International
Tables for
Crystallography
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2006). Vol. B. ch. 3.3, pp. 360-384   | 1 | 2 |
https://doi.org/10.1107/97809553602060000561

Chapter 3.3. Molecular modelling and graphics

R. Diamonda*

aMRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England
Correspondence e-mail: rd10@cam.ac.uk

References

First citation Abad-Zapatero, C., Abdel-Meguid, S. S., Johnson, J. E., Leslie, A. G. W., Rayment, I., Rossmann, M. G., Suck, D. & Tsukihara, T. (1980). Structure of southern bean mosaic virus at 2.8 Å resolution. Nature (London), 286, 33–39.Google Scholar
First citation Abi-Ezzi, S. S. & Bunshaft, A. J. (1986). An implementer's view of PHIGS. IEEE Comput. Graphics Appl. Vol. 6, Part 2.Google Scholar
First citation Aharonov, Y., Farach, H. A. & Poole, C. P. (1977). Non-linear vector product to describe rotations. Am. J. Phys. 45, 451–454.Google Scholar
First citation Allen, F. H., Bellard, S., Brice, M. D., Cartwright, B. A., Doubleday, A., Higgs, H., Hummelink, T., Hummelink-Peters, B. G., Kennard, O., Motherwell, W. D. S., Rodgers, J. R. & Watson, D. G. (1979). The Cambridge Crystallographic Data Centre: computer-based search, retrieval, analysis and display of information. Acta Cryst. B35, 2331–2339.Google Scholar
First citation Allinger, N. L. (1976). Calculation of molecular structure and energy by force field methods. Adv. Phys. Org. Chem. 13, 1–82.Google Scholar
First citation Altona, C. & Sundaralingam, M. (1972). Conformational analysis of the sugar ring in nucleosides and nucleotides. A new description using the concept of pseudorotation. J. Am. Chem. Soc. 94(23), 8205–8212.Google Scholar
First citation American National Standards Institute, American National Standard for Information Processing Systems – Computer Graphics – Graphical Kernel System (GKS) Functional Description (1985). ISO 7942, ISO Central Secretariat, Geneva, Switzerland.Google Scholar
First citation American National Standards Institute, American National Standard for Information Processing Systems – Computer Graphics – Programmer's Hierarchical Graphics System (PHIGS) Functional Description, Archive File Format, Clear-Text Encoding of Archive File (1988). ANSI X3.144–1988. ANSI, New York, USA.Google Scholar
First citation Anderson, S. (1984). Graphical representation of molecules and substructure-search queries in MACCS. J. Mol. Graphics, 2, 83–90.Google Scholar
First citation Arnold, D. B. & Bono, P. R. (1988). CGM and CGI: metafile and interface standards for computer graphics. Berlin: Springer-Verlag.Google Scholar
First citation Barry, C. D. & North, A. C. T. (1971). The use of a computer-controlled display system in the study of molecular conformations. Cold Spring Harbour Symp. Quant. Biol. 36, 577–584.Google Scholar
First citation Bash, P. A., Pattabiraman, N., Huang, C., Ferrin, T. E. & Langridge, R. (1983). Van der Waals surfaces in molecular modelling: implementation with real-time computer graphics. Science, 222, 1325–1327.Google Scholar
First citation Beddell, C. J. (1970). An X-ray crystallographic study of the activity of lysozyme. DPhil thesis, University of Oxford, England.Google Scholar
First citation Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T. & Tasumi, M. (1977). The Protein Data Bank: a computer-based archival file for macromolecular structures. J. Mol. Biol. 112, 535–542.Google Scholar
First citation Bloomer, A. C., Champness, J. N., Bricogne, G., Staden, R. & Klug, A. (1978). Protein disk of tobacco mosaic virus at 2.8 Å resolution showing the interactions within and between subunits. Nature (London), 276, 362–368.Google Scholar
First citation Boyd, D. B. & Lipkowitz, K. B. (1982). Molecular mechanics, the method and its underlying philosophy. J. Chem. Educ. 59, 269–274.Google Scholar
First citation Brandenburg, N. P., Dempsey, S., Dijkstra, B. W., Lijk, L. J. & Hol, W. G. J. (1981). An interactive graphics system for comparing and model building of macromolecules. J. Appl. Cryst. 14, 274–279.Google Scholar
