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4.1. Thermal diffuse scattering of X-rays and neutrons

By B. T. M. WILLIS

4.1.1. Introduction

Thermal motion of the atoms in a crystal gives rise to a reduction in
the intensities of the Bragg reflections and to a diffuse distribution
of non-Bragg scattering in the rest of reciprocal space. This
distribution is known as thermal diffuse scattering (TDS).
Measurement and analysis of TDS gives information about the
lattice dynamics of the crystal, i.e. about the small oscillatory
displacements of the atoms from their equilibrium positions which
arise from thermal excitations. Lattice-dynamical models form the
basis for interpreting many physical properties — for example,
specific heat and thermal conductivity — which cannot be explained
by a static model of the crystal.

Reference to a lattice-dynamical model is found in Newton’s
Principia, which contains a discussion of the vibrations of a linear
chain of equidistant mass points connected by springs. The model
was used to estimate the speed of sound in air. The vibrational
properties of a one-dimensional crystal treated as a linear chain of
atoms provide the starting point for several modern treatises on the
lattice dynamics of crystals.

The classical theory of the dynamics of three-dimensional
crystals is based on the treatment of Born & von Kdrmdn (1912,
1913). In this theory, the restoring force on an atom is determined
not by the displacement of the atom from its equilibrium position,
but by its displacement relative to its neighbours. The atomic
motion is then considered in terms of travelling waves, or ‘lattice
vibrations’, extending throughout the whole crystal. These waves
are the normal modes of vibration, in which each mode is
characterized by a wavevector q, an angular frequency w(q) and
certain polarization properties.

For twenty years after its publication the Born—von Kdrman
treatment was eclipsed by the theory of Debye (1912). In the Debye
theory the crystal is treated as a continuous medium instead of a
discrete array of atoms. The theory gives a reasonable fit to the
integral vibrational properties (for example, the specific heat or the
atomic temperature factor) of simple monatomic crystals. It fails to
account for the form of the frequency distribution function which
relates the number of modes and their frequency.

An even simpler model than Debye’s is due to Einstein (1907),
who considered the atoms in the crystal to be vibrating
independently of each other and with the same frequency wg. By
quantizing the energy of each atom in units of /iwg, Einstein showed
that the specific heat falls to zero at 7= 0 K and rises asymptotically
to the Dulong and Petit value for 7 much larger than Awg /kp. (% is
Planck’s constant divided by 27 and kg is Boltzmann’s constant.)
His theory accounts satisfactorily for the breakdown of equiparti-
tion of energy at low temperatures, but it predicts a more rapid fall-
off of specific heat with decreasing temperature than is observed.

Deficiencies in the Debye theory were noted by Blackman
(1937), who showed that they are overcome satisfactorily using the
more rigorous Born—von Kdrman theory. Extensive X-ray studies of
Laval (1939) on simple structures such as sylvine, aluminium and
diamond showed that the detailed features of the TDS could only be
explained in terms of the Born—von Kdrman theory. The X-ray work
on aluminium was developed further by Olmer (1948) and by
Walker (1956) to derive the phonon dispersion relations (see
Section 4.1.5) along various symmetry directions in the crystal.

It is possible to measure the vibrational frequencies directly with
X-rays, but such measurements are very difficult as lattice
vibrational energies are many orders of magnitude less than X-ray
energies. The situation is much more favourable with thermal
neutrons because their wavelength is comparable with interatomic
spacings and their energy is comparable with a quantum of

vibrational energy (or phonon). The neutron beam is scattered
inelastically by the lattice vibrations, exchanging energy with the
phonons. By measuring the energy change for different directions of
the scattered beam, the dispersion relations w(q) can be determined.
Brockhouse & Stewart (1958) reported the first dispersion curves to
be derived in this way; since then the neutron technique has become
the principal experimental method for obtaining detailed informa-
tion about lattice vibrations.

In this chapter we shall describe briefly the standard treatment of
the lattice dynamics of crystals. There follows a section on the
theory of the scattering of X-rays by lattice vibrations, and a similar
section on the scattering of thermal neutrons. We then refer briefly
to experimental work with X-rays and neutrons. The final section is
concerned with the measurement of elastic constants: these
constants are required in calculating the TDS correction to
measured Bragg intensities (see Section 7.4.2 of IT C, 1999).

