International
Tables for
Crystallography
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2006). Vol. B. ch. 2.5, pp. 296-297   | 1 | 2 |

Table 2.5.3.4 

P. Goodmanb

Table 2.5.3.4| top | pdf |
Tabulation of principal-axis CBED pattern symmetries against relevant space groups given as IT A numbers

Three columns of diperiodic groups (central section) correspond to (i) symmorphic groups, (ii) non-symmorphic groups (GS bands) and (iii) non-symmorphic groups (zero-layer absences arising from horizontal glide planes). Cubic space groups are given underlined in the right-hand section with the code: underlining = [001](cyclic) setting; italics + underlining = [110](cyclic) setting. Separators `;' and `:' indicate change of Bravais lattice type and change of crystal system, respectively.

DGIIISGIII
Point groupsDiperiodic groupsSpace groups
H–MBESR(i)(ii)(iii)Subgroups IIb (Subgroups 1)
Oblique Triclinic
1 1 1 p1     1  
2* [\bar{1}] [2_{R}] [p\bar{1}']     2  
  Monoclinic (Oblique)
3 12 2 p2     3 4, 5
4 1m [1_{R}] pm     6 8
5 1m       pb 7 9
6* [2/m] [21_{R}] [p2/m']     10 11, 12
7* [2/m] [21_{R}]     [p2/b'] 13 14, 15
Rectangular (Rectangular)
8 21 [m_{R}] p2′     3 52: 195; 197, 199
9 21 [m_{R}]   [p2'_{1}]   4 198
10 21 [m_{R}] c2′     5 196
11 m1 m pm     62 7, 82
12 m1 m   pa   72 92
13 m1 m cm     8 9
14* [12/m] [2_{R}mm_{R}] [p2'/m]     10 13, 122: 200, 201; 204
15* [12/m] [2_{R}mm_{R}]   [p2'_{1}/m]   11 14
16* [12/m] [2_{R}mm_{R}]   [p2'/a]   132 152: 206
17* [12/m] [2_{R}mm_{R}]   [p2'_{1}/m]   142 205
18* [12/m] [2_{R}mm_{R}] [c2'/m]     12 15: 202, 203
  Orthorhombic
19 222 [2m_{R}m_{R}] p2′2′2     16 17; 212; 22: 195; 196, 207, 206; 211, 214
20 222 [2m_{R}m_{R}]   [p2'_{1}2'2]   172 182; 202: 212, 213
21 222 [2m_{R}m_{R}]   [p2'_{1}2'_{1}2]   18 19: 198
22 222 [2m_{R}m_{R}] c2′2′2     21 20; 23, 24: 197, 199, 209, 210
23 mm2 2mm pmm2     25 26, 27; 38, 39; 42
24 mm2 2mm   pbm2   28 29, 30, 312; 40, 41
25 mm2 2mm   pba2   32 33, 34; 43
26 mm2 2mm cmm2     35 36, 37; 44, 45, 46
27 mm2 [m1_{R}] p2′mm     252 281; 352, 422; 382, 392: 215; 217
28 mm2 [m1_{R}]   [p2'_{1}m'a]   261 311; 361
29 mm2 [m1_{R}]   [p2'_{1}ab'] [(p2'_{1}ab')] 292 332
30 mm2 [m1_{R}]     [p2'_{1}ma'] 262 291; 362
31 mm2 [m1_{R}]     [p2'_{1}mn'] 312 332
32 mm2 [m1_{R}]     p2′mb 282 322, 402, 412
33 mm2 [m1_{R}]     p2′aa 272 302; 372
34 mm2 [m1_{R}]     [pb2'n'] 301 342; 432: 218; 219
35 mm2 [m1_{R}] c2′mm     381 401; 442, 461: 216; 220
36 mm2 [m1_{R}]     c2′mb 391 411; 452, 462
37* mmm [2mm1_{R}] pmmm     47 49, 511; 652, 672; 69:
              200; 202, 221, 224, 226, 228, 229
38* mmm [2mm1_{R}]   [pbmm'\; (2'_{1})]   512 531, 57, 592; 631, 641
39* mmm [2mm1_{R}]   [pbam'\; (2'_{1}2'_{1})]   55 58, 622
40* mmm [2mm1_{R}]   [pmab'\; (2'_{1}2'_{1})] [(pmab')] 571 602, 61, 62: 205
41* mmm [2mm1_{R}]   [pbaa'\; (2'_{1})] [(pbaa')] 542 52, 562, 601
42* mmm [2mm1_{R}]     [pmma'\; (2'_{1})] 51 54, 552, 572; 632, 642
43* mmm [2mm1_{R}]     pmmn[(2'_{1}2'_{1})] 59 56, 621
44* mmm [2mm1_{R}]     [pbmn'\; (2'_{1})] 532 521, 581, 60
45* mmm [2mm1_{R}]     pmaa 492 502, 53, 541; 662, 681: 222, 223
46* mmm [2mm1_{R}]     pban 50 522, 48; 70: 201; 203, 230
47* mmm [2mm1_{R}] cmmm     65 63, 66; 72, 742, 71: 204, 225, 227
48* mmm [2mm1_{R}]     cmma 67 64, 68; 721, 74, 73: 206
Square Tetragonal
49 4 4 p4     75 77, 76, 78; 79, 80
50 [4/m] [41_{R}] [p4/m']     83 84; 87
51 [4/m] [41_{R}]     [p4/n'] 85 86, 88
52 422 [4m_{R}m_{R}] [p42'2']     89 93, 91, 95; 97, 98:
              207, 208; 209, 210; 211, 214
53 422 [4m_{R}m_{R}]   [p42'_{1}2']   90 94, 92, 96: 212, 213
54 4mm 4mm [p4mm]     99 101, 103, 105; 107, 108
55 4mm 4mm   [p4bm]   100 102, 104, 106; 109, 110
56* [4/mmm] [4mm1_{R}] [p4/m'mm]     123 124, 131, 132; 139, 140;
              221, 223; 225, 226; 229
57* [4/mmm] [4mm1_{R}]   [p4/m'bm\; (2'_{1})]   127 128, 135, 136
58* [4/mmm] [4mm1_{R}]     [p4/n'bm] 125 126, 133, 134; 141, 142:
              222, 224; 227, 228; 230
59* [4/mmm] [4mm1_{R}]     [p4/n'mm\; (2'_{1})] 129 130, 137, 138
60 [\bar{4}] [4_{R}] [p\bar{4}']     81 82
61 [\bar{4}2m] [4_{R}mm_{R}] [p\bar{4}'m\bar{2}']     115 116; 119, 120
62 [\bar{4}2m] [4_{R}mm_{R}]   [p\bar{4}b2']   117 118; 122: 220
63 [\bar{4}2m] [4_{R}mm_{R}] [p\bar{4}'2'm]     111 112; 121: 215; 216; 217; 218; 219
64 [\bar{4}2m] [4_{R}mm_{R}]   [p4'2'_{1}m]   113 114
Hexagonal Trigonal
65 3 3 p3     143 144, 145; 146
66 [\bar{3}] [6_{R}] [p\bar{3}']     147 148
67 32 [3m_{R}] p312′     149 151, 153
68 32 [3m_{R}] [p32'1]     150 152, 154; 155
69 3m 3m p31m     157 159
70 3m 3m p3m1     156 158; 160, 161
71* [\bar{3}m] [6_{R}mm_{R}] [p\bar{3}'1m]     162 163
72* [\bar{3}m] [6_{R}mm_{R}] [p\bar{3}'m1]     164 165; 166, 167
  Hexagonal
73 6 6 p6     168 171, 172, 173, 169, 170
74 [\bar{6}] [31_{R}] [p3/m'\; (p\bar{6}')]     174  
75 622 [6m_{R}m_{R}] [p62'2']     177 180, 181, 182, 178, 179
76 6mm 6mm [p6mm]     183 184, 185, 186
77* [6/m] [61_{R}] [p6/m']     175 176
78* [6/mmm] [6mm1_{R}] [p6/m'mm]     191 192, 193, 194
79 [\bar{6}m2] [3m1_{R}] [p3/m'2'm] [(p\bar{6}'m2')]     189 190
80 [\bar{6}m2] [3m1_{R}] [p3/m'm2'] [(p\bar{6}'2'm)]     187 188