First citation Brooks, B. R., Brucolleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S. & Karplus, M. (1983). CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217.Google Scholar
First citation Brown, M. D. (1985). Understanding PHIGS. Template, Megatek Corp., San Diego, California, USA.Google Scholar
First citation Burkert, U. & Allinger, N. L. (1982). Molecular mechanics. ACS Monogr. No. 177.Google Scholar
First citation Cambillau, C. & Horjales, E. (1987). TOM: a FRODO subpackage for protein-ligand fitting with interactive energy minimization. J. Mol. Graphics, 5, 174–177.Google Scholar
First citation Cambillau, C., Horjales, E. & Jones, T. A. (1984). TOM, a display program for fitting ligands into protein receptors and performing interactive energy minimization. J. Mol. Graphics, 2, 53–54.Google Scholar
First citation Cambridge Structural Database (1994). Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England.Google Scholar
First citation Cockrell, P. R. (1983). A new general purpose method for large volume production of contour charts. Comput. Graphics Forum, 2, 35–47.Google Scholar
First citation Cohen, N. C. (1971). GEMO: a computer program for the calculation of the preferred conformations of organic molecules. Tetrahedron, 27, 789–797.Google Scholar
First citation Cohen, N. C., Colin, P. & Lemoine, G. (1981). Script: interactive molecular geometrical treatments on the basis of computer-drawn chemical formula. Tetrahedron, 37, 1711–1721.Google Scholar
First citation Collins, D. M., Cotton, F. A., Hazen, E. E., Meyer, E. F. & Morimoto, C. N. (1975). Protein crystal structures: quicker, cheaper approaches. Science, 190, 1047–1053.Google Scholar
First citation Connolly, M. L. (1983a). Solvent-accessible surfaces of proteins and nucleic acids. Science, 221, 709–713.Google Scholar
First citation Connolly, M. L. (1983b). Analytical molecular surface calculation. J. Appl. Cryst. 16, 548–558.Google Scholar
First citation Dam, A. van (1988). PHIGS+ functional description, revision 3.0. Comput. Graphics, 22, 125–218.Google Scholar
First citation Dayringer, H. E., Tramontano, A., Sprang, S. R. & Fletterick, R. J. (1986). Interactive program for visualization and modelling of proteins, nucleic acids and small molecules. J. Mol. Graphics, 4, 82–87.Google Scholar
First citation Diamond, R. (1966). A mathematical model-building procedure for proteins. Acta Cryst. 21, 253–266.Google Scholar
First citation Diamond, R. (1971). A real-space refinement procedure for proteins. Acta Cryst. A27, 436–452.Google Scholar
First citation Diamond, R. (1976a). On the comparison of conformations using linear and quadratic transformations. Acta Cryst. A32, 1–10.Google Scholar
First citation Diamond, R. (1976b). Model building techniques for macromolecules. In Crystallographic computing techniques, edited by F. R. Ahmed, K. Huml & B. Sedlacek, pp. 336–343. Copenhagen: Munksgaard.Google Scholar
First citation Diamond, R. (1980a). BILDER: a computer graphics program for biopolymers and its application to the interpretation of the structure of tobacco mosaic virus protein discs at 2.8 Å resolution. In Biomolecular structure, conformation, function and evolution, Vol. 1, edited by R. Srinivasan, pp. 567–588. Oxford: Pergamon Press.Google Scholar
First citation Diamond, R. (1980b). Some problems in macromolecular map interpretation. In Computing in crystallography, edited by R. Diamond, S. Ramaseshan & K. Venkatesan, pp. 21.01–21.19. Bangalore: Indian Academy of Sciences for the International Union of Crystallography.Google Scholar
First citation Diamond, R. (1980c). Inter-active graphics. In Computing in crystallography, edited by R. Diamond, S. Ramaseshan & K. Venkatesan, pp. 27.01–27.16. Bangalore: Indian Academy of Sciences for the International Union of Crystallography.Google Scholar
