edited by S. J. Spells, pp.1–16. London: Chapman and Hall.Google Scholar
Dorset, D. L. (1994c). Electron crystallography of inorganic compounds. Direct determination of the basic copper chloride structure CuCl2·3Cu(OH)2. J. Chem. Crystallogr. 24, 219–224.Google Scholar
Dorset, D. L. (1994d). Direct determination of layer packing for a phospholipid solid solution at 0.32 nm resolution. Proc. Natl Acad. Sci. USA, 91, 4920–4924.Google Scholar
Dorset, D. L., Beckmann, E. & Zemlin, F. (1990). Direct determination of a phospholipid lamellar structure at 0.34 nm resolution. Proc. Natl Acad. Sci. USA, 87, 7570–7573.Google Scholar
Dorset, D. L. & Hauptman, H. A. (1976). Direct phase determination for quasi-kinematical electron diffraction intensity data from organic microcrystals. Ultramicroscopy, 1, 195–201.Google Scholar
Dorset, D. L., Jap, B. K., Ho, M.-H. & Glaeser, R. M. (1979). Direct phasing of electron diffraction data from organic crystals: the effect of n-beam dynamical scattering. Acta Cryst. A35, 1001–1009.Google Scholar
Dorset, D. L., Kopp, S., Fryer, J. R. & Tivol, W. F. (1995). The Sayre equation in electron crystallography. Ultramicroscopy, 57, 59–89.Google Scholar
Dorset, D. L. & McCourt, M. P. (1992). Effect of dynamical scattering on successful direct phase determination in electron crystallography – a model study. Trans. Am. Crystallogr. Assoc. 28, 105–113.Google Scholar
Dorset, D. L. & McCourt, M. P. (1993). Electron crystallographic analysis of a polysaccharide structure – direct phase determination and model refinement for mannan I. J. Struct. Biol. 111, 118–124.Google Scholar
Dorset, D. L. & McCourt, M. P. (1994a). Automated structure analysis in electron crystallography: phase determination with the tangent formula and least-squares refinement. Acta Cryst. A50, 287–292.Google Scholar
Dorset, D. L. & McCourt, M. P. (1994b). Disorder and molecular packing of C60 buckminsterfullerene: a direct electron-crystallographic analysis. Acta Cryst. A50, 344–351.Google Scholar
Dorset, D. L., McCourt, M. P., Fryer, J. R., Tivol, W. F. & Turner, J. N. (1994). The tangent formula in electron crystallography: phase determination of copper perchlorophthalocyanine. Microsc. Soc. Am. Bull. 24, 398–404.Google Scholar
Dorset, D. L., McCourt, M. P., Kopp, S., Wittmann, J.-C. & Lotz, B. (1994). Direct determination of polymer crystal structures by electron crystallography – isotactic poly(1-butene), form III. Acta Cryst. B50, 201–208.Google Scholar
Dorset, D. L., McCourt, M. P., Tivol, W. F. & Turner, J. N. (1993). Electron diffraction from phospholipids – an approximate correction for dynamical scattering and tests for a correct phase determination. J. Appl. Cryst. 26, 778–786.Google Scholar
Dorset, D. L., Tivol, W. F. & Turner, J. N. (1991). Electron crystallography at atomic resolution: ab initio structure analysis of copper perchlorophthalocyanine. Ultramicroscopy, 38, 41–45.Google Scholar
Dorset, D. L., Tivol, W. F. & Turner, J. N. (1992). Dynamical scattering and electron crystallography – ab initio structure analysis of copper perbromophthalocyanine. Acta Cryst. A48, 562–568.Google Scholar
Dorset, D. L. & Zemlin, F. (1990). Direct phase determination in electron crystallography: the crystal structure of an n-paraffin. Ultramicroscopy, 33, 227–236.Google Scholar
Dorset, D. L. & Zhang, W. P. (1991). Electron crystallography at atomic resolution: the structure of the odd-chain paraffin n-tritriacontane. J. Electron Microsc. Tech. 18, 142–147.Google Scholar
Dvoryankin, V. F. & Vainshtein, B. K. (1960). An electron diffraction study of thiourea. Sov. Phys. Crystallogr. 5, 564–574.Google Scholar
Dvoryankin, V. F. & Vainshtein, B. K. (1962). An electron diffraction study of the low-temperature ferroelectric form of thiourea. Sov. Phys. Crystallogr. 6, 765–772.Google Scholar
Eades, J. A. (1980). Another way to form zone axis patterns. Inst. Phys. Conf. Ser. 52, 9–12.Google Scholar
Eades, J. A., Shannon, M. D. & Buxton, B. F. (1983). Crystal symmetry from electron diffraction. In Scanning electron microscopy, 1983/III, pp. 1051–1060. Chicago: SEM Inc.Google Scholar
Erickson, H. P. & Klug, A. (1971). Measurements and compensation of defocusing and aberrations by Fourier processing of electron micrographs. Philos. Trans. R. Soc. London Ser. B, 261, 105–118.Google Scholar
Fan, H. F., Xiang, S. B., Li, F. H., Pan, Q., Uyeda, N. & Fujiyoshi, Y. (1991). Image resolution enhancement by combining information from electron diffraction pattern and micrograph. Ultramicroscopy, 36, 361–365.Google Scholar