4.1.2. Dynamics of three-dimensional crystals

For modes of vibration of very long wavelength, the crystal can be
treated as a homogeneous elastic continuum without referring to its
crystal or molecular structure. The theory of the propagation of
these elastic waves is based on Hooke’s law of force and on
Newton’s equations of motion. As the wavelength of the vibrations
becomes shorter and shorter and approaches the separation of
adjacent atoms, the calculation of the vibrational properties requires
a knowledge of the crystal structure and of the nature of the forces
between adjacent atoms. The three-dimensional treatment is based
on the formulation of Born and von Karman, which is discussed in
detail in the book by Born & Huang (1954) and in more elementary
terms in the books by Cochran (1973) and by Willis & Pryor (1975).

Before setting up the equations of motion, it is necessary to
introduce three approximations:

(1) The harmonic approximation. When an atom is displaced
from its equilibrium position, the restoring force is assumed to be
proportional to the displacement, measured relative to the
neighbouring atoms. The approximation implies no thermal
expansion and other properties not possessed by real crystals; it is
a reasonable assumption in the lattice-dynamical theory provided
the displacements are not too large.

(i) The adiabatic approximation. We wish to set up a potential
function for the crystal describing the binding between the atoms.
However, the binding involves electronic motions whereas the
dynamics involve nuclear motions. The adiabatic approximation,
known as the Born—-Oppenheimer approximation in the context of
molecular vibrations, provides the justification for adopting the
same potential function to describe both the binding and the
dynamics. Its essence is that the electronic and nuclear motions may
be considered separately. This is possible if the nuclei move very
slowly compared with the electrons: the electrons can then
instantaneously take up a configuration appropriate to that of the
displaced nuclei without changing their quantum state. The
approximation holds well for insulators, where electronic transition
energies are high owing to the large energy gap between filled and
unfilled electron states. Surprisingly, it even works for metals,
because (on account of the Pauli principle) only a few electrons near
the Fermi level can make transitions.

(iii) Periodic boundary conditions. These are introduced to avoid
problems associated with the free surface. The system is treated as
an infinite crystal made up of contiguous, repeating blocks of the
actual crystal. The periodic (or cyclic) boundary conditions require
that the displacements of corresponding atoms in different blocks
are identical. The validity of the conditions was challenged by
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Raman (1941), but these objections were safely disposed of by
Ledermann (1944).

4.1.2.1. Equations of motion

As a result of thermal fluctuations, the atoms vibrate about their
equilibrium positions, so that the actual position of the xth atom in
the Ith primitive cell is given by

R(xl) = r(kl) + u(xl)

with r representing the equilibrium position and u the thermal
displacement. (In lattice-dynamical theory it is advantageous to deal
with the primitive cell, as it possesses the fewest degrees of
freedom.) The kinetic energy of the vibrating crystal is
(1/2) Elim(%)ﬂi(fil),

where m(k) is the mass of atom « and the index o (=1, 2, 3) refers
to the Cartesian components of the displacement. (The dot denotes
the time derivative.)

If the adiabatic approximation is invoked, the potential energy V
of the crystal can be expressed as a function of the instantaneous
atomic positions. Expanding V in powers of u(x/), using the three-
dimensional form of Taylor’s series, we have

V=vO vl 4y@py® g
where V(% is the static (equilibrium) potential and V(!), V(2
given by

are

ov
W=3"———| ua(rl)
klo au"(ﬁ’l) 0
1 aZV
V=3 | ua(Kl)uq (K1),
kla K'l'o! aua(lil)aua’(ﬁ/l/) 0

The subscript zero indicates that the derivatives are to be evaluated
at the equilibrium configuration. In the harmonic approximation,
V) and all higher terms in the expansion are neglected.

At equilibrium the forces on an atom must vanish, so that

v =o.