First citation Diamond, R. (1981). A review of the principles and properties of the method of least squares. In Structural aspects of biomolecules, edited by R. Srinivasan & V. Pattabhi, pp. 81–122. Delhi: Macmillan India Ltd.Google Scholar
First citation Diamond, R. (1982a). Two contouring algorithms. In Computational crystallography, edited by D. Sayre, pp. 266–272. Oxford University Press.Google Scholar
First citation Diamond, R. (1982b). BILDER: an interactive graphics program for biopolymers. In Computational crystallography, edited by D. Sayre, pp. 318–325. Oxford University Press.Google Scholar
First citation Diamond, R. (1984a). Applications of computer graphics in molecular biology. Comput. Graphics Forum, 3, 3–11.Google Scholar
First citation Diamond, R. (1984b). Least squares and related optimisation techniques. In Methods and applications in crystallographic computing, edited by S. R. Hall & T. Ashida, pp. 174–192. Oxford University Press.Google Scholar
First citation Diamond, R. (1988). A note on the rotational superposition problem. Acta Cryst. A44, 211–216.Google Scholar
First citation Diamond, R. (1989). A comparison of three recently published methods for superimposing vector sets by pure rotation. Acta Cryst. A45, 657.Google Scholar
First citation Diamond, R. (1990a). On the factorisation of rotations with special reference to diffractometry. Proc. R. Soc. London Ser. A, 428, 451–472.Google Scholar
First citation Diamond, R. (1990b). Chirality in rotational superposition. Acta Cryst. A46, 423.Google Scholar
First citation Diamond, R., Wynn, A., Thomsen, K. & Turner, J. (1982). Three-dimensional perception for one-eyed guys, or, the use of dynamic parallax. In Computational crystallography, edited by D. Sayre, pp. 286–293. Oxford University Press.Google Scholar
First citation Dodson, E. J., Isaacs, N. W. & Rollett, J. S. (1976). A method for fitting satisfactory models to sets of atomic positions in protein structure refinements. Acta Cryst. A32, 311–315.Google Scholar
First citation Dodson, G. G., Eliopoulos, E. E., Isaacs, N. W., McCall, M. J., Niall, H. D. & North, A. C. T. (1982). Rat relaxin: insulin-like fold predicts a likely receptor binding region. Int. J. Biol. Macromol. 4, 399–405.Google Scholar
First citation Enderle, G., Kansy, K. & Pfaff, G. (1984). Computer graphics programming, GKS – the graphics standard. Berlin: Springer-Verlag.Google Scholar
First citation Evans, P. R., Farrants, G. W. & Hudson, P. J. (1981). Phosphofructokinase: structure and control. Philos. Trans. R. Soc. London Ser. B, 293, 53–62.Google Scholar
First citation Feldmann, R. J. (1976). The design of computing systems for molecular modeling. Annu. Rev. Biophys. Bioeng. 5, 477–510.Google Scholar
First citation Feldmann, R. J. (1983). Directions in macromolecular structure representation and display. In Computer applications in chemistry, edited by S. R. Heller & R. Potenzone Jr, pp. 9–18. Amsterdam: Elsevier.Google Scholar
First citation Feldmann, R. J., Bing, D. H., Furie, B. C. & Furie, B. (1978). Interactive computer surface graphics approach to the study of the active site of bovine trypsin. Proc. Natl Acad. Sci. Biochemistry, 75, 5409–5412.Google Scholar
First citation Ferrin, T. E., Huang, C., Jarvis, L. & Langridge, R. (1984). Molecular inter-active display and simulation: MIDAS. J. Mol. Graphics, 2, 55.Google Scholar
First citation Foley, J. D., van Dam, A., Feiner, S. K. & Hughes, J. F. (1990). Computer graphics principles and practice, 2nd edition. New York: Addison Wesley.Google Scholar
First citation Ford, L. O., Johnson, L. N., Machin, P. A., Phillips, D. C. & Tjian, R. (1974). Crystal structure of a lysozyme-tetrasaccharide lactone complex. J. Mol. Biol. 88, 349–371.Google Scholar
First citation Gallo, L., Huang, C. & Ferrin, T. (1983). UCSF MIDAS, molecular interactive display and simulation, users' guide. Computer Graphics Laboratory, School of Pharmacy, University of California, San Francisco, USA.Google Scholar