Fan, H.-F., Zhong, Z.-Y., Zheng, C.-D. & Li, F.-H. (1985). Image processing in high-resolution electron microscopy using the direct method. I. Phase extension. Acta Cryst. A41, 163–165.Google Scholar
Frank, J. (1975). Averaging of low exposure electron micrographs of non-periodic objects. Ultramicroscopy, 1, 159–162.Google Scholar
Frank, J. (1980). The role of correlation techniques in computer image processing. In Computer processing of electron microscopy images, edited by P. W. Hawkes, pp. 187–222. Berlin: Springer-Verlag.Google Scholar
Fraser, H. L., Maher, D. M., Humphreys, C. J., Hetherington, C. J. D., Knoell, R. V. & Bean, J. C. (1985). The detection of local strains in strained superlattices. In Microscopy of semiconducting materials, pp. 1–5. London: Institute of Physics.Google Scholar
Fryer, J. R. (1993). Electron crystallography of small organic molecules. Microsc. Soc. Am. Bull. 23, 44–56.Google Scholar
Fujimoto, F. (1959). Dynamical theory of electron diffraction in Laue-case. I. General theory. J. Phys. Soc. Jpn, 14(11), 1158–1168.Google Scholar
Fujiwara, K. (1961). Relativistic dynamical theory of electron diffraction. J. Phys. Soc. Jpn, 16, 2226–2238.Google Scholar
Fukuhara, A. (1966). Many-ray approximations in the dynamical theory of electron diffraction. J. Phys. Soc. Jpn, 21, 2645–2662.Google Scholar
Gabor, D. (1949). Microscopy by reconstructed wavefronts. Proc. R. Soc. London Ser. A, 197, 454–487.Google Scholar
Gassmann, J. (1976). Improvement and extension of approximate phase sets in structure determination. In Crystallographic computing techniques, edited by F. R. Ahmed, pp. 144–154. Copenhagen: Munksgaard.Google Scholar
Gassmann, J. & Zechmeister, K. (1972). Limits of phase expansion in direct methods. Acta Cryst. A28, 270–280.Google Scholar
Germain, G., Main, P. & Woolfson, M. M. (1971). The application of phase relationships to complex structures. III. The optimum use of phase relationships. Acta Cryst. A27, 368–376.Google Scholar
Gilbert, P. F. C. (1972a). The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. II. Direct methods. Proc. R. Soc. London Ser. B, 182, 89–102.Google Scholar
Gilbert, P. F. C. (1972b). Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theor. Biol. 36, 105–117.Google Scholar
Gilmore, C. J., Bricogne, G. & Bannister, C. (1990). A multisolution method of phase determination by combined maximization of entropy and likelihood. II. Application to small molecules. Acta Cryst. A46, 297–308.Google Scholar
Gilmore, C. J., Shankland, K. & Bricogne, G. (1993). Applications of the maximum entropy method to powder diffraction and electron crystallography. Proc. R. Soc. London Ser. A, 442, 97–111.Google Scholar
Gilmore, C. J., Shankland, K. & Fryer, J. R. (1992). The application of the maximum entropy method to electron microscopy data for purple membrane. Trans. Am. Crystallogr. Assoc. 28, 129–139.Google Scholar
Gilmore, C. J., Shankland, K. & Fryer, J. R. (1993). Phase extension in electron crystallography using the maximum entropy method and its application to two-dimensional purple membrane data from Halobacterium halobium. Ultramicroscopy, 49, 132–146.Google Scholar
Gjønnes, J. & Høier, R. (1971). The application of non-systematic many-beam dynamic effects to structure-factor determination. Acta Cryst. A27, 313–316.Google Scholar
Gjønnes, J. & Moodie, A. F. (1965). Extinction conditions in dynamic theory of electron diffraction patterns. Acta Cryst. 19, 65–67.Google Scholar
Glauber, R. & Schomaker, V. (1953). The theory of electron diffraction. Phys. Rev. 89, 667–670.Google Scholar
Goncharov, A. B. (1987). Integral geometry and 3D-reconstruction of arbitrarily oriented identical particles from their electron micrographs. Sov. Phys. Crystallogr. 32, 663–666.Google Scholar
Goncharov, A. B., Vainshtein, B. K., Ryskin, A. I. & Vagin, A. A. (1987). Three-dimensional reconstruction of arbitrarily oriented identical particles from their electron photomicrographs. Sov. Phys. Crystallogr. 32, 504–509.Google Scholar
Goodman, P. (1974). The role of upper layer interactions in electron diffraction. Nature (London), 251, 698–701.Google Scholar
Goodman, P. (1984a). A matrix basis for CBED pattern analysis. Acta Cryst. A40, 522–526.Google Scholar
Goodman, P. (1984b). A retabulation of the 80 layer groups for electron diffraction usage. Acta Cryst. A40, 633–642.Google Scholar
Goodman, P., McLean, J. D., Wilson, I. J. & Olsen, A. (1984). Optical microdiffraction and image analysis of subsymmetries in Nb2O5 tunnel structures. In Analytical electron microscopy–1984, pp. 130–134. San Francisco Press.Google Scholar