Ignoring the static potential V%, the quadratic term V() only
remains and the Hamiltonian for the crystal (the sum of the kinetic
and potential energies) is then

H =5 Y m(w)i (s

kla
1 kK
1529 S G IXCTAIEEE)

(4.1.2.1)

where @, is an element of the 3 x 3 ‘atomic force-constant
matrix” and is defined (for distinct atoms x/, 'l') by

o k K\ o0*V
N U )T Qug(kl)Ouy (K1)

It is the negative of the force in the o direction imposed on the atom
(kl) when atom (k'l') is displaced unit distance along o/ with all the
remaining atoms fixed at their equilibrium sites. ®,, is defined
differently for the self-term with k = " and [ = I":

Kk K kK
q)aa’<l l>:_;§¢aa’<l l/>

Kl£RT

0

Thus the self-matrix describes the force on (/) when the atom itself
is displaced with all the remaining atoms kept stationary.

There are restrictions on the number of distinct force constants
®,: these are imposed by symmetry and by the requirement that
the potential energy is invariant under infinitesimal translations and
rotations of the rigid crystal. Such constraints are discussed in the
book by Venkataraman et al. (1975).

Applying Hamilton’s equations of motion to equation (4.1.2.1)
now gives

/!
m(R)ia (1) = = 3 @ (7 y )uafwz/). (4122)
H//I/a/

These represent 3nN coupled differential equations, where n is the
number of atoms per primitive cell (x =1, ...,n) and N is the
number of cells per crystal (I =1, ...,N).

By applying the periodic boundary conditions, the solutions of
equation (4.1.2.2) can be expressed as running, or travelling, plane
waves extending throughout the entire crystal. The number of
independent waves (or normal modes) is 3nN. Effectively, we have
transferred to a new coordinate system: instead of specifying the
motion of the individual atoms, we describe the thermal motion in
terms of normal modes, each of which contributes to the
displacement of each atom. The general solution for the «
component of the displacement of (xl) is then given by the
superposition of the displacements from all modes:

o (kl) = [m()) "2 ; 14;(q)ea (kliq)

x exp{ilq - r(l) — wi(q)}-

Here q is the wavevector of a mode (specifying both its wavelength
and direction of propagation in the crystal) and w(q) its frequency.
There are N distinct wavevectors, occupying a uniformly distributed
mesh of N points in the Brillouin zone (reciprocal cell); each
wavevector is shared by 3n modes which possess, in general,
different frequencies and polarization properties. Thus an individual
mode is conveniently labelled (jq), where j is an index
(=1, ...,3n) indicating the branch. The scalar quantity |A;(q)|
in equation (4.1.2.3) is the amplitude of excitation of (jq) and
e (k[jq) is the element of the eigenvector e(jq) referring to the
displacement in the « direction of the atom k. The eigenvector
itself, with dimensions n X 1, determines the pattern of atomic
displacements in the mode (jq) and its magnitude is fixed by the
orthonormality and closure conditions

> ¢ (klig)ea(rl'a) = &

ar

(4.1.23)

and
Z €a (K’Uq)e;ky’ (K’, l]q) = 6&0/ 6;{»:’
J

with * indicating complex conjugate and 6 the Kronecker delta.

The pre-exponential, or amplitude, terms in (4.1.2.3) are
independent of the cell number. This follows from Bloch’s (1928)
theorem which states that, for corresponding atoms in different
cells, the motions are identical as regards their amplitude and
direction and differ only in phase. The theorem introduces an
enormous simplification as it allows us to restrict attention to the 3n
equations of motion of the n atoms in just one cell, rather than the
3nN equations of motion for all the atoms in the crystal.

Substitution of (4.1.2.3) into (4.1.2.2) gives the equations of
motion in the form

w; (@)ea(rlia) = X Do (5 |a)ew (v ljg),

o'k

(4.1.2.4)

in which D, is an element of the dynamical matrix D(q). D, is
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defined by
Do (k#'|q) = [m(r)m(r)] ' exp{iq[r(s') — ()]}

!

S ) enlia

where r(r) is the position of atom x with respect to the cell origin, L
is I' =1 and r(L) is the separation between cells / and /’. The
element D, is obtained by writing down the cc’ component of the
force constant between atoms &, s’ which are L cells apart and
multiplying by the phase factor expliq - r(L)]; this term is then
summed over those values of L covering the range of interaction of
k and .