First citation Gill, P. E., Murray, W. & Wright, M. H. (1981). Practical optimization. Orlando, Florida: Academic Press.Google Scholar
First citation Gilliland, G. L. & Quiocho, F. A. (1981). Structure of the L-arabinose-binding protein from Escherichia coli at 2.4 Å resolution. J. Mol. Biol. 146, 341–362.Google Scholar
First citation Girling, R. L., Houston, T. E., Schmidt, W. C. Jr & Amma, E. L. (1980). Macromolecular structure refinement by restrained least-squares and interactive graphics as applied to sickling deer type III hemoglobin. Acta Cryst. A36, 43–50.Google Scholar
First citation Gossling, T. H. (1967). Two methods of presentation of electron-density maps using a small-store computer. Acta Cryst. 22, 465–468.Google Scholar
First citation Greer, J. (1974). Three-dimensional pattern recognition: an approach to automated interpretation of electron density maps of proteins. J. Mol. Biol. 82, 279–302.Google Scholar
First citation Harris, M. R., Geddes, A. J. & North, A. C. T. (1985). A liquid crystal stereo-viewer for molecular graphics. J. Mol. Graphics, 3, 121–122.Google Scholar
First citation Hass, B. S., Willoughby, T. V., Morimoto, C. N., Cullen, D. L. & Meyer, E. F. (1975). The solution of the structure of spirodienone by visual packing analysis. Acta Cryst. B31, 1225–1229.Google Scholar
First citation Heap, B. R. & Pink, M. G. (1969). Three contouring algorithms, DNAM Rep. 81. National Physical Laboratory, Teddington, England.Google Scholar
First citation Hermans, J. (1985). Rationalization of molecular models. In Methods in enzymology, Vol. 115. Diffraction methods for biological molecules, Part B, edited by H. W. Wyckoff, C. H. W. Hirs & S. N. Timasheff, pp. 171–189. Orlando, Florida: Academic Press.Google Scholar
First citation Hermans, J. & McQueen, J. E. (1974). Computer manipulation of (macro) molecules with the method of local change. Acta Cryst. A30, 730–739.Google Scholar
First citation Hogle, J., Rao, S. T., Mallikarjunan, M., Beddell, C., McMullan, R. K. & Sundaralingam, M. (1981). Studies of monoclinic hen egg white lysozyme. Structure solution at 4 Å resolution and molecular-packing comparisons with tetragonal and triclinic lysozymes. Acta Cryst. B37, 591–597.Google Scholar
First citation Hopgood, F. R. A., Duce, D. A., Gallop, J. R. & Sutcliffe, D. C. (1986). Introduction to the graphical kernel system, 2nd ed. London: Academic Press.Google Scholar
First citation Hubbard, R. E. (1983). Colour molecular graphics on a microcomputer. J. Mol. Graphics, 1, 13–16, C3–C4.Google Scholar
First citation Hubbard, R. E. (1985). The representation of protein structure. In Computer aided molecular design, pp. 99–106. Proceedings of a two-day conference, London, October 1984. London: Oyez Scientific.Google Scholar
First citation International Standards Organisation, International Standard Information Processing Systems – Computer Graphics – Graphical Kernel System for Three Dimensions (GKS-3D), Functional Description (1988). ISO Document No. 8805:1988(E). American National Standards Institute, New York, USA.Google Scholar
First citation International Tables for Crystallography (2005). Vol. A. Space-group symmetry, edited by T. Hahn. Heidelberg: Springer.Google Scholar
First citation IUPAC–IUB Commission on Biochemical Nomenclature (1970). Abbreviations and symbols for the description of the conformation of polypeptide chains. J. Biol. Chem. 245, 6489–6497.Google Scholar
First citation Johnson, C. K. (1970). Drawing crystal structures by computer. In Crystallographic computing, edited by F. R. Ahmed, pp. 227–230. Copenhagen: Munksgaard.Google Scholar
First citation Johnson, C. K. (1976). ORTEPII. A Fortran thermal-ellipsoid plot program for crystal structure illustrations. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.Google Scholar