Goodman, P. & Miller, P. (1993). Reassessment of the symmetry of the 221 PbBiSrCaCuO structure using LACBED and high-resolution SAD: the relevance of Cowley's theory of disorder scattering to a real-space structural analysis. Ultramicroscopy, 52, 549–556.Google Scholar
Goodman, P., Miller, P., White, T. J. & Withers, R. L. (1992). Symmetry determination and Pb-site ordering analysis for the n = 1,2 PbxBi2 − xSr2Can − 1CunO4 + 2n + δ compounds by convergent-beam and selected-area electron diffraction. Acta Cryst. B48, 376–387.Google Scholar
Goodman, P. & Whitfield, H. J. (1980). The space group determination of GaS and Cu3As2S3I by convergent beam electron diffraction. Acta Cryst. A36, 219–228.Google Scholar
Gordon, R. (1974). A tutorial on ART (algebraic reconstruction techniques). IEEE Trans. Nucl. Sci. NS-21, 78–93.Google Scholar
Gordon, R., Bender, R. & Herman, G. T. (1970). Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J. Theor. Biol. 29, 471–481.Google Scholar
Gordon, R. & Herman, G. T. (1971). Reconstruction of pictures from their projections. Commun. ACM, 14, 759–768.Google Scholar
Grzinic, G. (1985). Calculation of incommensurate diffraction intensities from disordered crystals. Philos. Mag. A, 52, 161–187.Google Scholar
Gunning, J. & Goodman, P. (1992). Reciprocity in electron diffraction. Acta Cryst. A48, 591–595.Google Scholar
Gurskaya, G. V., Lobanova, G. M. & Vainshtein, B. K. (1971). X-ray diffraction and electron-microscope study of hexagonal catalase crystal. Sov. Phys. Crystallogr. 16, 662–669.Google Scholar
Hashimoto, H., Endoh, H., Tanji, T., Ono, A. & Watanabe, E. (1977). Direct observation of fine structure within images of atoms in crystals by transmission electron microscopy. J. Phys. Soc. Jpn, 42, 1073–1074.Google Scholar
Hashimoto, H., Mannami, M. & Naiki, T. (1961). Dynamical theory of electron diffraction for the electron microscope image of crystal lattices. I. Image of single crystals. II. Image of superposed crystals (moiré pattern). Philos. Trans. R. Soc. London, 253, 459–516.Google Scholar
Hauptman, H. (1972). Crystal structure determination. The role of the cosine seminvariants. NY: Plenum Press.Google Scholar
Hauptman, H. (1993). A minimal principle in X-ray crystallography: starting in a small way. Proc. R. Soc. London Ser. A, 442, 3–12.Google Scholar
Hauptman, H. & Karle, J. (1953). Solution of the phase problem. I. The centrosymmetric crystal. American Crystallographic Association Monograph No. 3. Ann Arbor, MI: Edwards Brothers.Google Scholar
Havelka, W., Henderson, R., Heymann, J. A. W. & Oesterhelt, D. (1993). Projection structure of halorhodopsin from Halobacterium halobium at 6 Å resolution obtained by electron cryomicroscopy. J. Mol. Biol. 234, 837–846.Google Scholar
Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E. & Downing, K. H. (1990). Model for the structure of bacteriorhodopsin based on high-resolution electron cryomicroscopy. J. Mol. Biol. 213, 899–929.Google Scholar
Henderson, R., Baldwin, J. M., Downing, K. H., Lepault, J. & Zemlin, F. (1986). Structure of purple membrane from Halobacterium halobium: recording, measurement and evaluation of electron micrographs at 3.5 Å resolution. Ultramicroscopy, 19, 147–178.Google Scholar
Henderson, R. & Unwin, P. N. T. (1975). Three-dimensional model of purple membrane obtained by electron microscopy. Nature (London), 257, 28–32.Google Scholar
Herman, G. T. (1980). Image reconstruction from projection: the fundamentals of computerized tomography. New York: Academic Press.Google Scholar
Herrmann, K. H., Krahl, D. & Rust, H.-P. (1980). Low-dose image recording by TV techniques. In Electron microscopy at molecular dimensions, edited by W. Baumeister & W. Vogell, pp. 186–193. Berlin: Springer-Verlag.Google Scholar
Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W. & Whelan, M. J. (1965). Electron microscopy of thin crystals. London: Butterworths.Google Scholar
Hoppe, W. (1971). Use of zone correction plate and other techniques for structure determination of aperiodic objects at atomic resolution using a conventional electron microscope. Philos. Trans. R. Soc. London Ser. B, 261, 71–94.Google Scholar
Hoppe, W., Bussler, P., Feltynowski, A., Hunsmann, N. & Hirt, A. (1973). Some experience with computerized image reconstruction methods. In Image processing and computer-aided design in electron optics, edited by R. W. Hawkes, pp. 92–126. London: Academic Press.Google Scholar
Hoppe, W. & Gassmann, J. (1968). Phase correction, a new method to solve partially known structures. Acta Cryst. B24, 97–107.Google Scholar