The dynamical matrix is Hermitian and has dimensions 3n X 3n.
Its eigenvalues are the squared frequencies wf(q) of the normal
modes and its eigenvectors e(jq) determine’ the corresponding
pattern of atomic displacements. The frequencies of the modes in
three of the branches, j, go to zero as q approaches zero: these are
the acoustic modes. The remaining 3n — 3 branches contain the
optic modes. There are N distinct q vectors, and so, in all, there are
3N acoustic modes and (3n — 3)N optic modes. Thus copper has
acoustic modes but no optic modes, silicon and rock salt have an
equal number of both, and lysozyme possesses predominantly optic
modes.

(4.1.2.5)

4.1.2.2. Quantization of normal modes. Phonons

Quantum concepts are not required in solving the equations of
motion (4.1.2.4) to determine the frequencies and displacement
patterns of the normal modes. The only place where quantum
mechanics is necessary is in calculating the energy of the mode, and
from this the amplitude of vibration |A;(q)|.

It is possible to discuss the theory of lattice dynamics from the
beginning in the language of quantum mechanics (Donovan &
Angress, 1971). Instead of treating the modes as running waves,
they are conceived as an assemblage of indistinguishable quasi-
particles called phonons. Phonons obey Bose—FEinstein statistics and
are not limited in number. The number of phonons, each with
energy /w;j(q) in the vibrational state specified by q and j, is given

by

nj(a) = {expliw;(q) /ksT] — 1} (4.1.2.6)
and the mode energy E;j(q) by
Ej(q) = hwj(q@)[n(q) + (1/2)]. (4.12.7)

Thus the quantum number n;(q) describes the degree of excitation
of the mode (jq). The relation between E;(q) and the amplitude

|Aj(q)] is
E(q) = Nw? (q)|4;(q)[.

Equations (4.1.2.6) to (4.1.2.8) together determine the value of
|A;(q)| to be substituted into equation (4.1.2.3) to give the atomic
displacement in terms of the absolute temperature and the properties
of the normal modes.

In solving the lattice-dynamical problem using the Born-von
Kédrmdn analysis, the first step is to set up a force-constant matrix
describing the interactions between all pairs of atoms. This is
followed by the assembly of the dynamical matrix D, whose
eigenvalues give the frequencies of the normal modes and whose
eigenvectors determine the patterns of atomic displacement for each
mode.

Before considering the extension of this treatment to molecular
crystals, we shall comment briefly on the less rigorous treatments of
Einstein and Debye.

(4.1.2.8)

4.1.2.3. Einstein and Debye models

In the Einstein model it is assumed that each atom vibrates in its
private potential well, entirely unaffected by the motion of its
neighbours. There is no correlation between the motion of different
atoms, whereas correlated motion — in the form of collective modes
propagating throughout the crystal — is a central feature in
explaining the characteristics of the TDS. Nevertheless, the Einstein
model is occasionally used to represent modes belonging to flat
optic branches of the dispersion relations, with the frequency
written symbolically as w(q) = wg (constant).

In the Debye model the optic branches are ignored. The
dispersion relations for the remaining three acoustic branches are
assumed to be the same and represented by

w(‘l) = Vs,

where v; is a mean sound velocity. The Brillouin zone is replaced by
a sphere with radius gp chosen to ensure the correct number of
modes. The linear relationship (4.1.2.9) holds right up to the
boundary of the spherical zone. In an improved version of the
Debye model, (4.1.2.9) is replaced by the expression

w(q) = v,(2gp/7) sin(mq/2qp),

which is the same as (4.1.2.9) at ¢ = 0 but gives a sinusoidal
dispersion relation with zero slope at the zone boundary.

(4.1.2.9)

(4.1.2.10)

4.1.2.4. Molecular crystals

The full Born—von Kdrmédn treatment becomes excessively
cumbersome when applied to most molecular crystals. For example,
for naphthalene with two molecules or 36 atoms in the primitive
cell, the dynamical matrix has dimensions 108 x 108. Moreover,
the physical picture of molecules or of groups of atoms, vibrating in
certain modes as quasi-rigid units, is lost in the full treatment.