First citation Johnson, C. K. (1980). Computer-generated illustrations. In Computing in crystallography, edited by R. Diamond, S. Ramaseshan & K. Venkatesan, pp. 26.01–26.10. Bangalore: Indian Academy of Sciences for the International Union of Crystallography.Google Scholar
First citation Jones, T. A. (1978). A graphics model building and refinement system for macromolecules. J. Appl. Cryst. 11, 268–272.Google Scholar
First citation Jones, T. A. (1982). FRODO: a graphics fitting program for macromolecules. In Computational crystallography, edited by D. Sayre, pp. 303–317. Oxford University Press.Google Scholar
First citation Jones, T. A. (1985). Interactive computer graphics: FRODO. In Methods in enzymology, Vol. 115. Diffraction methods for biological molecules, Part B, edited by H. W. Wyckoff, C. H. W. Hirs & S. N. Timasheff, pp. 157–171. Orlando, Florida: Academic Press.Google Scholar
First citation Jones, T. A. & Liljas, L. (1984). Crystallographic refinement of macromolecules having non-crystallographic symmetry. Acta Cryst. A40, 50–57.Google Scholar
First citation Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. (1991). Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Cryst. A47, 110–119.Google Scholar
First citation Kabsch, W. (1976). A solution for the best rotation to relate two sets of vectors. Acta Cryst. A32, 922–923.Google Scholar
First citation Kabsch, W. (1978). A discussion of the solution for the best rotation to relate two sets of vectors. Acta Cryst. A34, 827–828.Google Scholar
First citation Katz, L. & Levinthal, C. (1972). Interactive computer graphics and representation of complex biological structures. Annu. Rev. Biophys. Bioeng. 1, 465–504.Google Scholar
First citation Kearsley, S. K. (1989). On the orthogonal transformation used for structural comparisons. Acta Cryst. A45, 208–210.Google Scholar
First citation Langridge, R., Ferrin, T. E., Kuntz, I. D. & Connolly, M. L. (1981). Real-time color graphics in studies of molecular interactions. Science, 211, 661–666.Google Scholar
First citation Lederer, F., Glatigny, A., Bethge, P. H., Bellamy, H. D. & Mathews, F. S. (1981). Improvement of the 2.5 Å resolution model of cytochrome b562 by re-determining the primary structure and using molecular graphics. J. Mol. Biol. 148, 427–448.Google Scholar
First citation Lesk, A. M. & Hardman, K. D. (1982). Computer-generated schematic diagrams of protein structures. Science, 216, 539–540.Google Scholar
First citation Lesk, A. M. & Hardman, K. D. (1985). Computer-generated pictures of proteins. In Methods in enzymology, Vol. 115. Diffraction methods for biological molecules, Part B, edited by H. W. Wyckoff, C. H. W. Hirs & S. N. Timasheff, pp. 381–390. Orlando, Florida: Academic Press.Google Scholar
First citation Levinthal, C. (1966). Molecular model-building by computer. Sci. Am. 214, 42–52.Google Scholar
First citation Levitt, M. (1971). PhD Dissertation, ch. 2. University of Cambridge, England.Google Scholar
First citation Levitt, M. (1974). Energy refinement of hen egg-white lysozyme. J. Mol. Biol. 82, 393–420.Google Scholar
First citation Levitt, M. & Lifson, S. (1969). Refinement of protein conformations using a macromolecular energy minimization procedure. J. Mol. Biol. 46, 269–279.Google Scholar
First citation Levitt, M. & Warshel, A. (1975). Computer simulation of protein folding. Nature (London), 253, 694–698.Google Scholar
First citation Lieth, C. W. van der, Carter, R. E., Dolata, D. P. & Liljefors, T. (1984). RINGS – a general program to build ring systems. J. Mol. Graphics, 2, 117–123.Google Scholar
First citation Liljefors, T. (1983). MOLBUILD – an interactive computer graphics interface to molecular mechanics. J. Mol. Graphics, 1, 111–117.Google Scholar
First citation Luenberger, D. G. (1984). Linear and nonlinear programming. Reading, Massachusetts: Addison Wesley.Google Scholar
First citation Mackay, A. L. (1984). Quaternion transformation of molecular orientation. Acta Cryst. A40, 165–166.Google Scholar