Hoppe, W. & Typke, D. (1979). Three-dimensional reconstruction of aperiodic objects in electron microscopy. In Advances in structure research by diffraction method. Oxford: Pergamon Press.Google Scholar
Horstmann, M. & Meyer, G. (1965). Messung der Elektronenbeugungsintensitaten polykristalliner Aluminium schichten bei tiefer Temperatur und Vergleich mit der dynamischen Theorie. Z. Phys. 182, 380–397.Google Scholar
Hovmöller, S., Sjögren, A., Farrants, G., Sundberg, M. & Marinder, B. O. (1984). Accurate atomic positions from electron microscopy. Nature (London), 311, 238–241.Google Scholar
Hu, H. H., Li, F. H. & Fan, H. F. (1992). Crystal structure determination of K2O·7Nb2O5 by combining high resolution electron microscopy and electron diffraction. Ultramicroscopy, 41, 387–397.Google Scholar
Hurley, A. C. & Moodie, A. F. (1980). The inversion of three-beam intensities for scalar scattering by a general centrosymmetric crystal. Acta Cryst. A36, 737–738.Google Scholar
International Tables for Crystallography (2005). Vol. A. Space-group symmetry, edited by Th. Hahn, 5th ed. Heidelberg: Springer.Google Scholar
International Tables for Crystallography (2004). Vol. C. Mathematical, physical and chemical tables, edited E. Prince, 3rd ed. Dordrecht: Kluwer Academic Publishers.Google Scholar
International Tables for X-ray Crystallography (1952). Vol. I. Symmetry groups. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)Google Scholar
Ishizuka, K., Miyazaki, M. & Uyeda, N. (1982). Improvement of electron microscope images by the direct phasing method. Acta Cryst. A38, 408–413.Google Scholar
Ishizuka, K. & Taftø, J. (1982). Kinematically allowed reflections caused by scattering via HOLZ. Proc. Electron Microsc. Soc. Am. pp. 688–689.Google Scholar
Jap, B. K. & Glaeser, R. M. (1980). The scattering of high-energy electrons. II. Quantitative validity domains of the single-scattering approximations for organic crystals. Acta Cryst. A36, 57–67.Google Scholar
Jap, B. K., Walian, P. J. & Gehring, K. (1991). Structural architecture of an outer membrane channel as determined by electron crystallography. Nature (London), 350, 167–170.Google Scholar
Johnson, A. W. S. (1972). Stacking faults in graphite. Acta Cryst. A28, 89–93.Google Scholar
Johnson, A. W. S. & Preston, A. R. (1994). Some notes on the selection of structural chirality by CBED. Ultramicroscopy, 55, 348–355.Google Scholar
Jones, P. M., Rackham, G. M. & Steeds, J. W. (1977). Higher order Laue zone effects in electron diffraction and their use in lattice parameter determination. Proc. R. Soc. London Ser. A, 354, 197–222.Google Scholar
Kam, Z. (1980). Three-dimensional reconstruction of aperiodic objects. J. Theor. Biol. 82, 15–32.Google Scholar
Kambe, K. (1982). Visualization of Bloch waves of high energy electrons in high resolution electron microscopy. Ultramicroscopy, 10, 223–228.Google Scholar
Karle, J. & Hauptman, H. (1956). A theory of phase determination for the four types of non-centrosymmetric space groups [1P222], [2P22], [3P_{1}2], [3P_{2}2]. Acta Cryst. 9, 635–651.Google Scholar
Kirkland, E. J., Siegel, B. M., Uyeda, N. & Fujiyoshi, Y. (1980). Digital reconstruction of bright field phase contrast images from high resolution electron micrographs. Ultra-microscopy, 5, 479–503.Google Scholar
Kiselev, N. A., Lerner, F. Ya. & Livanova, N. B. (1971). Electron microscopy of muscle phosphorylase B. J. Mol. Biol. 62, 537–549.Google Scholar
Klug, A. & Berger, J. E. (1964). An optical method for the analysis of periodicities in electron micrographs and some observations on the mechanism of negative staining. J. Mol. Biol. 10, 565–569.Google Scholar
Klug, A. & DeRosier, D. J. (1966). Optical filtering of electron micrographs: reconstruction of one-sided images. Nature (London), 212, 29–32.Google Scholar
Kossel, W. & Möllenstedt, G. (1938). Electron interference in a convergent beam. Nature (London), 26, 660.Google Scholar
Kosykh, V. P., Pustovskikh, A. I., Kirichuk, V. S., Kühne, T., Orlova, E. V., Tsuprun, V. L. & Kiselev, N. A. (1983). Use of digital storage methods to recover images of monocrystalline layers of virus particles. Sov. Phys. Crystallogr. 28, 637–643.Google Scholar
Kühlbrandt, W., Wang, D. N. & Fujiyoshi, Y. (1994). Atomic model of plant light-harvesting complex by electron crystallography. Nature (London), 367, 614–621.Google Scholar
Kuwabara, S. (1978). Nearly aberration-free crystal images in high voltage electron microscopy. J. Electron Microsc. 27, 161–169.Google Scholar
Langer, R., Frank, J., Feltynowski, A. & Hoppe, W. (1970). Anwendung des Bilddifferenzverfahrens auf die Untersuchung von Strukturänderungen dünner Kohlefolien bei Elektronenbestrahlung. Ber. Bunsenges Phys. Chem. 74(11), 1120–1126.Google Scholar