To simplify the setting up of the dynamical matrix, it is assumed
that the molecules vibrate as rigid units in the crystal with each
molecule possessing three translational and three rotational
(librational) degrees of freedom. The motion of these rigid groups
as a whole is described by the external modes of motion, whereas
the internal modes arise from distortions within an individual group.
The frequencies of these internal modes, which are largely
determined by the strong intramolecular forces, are unaffected by
the phase of the oscillation between neighbouring cells: the modes
are taken, therefore, to be equivalent to those of the free molecule.
The remaining external modes are calculated by applying the Born—
von Kdrmdn procedure to the crystal treated as an assembly of rigid
molecules.

The dynamical matrix D(q) now has dimensions 6r' x 6n’, where
n’ is the number of molecules in the primitive cell: for naphthalene,
D is reduced to 12 x 12. The elements of D can be expressed in the
same form as equation (4.1.2.5) for an atomic system. x, ' refer to
molecules which are L cells apart and the indices o, @' (=1, ..., 6)
label the six components of translation and rotation. m(k) in
equation (4.1.2.5) is replaced by m,, () where m,, represents the 3 x
3 molecular-mass matrix for o = 1,2, 3 and the 3 x 3 moment-of-
inertia matrix referred to the principal axes of inertia for « = 4, 5, 6.
The 6 x 6 force-torque constant matrices ¢, are derived by taking
the second derivative of the potential energy of the crystal with
respect to the coordinates of translation and rotation.

4.1.3. Scattering of X-rays by thermal vibrations

The change of frequency, or energy, of X-rays on being scattered by
thermal waves is extremely small. The differential scattering cross
section, do/dS?, giving the probability that X-rays are scattered into
the solid angle d) is then
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do

o= r@pP),

where

Y(0) = SA(Q)exp{iQ- [(sl) +ulsl)]).  (4131)

The angled brackets indicate an average value over a period of time
much longer than the period of oscillation of an atom. Q is the
‘scattering vector’ defined by

Q:k_k()’

where k and k, are the wavevectors (each of magnitude 27/)) of
the scattered and incident beams, respectively. The magnitude of Q
is 4m(sin @) /A, where 20 is the angle between k and K. f,(Q) is the
scattering factor of the «th atom in the unit cell.

The cross section do/d2 can be expanded as a power series:

do do\ Y 7do\V  [do\?

a0 (dQ) +<dQ> +<dQ> o
The individual terms on the right-hand side refer to the cross
sections for zero-order, first-order, second-order scattering . . ., i.e.
for processes involving no exchange of energy between the incident
radiation and the crystal (Bragg scattering), the exchange of one
quantum of lattice vibrational energy (one-phonon scattering), the
exchange of two quanta (two-phonon scattering) . . ..

The instantaneous thermal displacement u(x/) of the atom (/)
can be expressed, using equations (4.1.2.3), (4.1.2.6), (4.1.2.7) and
(4.1.2.8), as a superposition of the displacements of the 3nN (~10%)
independent normal modes of vibration:

(4.132)

E '(q)

(wl) = [Nm(r)] 2N L e(xljq)
: Zq A

x exp{i[q - r(kl) — w;(q)1]}. (4.1.3.3)
Explicit expressions can now be given for the partial cross sections
in equation (4.1.3.2). The cross section for Bragg scattering is

)
()" = nrr 2 s e -
h

0 (4.1.34)

where v is the cell volume. The delta function requires that
Q = Qh’

where Q) is a reciprocal-lattice vector, so that scattering is
restricted to the points h of the reciprocal lattice. The structure
factor F(Q) is

F(Q) = ;fx (Q) expliQ - r(r)] exp(=Wy),

where the exponent W, of the temperature factor of the atom &« is
calculated by summing over the normal modes:

1 1 Ei(q)
M; Q- e(klig)[* W

K

(4.13.5)

The last equation shows that the acoustic modes, with frequencies
approaching zero as q — 0, make the largest contribution to the
temperature factor.