First citation McLachlan, A. D. (1972). A mathematical procedure for superimposing atomic coordinates of proteins. Acta Cryst. A28, 656–657.Google Scholar
First citation McLachlan, A. D. (1979). Gene duplications in the structural evolution of chymotrypsin. Appendix: Least squares fitting of two structures. J. Mol. Biol. 128, 49–79.Google Scholar
First citation McLachlan, A. D. (1982). Rapid comparison of protein structures. Acta Cryst. A38, 871–873.Google Scholar
First citation Max, N. L. (1984). Computer representation of molecular surfaces. J. Mol. Graphics, 2, 8–13, C2–C4.Google Scholar
First citation Meyer, E. F. (1970). Three-dimensional graphical models of molecules and a time-slicing computer. J. Appl. Cryst. 3, 392–395.Google Scholar
First citation Meyer, E. F. (1971). Interactive computer display for the three dimensional study of macromolecular structures. Nature (London), 232, 255–257.Google Scholar
First citation Meyer, E. F. (1974). Storage and retrieval of macromolecular structural data. Biopolymers, 13, 419–422.Google Scholar
First citation Miller, J. R., Abdel-Meguid, S. S., Rossmann, M. G. & Anderson, D. C. (1981). A computer graphics system for the building of macromolecular models into electron density maps. J. Appl. Cryst. 14, 94–100.Google Scholar
First citation Morffew, A. J. (1983). Bibliography for molecular graphics. J. Mol. Graphics, 1, 17–23.Google Scholar
First citation Morffew, A. J. (1984). Bibliography for molecular graphics, 1983/84. J. Mol. Graphics, 2, 124–128.Google Scholar
First citation Morimoto, C. N. & Meyer, E. F. (1976). Information retrieval, computer graphics, and remote computing. In Crystallographic computing techniques, edited by F. R. Ahmed, K. Huml & B. Sedlacek, pp. 488–496. Copenhagen: Munksgaard.Google Scholar
First citation Motherwell, W. D. S. (1978). Pluto – a program for displaying molecular and crystal structures. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England.Google Scholar
First citation Newman, W. M. & Sproull, R. F. (1973). Principles of inter-active computer graphics. New York: McGraw-Hill.Google Scholar
First citation North, A. C. T. (1982). Use of interactive computer graphics in studying molecular structures and interactions. Chem. Ind. pp. 221–225.Google Scholar
First citation North, A. C. T., Denson, A. K., Evans, A. C., Ford, L. O. & Willoughby, T. V. (1981). The use of an interactive computer graphics system in the study of protein conformations. In Biomolecular structure, conformation, function and evolution, Vol. 1, edited by R. Srinivasan, pp. 59–72. Oxford: Pergamon Press.Google Scholar
First citation O'Donnell, T. J. & Olson, A. J. (1981). GRAMPS – a graphics language interpreter for real-time, interactive, three-dimensional picture editing and animation. Comput. Graphics, 15, 133–142.Google Scholar
First citation Olson, A. J. (1982). GRAMPS: a high level graphics interpreter for expanding graphics utilization. In Computational crystallography, edited by D. Sayre, pp. 326–336. Oxford University Press.Google Scholar
First citation Opdenbosch, N. van, Cramer, R. III & Giarrusso, F. F. (1985). Sybyl, the integrated molecular modelling system. J. Mol. Graphics, 3, 110–111.Google Scholar
First citation Pearl, L. H. & Honegger, A. (1983). Generation of molecular surfaces for graphic display. J. Mol. Graphics, 1, 9–12, C2.Google Scholar
First citation Phillips, S. E. V. (1980). Structure and refinement of oxymyoglobin at 1.6 Å resolution. J. Mol. Biol. 142, 531–554.Google Scholar
First citation Phong, B. T. (1975). Illumination for computer generated images. Commun. ACM, 18, 311–317.Google Scholar
First citation Porter, T. K. (1978). Spherical shading. Comput. Graphics, 12, 282–285.Google Scholar
First citation Potenzone, R., Cavicchi, E., Weintraub, H. J. R. & Hopfinger, A. J. (1977). Molecular mechanics and the CAMSEQ processor. Comput. Chem. 1, 187–194.Google Scholar