Langs, D. A. & DeTitta, G. T. (1975). A flexible and rapid phase determination and refinement procedure. Acta Cryst. A31, S16.Google Scholar
Laue, M. von (1935). Die Fluoreszenzrontgenstrahlung von Einkristallen. Ann. Phys. (Leipzig), 23, 703–726.Google Scholar
Li, D. X. & Hovmöller, S. (1988). The crystal structure of Na3Nb12O31F determined by HREM and image processing. J. Solid State Chem. 73, 5–10.Google Scholar
Li, F. H. (1991). Crystal structures from high-resolution electron microscopy. In Electron crystallography of organic molecules, edited by J. R. Fryer & D. L. Dorset, pp. 153–167. Dordrecht: Kluwer Academic Publishers.Google Scholar
Liebman, G. (1955). A unified representation of magnetic electron lens properties. Proc. Phys. Soc. London Sect. B, 68, 737–745.Google Scholar
Liu, Y.-W., Fan, H.-F. & Zheng, C.-D. (1988). Image processing in high-resolution electron microscopy using the direct method. III. Structure-factor extrapolation. Acta Cryst. A44, 61–63.Google Scholar
Lobachev, A. N. & Vainshtein, B. K. (1961). An electron diffraction study of urea. Sov. Phys. Crystallogr. 6, 313–317.Google Scholar
Lynch, D. F. & Moodie, A. F. (1972). Numerical evaluation of low energy electron diffraction intensity. I. The perfect crystal with no upper layer lines and no absorption. Surf. Sci. 32, 422–438.Google Scholar
Lynch, D. F., Moodie, A. F. & O'Keefe, M. A. (1975). n-Beam lattice images. V. The use of the charge-density approximation in the interpretation of lattice images. Acta Cryst. A31, 300–307.Google Scholar
McLachlan, D. (1958). Crystal structure and information theory. Proc. Natl Acad. Sci. USA, 44, 948–956.Google Scholar
Mansfield, J. (1984). Convergent beam electron diffraction of alloy phases by the Bristol Group under the direction of John Steeds. Bristol: Adam Hilger.Google Scholar
Markham, R., Frey, S. & Hills, G. J. (1963). Methods for the enhancement of image detail and accentuation of structure in electron microscopy. Virology, 20, 88–102.Google Scholar
Matsuda, T., Tonomura, A. & Komada, T. (1978). Observation of lattice images with a field emission electron microscope. Jpn. J. Appl. Phys. 17, 2073–2074.Google Scholar
Mermin, N. D. (1992). The space groups of icosahedral quasicrystals and cubic, orthorhombic, monoclinic and triclinic crystals. Rev. Mod. Phys. 64, 3–49.Google Scholar
Mersereau, R. M. & Oppenheim, A. V. (1974). Digital reconstruction of multi-dimensional signals from their projections. Proc. IEEE, 62(10), 1319–1338.Google Scholar
Miyake, S. & Uyeda, R. (1950). An exception to Friedel's law in electron diffraction. Acta Cryst. 3, 314.Google Scholar
Mo, Y. D., Cheng, T. Z., Fan, H. F., Li, J. Q., Sha, B. D., Zheng, C. D., Li, F. H. & Zhao, Z. X. (1992). Structural features of the incommensurate modulation in the Pb-doped Bi-2223 high-Tc phase by defect method electron diffraction analysis. Supercond. Sci. Technol. 5, 69–72.Google Scholar
Moodie, A. F. (1965). Some structural implications of n-beam interactions. International Conference on Electron Diffraction and Crystal Defects, Melbourne, Australia, paper ID-1.Google Scholar
Moodie, A. F. (1972). Reciprocity and shape function in multiple scattering diagrams. Z. Naturforsch. Teil A, 27, 437–440.Google Scholar
Moodie, A. F. & Whitfield, H. J. (1984). CBED and HREM in the electron microscope. Ultramicroscopy, 13, 265–278.Google Scholar
Moss, B. & Dorset, D. L. (1982). Effect of crystal bending on direct phasing of electron diffraction data from cytosine. Acta Cryst. A38, 207–211.Google Scholar
Ogawa, T., Moriguchi, S., Isoda, S. & Kobayashi, T. (1994). Application of an imaging plate to electron crystallography at atomic resolution. Polymer, 35, 1132–1136.Google Scholar
Orlov, S. S. (1975). Theory of three-dimensional reconstruction. II. The recovery operator. Sov. Phys. Crystallogr. 20, 429–433.Google Scholar
Ottensmeyer, F. P., Andrews, J. W., Basett-Jones, D. P., Chan, A. S. & Hewitt, J. (1977). Signal to noise enhancement in dark field electron micrographs of vasopressin: filtering of arrays of images in reciprocal space. J. Microsc. 109, 256–268.Google Scholar
Pan, M. & Crozier, P. A. (1993). Quantitative imaging and diffraction of zeolites using a slow-scan CCD camera. Ultramicroscopy, 52, 487–498.Google Scholar
Pérez, S. & Chanzy, H. (1989). Electron crystallography of linear polysaccharides. J. Electron Microsc. Tech. 11, 280–285.Google Scholar
Picture Processing and Digital Filtering (1975). Edited by T. S. Huang. Berlin: Springer-Verlag.Google Scholar