The one-phonon cross section is

do\"  (21) —1G(Q.q) Eg)
<d9> o %: wi(q)

J

x ) 6QEq-Qy)
h

(4.1.3.6)

where G;(Q, q) is the ‘structure factor for one-phonon scattering’ by
the mode (jq) and is given by

G(Q.q) = Z% £(Q)

x expliQ - r(k)] exp(—Wy).
The delta function in equation (4.1.3.6) implies that
Q=Qy*gq,

so that the scattering from the 3n modes with the same wavevector ¢
is restricted to pairs of points in reciprocal space which are
displaced by £q from the reciprocal-lattice points. (These satellite
reflections are analogous to the pairs of ‘ghosts’ near the principal
diffraction maxima in a grating ruled with a periodic error.) There is
a huge number, N, of q vectors which are uniformly distributed
throughout the Brillouin zone, and each of these vectors gives a
cross section in accordance with equation (4.1.3.6). Thus the one-
phonon TDS is spread throughout the whole of reciprocal space,
rising to a maximum at the reciprocal-lattice points where w — 0
for the acoustic modes.

For two-phonon scattering, involving modes with wavevectors
q; and q,, the scattering condition becomes

Q=0Q,tq, =q,.

The intensity at any point in reciprocal space is now contributed by
a very large number of pairs of elastic waves with wavevectors
satisfying equation (4.1.3.8). These vectors span the entire Brillouin
zone, and so the variation of the two-phonon intensity with location
in reciprocal space is less pronounced than for one-phonon
scattering.

Expressions for (dcr/dQ)(z) and for higher terms in equation
(4.1.3.2) will not be given, but a rough estimate of their relative
magnitudes can be derived by using the Einstein model of the
crystal. All frequencies are the same, wj(q) = wg, and for one atom
per cell (n = 1) the exponent of the temperature factor, equation
(4.1.3.5), becomes

(4.1.3.7)

(4.1.3.8)

kg T
W:Q 32’
2mwr,

(4.1.3.9)

assuming classical equipartition of energy between modes:
Ei(q) = kgT. The cross sections for zero-order, first-order,

second-order . . . scattering are then
do\©
<d—g> = Nf?exp(—2W)
do\ M
<£> = Nf%exp(—2W)2W

do\ 1
<£> = Nf? exp(~2W) 5 (2W)’

and the total cross section is
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do )
0 Nf exp(—ZW){l +2W

+1(2W)2 +1(2W)3 +}

2 6

The expression in curly brackets is the expansion of exp(2W). The
nth term in the expansion, associated with the nth-order (n-phonon)
process, is proportional to W" or to Q*'T". The higher-order
processes are more important, therefore, at higher values of
(sin@)/\ and at higher temperatures.

Our treatment so far applies to the TDS from single crystals. It
can be extended to cover the TDS from polycrystalline samples, but
the calculations are more complicated as the first-order scattering at
a fixed value of (sin6)/\ is contributed by phonon wavevectors
extending over the whole of the Brillouin zone. For a fuller
discussion of the TDS from powders see Section 7.4.2 in IT C
(1999).

4.1.4. Scattering of neutrons by thermal vibrations

The amplitude of the X-ray beam scattered by a single atom is
denoted by the form factor or atomic scattering factor f{Q). The
corresponding quantity in neutron scattering is the scattering
amplitude or scattering length b of an atom. b is independent of
scattering angle and is also independent of neutron wavelength

apart from for a few isotopes (e.g. ' 13¢d, "*°Sm) with resonances in
the thermal neutron region.

The scattering amplitude for atoms of the same chemical element
can vary randomly from one atom to the next, as different
amplitudes are associated with different isotopes. If the nucleus
has a nonzero spin, even a single isotope has two different
amplitudes, dependent on whether the nuclear spin is parallel or
antiparallel to the spin of the incident neutron. If there is a variation
in the amplitude associated with a particular type of atom, some of
the waves scattered by the atom will interfere with one another and
some will not. The first part is called coherent scattering and the
second incoherent scattering. The amplitude of the coherent
scattering is determined by the mean atomic scattering amplitude,
averaged over the various isotopes and spin states of the atom, and
is known as the coherent scattering length, b.