First citation Potterton, E. A., Geddes, A. J. & North, A. C. T. (1983). Attempts to design inhibitors of dihydrofolate reductase using interactive computer graphics with real time energy calculations. In Chemistry and biology of pteridines, edited by J. A. Blair, pp. 299–303. Berlin, New York: Walter de Gruyter.Google Scholar
First citation Purisima, E. O. & Scheraga, H. A. (1986). An approach to the multiple-minima problem by relaxing dimensionality. Proc. Natl Acad. Sci. USA, 83, 2782–2786.Google Scholar
First citation Richardson, J. S. (1977). β-Sheet topology and the relatedness of proteins. Nature (London), 268, 495–500.Google Scholar
First citation Richardson, J. S. (1981). The anatomy and taxonomy of protein structure. Adv. Protein Chem. 34, 167–339.Google Scholar
First citation Richardson, J. S. (1985). Schematic drawings of protein structures. In Methods in enzymology, Vol. 115. Diffraction methods for biological molecules, Part B, edited by H. W. Wyckoff, C. H. W. Hirs & S. N. Timasheff, pp. 359–380. Orlando, Florida: Academic Press.Google Scholar
First citation Sundaram, K. & Radhakrishnan, R. (1979). A computer program for topographic analysis of biomolecular systems. Comput. Programs Biomed. 10, 34–42.Google Scholar
First citation Sutcliffe, D. C. (1980). Contouring over rectangular and skewed rectangular grids – an introduction. In Mathematical methods in computer graphics and design, edited by K. W. Brodie, pp. 39–62. London: Academic Press.Google Scholar
First citation Sutherland, I. E., Sproull, R. F. & Schumacker, R. A. (1974). A characterization of ten hidden surface algorithms. Comput. Surv. 6, 1–55.Google Scholar
First citation Swanson, S. M., Wesolowski, T., Geller, M. & Meyer, E. F. (1989). Animation: a useful tool for protein molecular dynamicists, applied to hydrogen bonds in the active site of elastase. J. Mol. Graphics, 7, 240–242, 223–224.Google Scholar
First citation Takenaka, A. & Sasada, Y. (1980). Computer manipulation of crystal and molecular models. J. Crystallogr. Soc. Jpn, 22, 214–225. [In Japanese.]Google Scholar
First citation Thomas, D. J. (1993). Toward more reliable printed stereo. J. Mol. Graphics, 11, 15–22.Google Scholar
First citation Tsernoglou, D., Petsko, G. A., McQueen, J. E. & Hermans, J. (1977). Molecular graphics: application to the structure determination of a snake venom neurotoxin. Science, 197, 1378–1381.Google Scholar
First citation Vedani, A. & Meyer, E. F. (1984). Structure–activity relationships of sulfonamide drugs and human carbonic anhydrase C: modelling of inhibitor molecules into receptor site of the enzyme with an interactive computer graphics display. J. Pharm. Sci. 73, 352–358.Google Scholar
First citation Walsh, G. R. (1975). Methods of optimization. London: John Wiley.Google Scholar
First citation Warme, P. K., Go, N. & Scheraga, H. A. (1972). Refinement of X-ray data of proteins. 1. Adjustment of atomic coordinates to conform to a specified geometry. J. Comput. Phys. 9, 303–317.Google Scholar
First citation Williams, T. V. (1982). Thesis. University of North Carolina at Chapel Hill, NC, USA.Google Scholar
First citation Willoughby, T. V., Morimoto, C. N., Sparks, R. A. & Meyer, E. F. (1974). Mini-computer control of a stereo graphics display. J. Appl. Cryst. 7, 430–434.Google Scholar
First citation Wipke, W. T. (1974). Computer assisted three-dimensional synthetic analysis. In Computer representation and manipulation of chemical information, edited by W. T. Wipke, S. R. Heller, R. J. Feldmann & E. Hyde, pp. 147–174. New York: John Wiley.Google Scholar
First citation Wipke, W. T., Braun, H., Smith, G., Choplin, F. & Sieber, W. (1977). SECS – simulation and evaluation of chemical synthesis: strategy and planning. ACS Symp. Ser. 61, 97–125.Google Scholar
First citation Wipke, W. T. & Dyott, T. M. (1974). Simulation and evaluation of chemical synthesis. Computer representation and manipulation of stereochemistry. J. Am. Chem. Soc. 96, 4825–4834.Google Scholar