Pinsker, Z. G. (1953). Electron diffraction. London: Butterworth.Google Scholar
Pinsker, Z. G., Zvyagin, B. B. & Imamov, R. M. (1981). Principal results of electron-diffraction structural investigations. Sov. Phys. Crystallogr. 26, 669–674.Google Scholar
Pogany, A. P. & Turner, P. S. (1968). Reciprocity in electron diffraction and microscopy. Acta Cryst. A24, 103–109.Google Scholar
Pond, R. C. & Vlachavas, D. S. (1983). Bicrystallography. Proc. R. Soc. London Ser. A, 386, 95–143.Google Scholar
Portier, R. & Gratias, D. (1981). Diffraction symmetries for elastic scattering. In Electron microscopy and analysis. Inst. Phys. Conf. Ser. No. 61, pp. 275–278. Bristol, London: Institute of Physics.Google Scholar
Radermacher, M., McEwen, B. & Frank, J. (1987). Three-dimensional reconstruction of asymmetrical object in standard and high voltage electron microscopy. Proc. Microscop. Soc. Canada, XII Annual Meet., pp. 4–5.Google Scholar
Radi, G. (1970). Complex lattice potentials in electron diffraction calculated for a number of crystals. Acta Cryst. A26, 41–56.Google Scholar
Radon, J. (1917). Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. (On the determination of functions from their integrals along certain manifolds). Ber. Verh. Saechs. Akad. Wiss. Leipzig Math. Phys. Kl. 69, 262–277.Google Scholar
Ramachandran, G. N. & Lakshminarayanan, A. V. (1971). Three-dimensional reconstruction from radiographs and electron micrographs: application of convolutions instead of Fourier transforms. Proc. Natl Acad. Sci. USA, 68(9), 2236–2240.Google Scholar
Revol, J. F. (1991). Electron crystallography of radiation-sensitive polymer crystals. In Electron crystallography of organic molecules, edited by J. R. Fryer & D. L. Dorset, pp. 169–187. Dordrecht: Kluwer Academic Publishers. Google Scholar
Revol, J. F. & Manley, R. St. J. (1986). Lattice imaging in polyethylene single crystals. J. Mater. Sci. Lett. 5, 249–251.Google Scholar
Rez, P. (1978). In Electron diffraction 1927–1977, edited by P. J. Dobson, J. B. Pendry & C. J. Humphreys, pp. 61–67. Inst. Phys. Conf. Ser. No. 41. Bristol, London: Institute of Physics.Google Scholar
Rozenfeld, A. (1969). Picture processing by computer. New York: Academic Press.Google Scholar
Sayre, D. (1952). The squaring method: a new method for phase determination. Acta Cryst. 5, 60–65.Google Scholar
Sayre, D. (1980). Phase extension and refinement using convolutional and related equation systems. In Theory and practice of direct methods in crystallography, edited by M. F. C. Ladd & R. A. Palmer, pp. 271–286. NY: Plenum Press.Google Scholar
Scaringe, R. P. (1992). Crystallography in two dimensions: comparison of theory and experiment for molecular layers. Trans. Am. Crystallogr. Assoc. 28, 11–23.Google Scholar
Schapink, F. W., Forgany, S. K. E. & Buxton, B. F. (1983). The symmetry of convergent-beam electron diffraction patterns from bicrystals. Acta Cryst. A39, 805–813.Google Scholar
Scherzer, O. (1949). The theoretical resolution limit of the electron microscope. J. Appl. Phys. 20, 20–29.Google Scholar
Schiske, P. (1968). Zur Frage der Bildrekonstruktion durch Fokusreihen. 1 Y Eur. Reg. Conf. Electron Microsc. Rome, 1, 145–146.Google Scholar
Schwartzman, A., Goodman, P. & Johnson, A. W. S. (1996). IUCr XVII Congress and General Assembly, Seattle, Washington, USA, August 8–16, Collected Abstracts, p. C-54, Abstract PS02.03.18.Google Scholar
Sha, B.-D., Fan, H.-F. & Li, F.-H. (1993). Correction for the dynamical electron diffraction effect in crystal structure analysis. Acta Cryst. A49, 877–880.Google Scholar
Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. (1984). Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953.Google Scholar
Shoemaker, V. & Glauber, R. (1952). The Born approximation in electron diffraction. Nature (London), 170, 290–291.Google Scholar
Spence, J. C. H., O'Keefe, M. A. & Kolar, H. (1977). Image interpretation in crystalline germanium. Optik (Stuttgart), 49, 307–323.Google Scholar
Spence, J. C. H. & Zuo, J. M. (1992). Electron microdiffraction. New York: Plenum Press.Google Scholar
Steeds, J. W. (1979). Convergent beam electron diffraction. In Introduction to analytical electron microscopy, edited by J. J. Hren, J. I. Goldstein & D. C. Joy, pp. 387–422. New York: Plenum.Google Scholar
Steeds, J. W. (1983). Developments in convergent beam electron diffraction. Report to the Commission on Electron Diffraction of the International Union of Crystallography.Google Scholar
Steeds, J. W. & Evans, N. S. (1980). Practical examples of point and space group determination in convergent beam diffraction. Proc. Electron Microsc. Soc. Am. pp. 188–191.Google Scholar