A crucial difference between neutrons and X-rays concerns their
energies:

E = I°k*/2m,,
= chk

(neutrons)
(X-rays),

where m,, is the neutron mass and c the velocity of light. At A = 1 A,
neutrons have an energy of 0.08eV or a temperature of about
800 K; for X -rays of this wavelength the correspondmg temperature
exceeds 10° K! Thermal neutrons have energies comparable with
phonon energies, and so inelastic scattering processes, involving the
exchange of energy between neutrons and phonons, produce
appreciable changes in neutron energy. (These changes are readily
determined from the change in wavelength or velocity of the
scattered neutrons.) It is customary to refer to the thermal diffuse
scattering of neutrons as ‘inelastic neutron scattering’ to draw
attention to this energy change.

For a scattering process in which energy is exchanged with just
one phonon, energy conservation gives

E() —E= shwj(q),

where Ej and E are the energies of the neutron before and after
scattering. If ¢ = +1 the neutron loses energy by creating a phonon
(‘phonon emission’), and if ¢ = —1 it gains energy by annihilating a
phonon (‘phonon absorption’).

(4.1.4.1)

The partial differential scattering cross section dza/ dQ) dw gives
the probability that neutrons will be scattered into a small solid
angle dS2 about the direction k with a change of energy between /iw
and fi(w + dw). This cross section can be split into two terms,
known as the coherent and incoherent cross sections:

d’c d’c N d’*o

ddw \dQdw/ ., \dQdw/, ..

The coherent cross section depends on the correlation between the
positions of all the atoms at different times, and so gives
interference effects. The incoherent cross section depends only on
the correlation between the positions of the same atom at different
times, giving no interference effects. Incoherent inelastic scattering
is the basis of a powerful technique for studying the dynamics of
molecular crystals containing hydrogen (Boutln & Yip, 1968).

The coherent scattering cross section (d*c/d(2 dw),, can be
expanded, as in the X-ray case [equation (4.1.3.2)], into terms
representing the contributions from zero-phonon, one-phonon, two-
phonon . . . scattering. To determine phonon dispersion relations,
we measure the one-phonon contribution and this arises from both
phonon emission and phonon absorption:

o\ [ @0\ N 2o\
dQdw/ . \dQdw/ g \dQdw/ )

The superscript (1) denotes a one-phonon process, and the subscript
+1 (—1) indicates emission (absorption).
The emission cross section is given by (Squires, 1978)

2o\ hk 473 In;
(00 o T2
coh+1 jqa  Qy
by .
X Wexp[lQ 1(K)]

2

x Q- e("ﬂliq) exp(fW,{)
x 6w — w;(q)]6(Q — Qu + ),

(4.1.4.2)
whereas for phonon absorption
o\ k4n Iny(q)]
<dQ dw) coh—1 B %T; QZ]I Wj((])
by :
" m(x)]"? Qi)
2
x Q - e(xljq) exp(=W)
8+ (4)]6(Q — Qu — @)
(4.1.4.3)

The first delta function in these two expressions embodies energy
conservation,

2

2m,,

hw = — (k2 — k) = ehw;(q),

and the second embodies conservation of momentum,
Q=k—-ky=0Q, —¢q. (4.1.4.4)

The phonon population number, n;(q), tends to zero as T — 0
[see equation (4.1.2.6)], so that the one-phonon absorption cross

404



4.1. THERMAL DIFFUSE SCATTERING OF X-RAYS AND NEUTRONS

section is very small at low temperatures where there are few
phonons for the radiation to absorb. Comparison of equations
(4.142) and (4.1.4.3) shows that there is always a greater
probability that the neutrons are scattered with energy loss rather
than with energy gain.

Normally it is not possible in X-ray experiments to distinguish
between phonon emission and phonon absorption, and the measured
cross section is obtained by summing over all energy transfers. The
cross section for X-rays can be derived from the neutron formulae,
equations (4.1.4.2) and (4.1.4.3), by putting k = ky and by replacing
b, with f,(Q). Integration over w and addition of the parts for
emission and absorption gives the X-ray formula (4.1.3.6).