Steeds, J. W., Rackham, G. M. & Shannon, M. D. (1978). On the observation of dynamically forbidden lines in two and three dimensional electron diffraction. In Electron diffraction 1927–1977. Inst. Phys. Conf. Ser. No. 41, pp. 135–139.Google Scholar
Steeds, J. W. & Vincent, R. (1983). Use of high symmetry zone axes in electron diffraction in determining crystal point and space groups. J. Appl. Cryst. 16, 317–324.Google Scholar
Steinkilberg, M. & Schramm, H. J. (1980). Eine verbesserte Drehkorrelations Methode für die Strukturbestimmung biologischer Macromoleküle durch Mittelung elektronenmikroskopischer Bilder. Hoppe–Seyler's Z. Physiol. Chem. 361, 1363–1369.Google Scholar
Stereochemical Applications of Gas-Phase Electron Diffraction (1988). Part A, edited by I. Hargittai & M. Hargittai. New York: VCH.Google Scholar
Tanaka, M. (1994). Convergent-beam electron diffraction. Acta Cryst. A50, 261–286.Google Scholar
Tanaka, M., Saito, P., Ueno, K. & Harada, Y. (1980). Large angle convergent-beam electron diffraction. J. Electron. Microsc. 29, 408–412.Google Scholar
Tanaka, M., Sekii, H. & Nagasawa, T. (1983). Space group determination by dynamic extinction in convergent beam electron diffraction. Acta Cryst. A39, 825–837.Google Scholar
Tanaka, M. & Terauchi, M. (1985). Convergent-beam electron diffraction. Tokyo: JEOL Ltd.Google Scholar
Tanaka, M., Terauchi, M. & Tsuda, K. (1994). Convergent-beam electron diffraction III. Tokyo: JEOL–Maruzen.Google Scholar
Thon, F. (1966). On the defocusing dependence of phase contrast in electron microscopical images. Z. Naturforsch. Teil A, 21, 476–478.Google Scholar
Tivol, W. F., Dorset, D. L., McCourt, M. P. & Turner, J. N. (1993). Voltage-dependent effect on dynamical scattering and the electron diffraction structure analysis of organic crystals: copper perchlorophthalocyanine. Microsc. Soc. Am. Bull. 23, 91–98.Google Scholar
Tournaire, M. (1962). Recent developments of the matrical and semi-reciprocal formulation in the field of dynamical theory. J. Phys. Soc. Jpn, 17, Suppl. B11, 98–100.Google Scholar
Tsipursky, S. I. & Drits, V. A. (1977). Efficiency of electronometric intensity registration at electron diffraction structural studies. Izv. Akad. Nauk SSSR Ser. Fiz. 41, 2263–2271. (In Russian.)Google Scholar
Tsuji, M. (1989). Electron microscopy. In Comprehensive polymer science, Vol. 1. Polymer characterization, edited by C. Booth & C. Price, pp. 785–840. Oxford: Pergamon PressGoogle Scholar
Turner, P. S. & Cowley, J. M. (1969). The effects of n-beam dynamical diffraction on electron diffraction intensities from polycrystalline materials. Acta Cryst. A25, 475–481.Google Scholar
Unwin, P. N. T. & Henderson, R. (1975). Molecular structure determination by electron microscopy of unstained crystalline specimens. J. Mol. Biol. 94, 425–440.Google Scholar
Uyeda, N., Kobayashi, T., Ishizuka, K. & Fujiyoshi, Y. (1978–1979). High voltage electron microscopy for image discrimination of constituent atoms in crystals and molecules. Chem. Scr. 14, 47–61.Google Scholar
Vainshtein, B. K. (1952). Dependence of electron scattering on the atomic number. Dokl. Akad. Nauk SSSR, 85, 1239–1242. (In Russian.)Google Scholar
Vainshtein, B. K. (1954). On the studies of crystal lattice potential by electron diffraction. Tr. Inst. Krist. Akad. Nauk SSSR, 9, 259–276. (In Russian.)Google Scholar
Vainshtein, B. K. (1955). Elektronograficheskoe issledovanie diketopiperazina. Zh. Fiz. Khim. 29, 327–344.Google Scholar
Vainshtein, B. K. (1956). Structure analysis by electron diffraction. Moscow: Akad. Sci. USSR. [English edition (1964): Oxford: Pergamon Press.]Google Scholar
Vainshtein, B. K. (1964). Structure analysis by electron diffraction. Oxford: Pergamon Press.Google Scholar
Vainshtein, B. K. (1971a). The synthesis of projecting functions. Sov. Phys. Dokl. 16, 66–69.Google Scholar
Vainshtein, B. K. (1971b). Finding the structure of objects from projections. Sov. Phys. Crystallogr. 15, 781–787.Google Scholar
Vainshtein, B. K. (1978). Electron microscopical analysis of the three-dimensional structure of biological macromolecules. In Advances in optical and electron microscopy, Vol. 7, edited by V. E. Cosslett & R. Barer, pp. 281–377. London: Academic Press.Google Scholar
Vainshtein, B. K., Barynin, V. V. & Gurskaya, G. V. (1968). The hexagonal crystalline structure of catalase and its molecular structure. Sov. Phys. Dokl. 13, 838–841.Google Scholar
Vainshtein, B. K., D'yakon, I. A. & Ablov, A. V. (1971). Electron diffraction determination of the structure of copper DL-alaninate. Sov. Phys. Dokl. 15, 645–647.Google Scholar
Vainshtein, B. K. & Goncharov, A. B. (1986a). Determination of the spatial orientation of arbitrarily arranged identical particles of unknown structure from their projections. Sov. Phys. Dokl. 287, 278–283.Google Scholar
Vainshtein, B. K. & Goncharov, A. B. (1986b). Proceedings of the 11th International Congress on Electron Microscopy, Kyoto, Vol. 1, pp. 459–460.Google Scholar
Vainshtein, B. K. & Klechkovskaya, V. V. (1993). Electron diffraction by Langmuir–Blodgett films. Proc. R. Soc. London Ser. A, 442, 73–84.Google Scholar
Vainshtein, B. K. & Orlov, S. S. (1972). Theory of the recovery of functions from their projections. Sov. Phys. Crystallogr. 17, 213–216.Google Scholar
Vainshtein, B. K. & Orlov, S. S. (1974). General theory of direct 3D reconstruction. Proceedings of International Workshop, Brookhaven National Laboratory, pp. 158–164.Google Scholar
Van Heel, M. (1984). Multivariate statistical classification of noisy images (randomly oriented biological macromolecules). Ultramicroscopy, 13, 165–184.Google Scholar
Vilkov, L. V., Mastryukov, V. S. & Sadova, N. I. (1978). Determination of geometrical structure of free molecules. Leningrad: Khimiya. (In Russian.)Google Scholar
Vincent, R. & Exelby, D. R. (1991). Structure of metastable Al–Ge phases determined from HOLZ Patterson transforms. Philos. Mag. Lett. 63, 31–38.Google Scholar
Vincent, R. & Exelby, D. R. (1993). Structure of a metastable Al–Ge phase determined from large angle CBED patterns. Philos. Mag. B, 68, 513–528.Google Scholar
Vincent, R. & Midgley, P. A. (1994). Double conical beam rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy, 53, 271–282.Google Scholar
Voronova, A. A. & Vainshtein, B. K. (1958). An electron diffraction study of CuCl2·3Cu(OH)2. Sov. Phys. Crystallogr. 3, 445–451.Google Scholar
Watanabe, D., Uyeda, R. & Kogiso, M. (1968). An apparent variation of structure factors for electrons with accelerating voltage. An observation through Kikuchi patterns. Acta Cryst. A24, 249–250.Google Scholar
Wenk, H.-R., Downing, K. H., Ho, M.-S. & O'Keefe, M. A. (1992). 3D structure determination from electron-microscope images: electron crystallography of staurolite. Acta Cryst. A48, 700–716.Google Scholar
Wilson, A. J. C. (1949). The probability distribution of X-ray intensities. Acta Cryst. 2, 318–321.Google Scholar
Withers, R. L., Schmid, S. & Thompson, J. G. (1993). A composite modulated structure approach to the lanthanide oxide fluoride, uranium nitride fluoride and zirconium nitride fluoride solid-solution fields. Acta Cryst. B49, 941–951.Google Scholar
Wolff, P. M. de, Janssen, T. & Janner, A. (1981). The superspace groups for incommensurate crystal structures with a one-dimensional modulation. Acta Cryst. A37, 625–636.Google Scholar
Xiang, S.-B., Fan, H.-F., Wu, X.-J., Li, F.-H. & Pan, Q. (1990). Direct methods in superspace. II. The first application to an unknown incommensurate modulated structure. Acta Cryst. A46, 929–934.Google Scholar
Yao, J.-X. (1981). On the application of phase relationships to complex structures. XVIII. RANTAN – random MULTAN. Acta Cryst. A37, 642–644.Google Scholar
Zemlin, F., Reuber, E., Beckmann, E., Zeitler, E. & Dorset, D. L. (1985). Molecular resolution electron micrographs of monolamellar paraffin crystal. Science, 229, 461–462.Google Scholar
Zhukhlistov, A. P., Avilov, A. S., Ferraris, G., Zvyagin, B. B. & Plotnikov, V. P. (1997). Statistical distribution of hydrogen over three positions in the brucite Mg(OH)2 structure from electron diffractometry data. Crystallogr. Rep. 42, 774–777.Google Scholar
Zhukhlistov, A. P. & Zvyagin, B. B. (1998). Crystal structure of lizardite 1T from electron diffractometry data. Crystallogr. Rep. 43, 950–955.Google Scholar
Zuo, J. M., Gjønnes, K. & Spence, J. C. H. (1989). A FORTRAN source listing for simulating three-dimensional CBED patterns with absorption by the Bloch wave method. J. Electron Microsc. Tech. 12, 29–55.Google Scholar
Zvyagin, B. B. (1967). Electron-diffraction analysis of clay mineral structures. New York: Plenum.Google Scholar
Zvyagin, B. B., Vrublevskaya, Z. V., Zhukhlistov, A. P., Sidorenko, S. V., Soboleva, A. F. & Fedotov, A. F. (1979). High-voltage electron diffraction investigations of layered minerals. Moscow: Nauka. (In Russian).Google Scholar
Zvyagin, B. B., Zhukhlistov, A. P. & Plotnikov, A. P. (1996). Development of the electron diffractometry of minerals. Structural studies of crystals. (Coll. Works 75th Anniversary Acad. B. K. Vainshtein.) Nauka-Physmathlit, pp. 225–234. (In Russian).Google Scholar