The theory of neutron scattering can also be formulated in terms
of thermal averages known as Van Hove correlation functions (Van
Hove, 1954). For example, the partial differential cross section for
coherent scattering is

o k
<dQ dw> coh_ k_OS<Q’ <)

where

S(Quw) = / G(r, 1) expli(Q - r — wr)] dr dr.

27h

§(Q,w) is the Fourier transform in space and time of G(r,?), the
time-dependent pair-correlation function. The classical interpreta-
tion of G(r, 1) is that itis the probablhty of finding any atom at time ¢
in a volume dr = d®r, if there is an atom at the origin at time zero.

4.1.5. Phonon dispersion relations

Both X-rays and neutrons are used for determining crystal
structures, but the X-ray method plays the dominant role. The
reverse is true for the measurement of phonon dispersion relations:
the experimental determination of w(q) versus q was first
undertaken with X-rays, but the method has been superseded by
the technique of coherent inelastic neutron scattering (or neutron
spectroscopy). For phonon wavevectors lying anywhere within the
first Brillouin zone, it is necessary to employ radiation of
wavelength comparable with interatomic distances and of energy
comparable with lattice vibrational energies. X-rays satisfy the first
of these conditions, but not the second, whereas the opposite holds
for infrared radiation. Thermal neutrons satisfy both conditions
simultaneously.

4.1.5.1. Measurement with X-rays

Frequencies can be derived indirectly with X-rays from the
intensity of the thermal diffuse scattering. For a monatomic crystal
with one atom per primitive cell, there are no optic modes and the
one-phonon TDS intensity, equation (4.1.3.6), reduces to

_sz 72WZ Ei(q

where o;(q) is the angle between Q and the direction of polarization
of the mode (jq). There are three acoustic modes associated with
each wavevector ¢, but along certain directions of Q it is possible to
isolate the intensities contributed by the individual modes by
choosing «j(q) to be close to 0 or 90°. Equation (4.1.5.1) can then
be employed to derive the frequency w;j(q) for just one mode. The
measured intensity must be corrected for multi-phonon and
Compton scattering, both of which can exceed the intensity of the
one-phonon scattering. The correction for two-phonon scattering
involves an integration over the entire Brillouin zone, and this in
turn requires an approximate knowledge of the dispersion relations.

cos (q)6(QEtq—Qy), (4.15.1)

The correction for Compton scattering can be made by repeating the
measurements at low temperature.

The X-ray method is hardly feasible for systems with several
atoms in the primitive cell. It comes into its own for those few
materials which cannot be examined by neutrons. These include
boron, cadmium and samarium with high absorption cross sections
for thermal neutrons, and vanadium with a very small coherent (and
a large incoherent) cross section for the scattering of neutrons. An
important feature of TDS measurements with X-rays is in providing
an independent check on interatomic or intermolecular force
constants derived from measurements with inelastic neutron
scattering. The force model is used to generate phonon frequencies
and eigenvectors, which are then employed to compute the one-
phonon and multi-phonon contributions to the X-ray TDS. Any
discrepancy between calculated and observed X-ray intensities
might be ascribed to such features as ionic deformation (Buyers et
al., 1968) or anharmonicity (Schuster & Weymouth, 1971).

4.1.5.2. Measurement with neutrons

The inelastic scattering of neutrons by phonons gives rise to
changes of energy which are readily measured and converted to
frequencies wj(q) using equation (4.1.4.1). The corresponding
wavevector q is derived from the momentum conservation relation
(4.1.4.4). Nearly all phonon dispersion relations determined to date
have been obtained in this way. Well over 200 materials have been
examined, including half the chemical elements, a large number of
alloys and diatomic compounds, and rather fewer molecular crystals
(Dolling, 1974; Bilz & Kress, 1979). Phonon dispersion curves have
been determined in crystals with up to ten atoms in the primitive
cell, for example, tetracyanoethylene (Chaplot et al., 1983).

The principal instrument for determining phonon dispersion
relations with neutrons is the triple-axis spectrometer, first designed
and built by Brockhouse (Brockhouse & Stewart, 1958). The
modern instrument is unchanged apart from running continuously
under computer control. A beam of thermal neutrons falls on a
single-crystal monochromator, which Bragg reflects a single
wavelength on to the sample in a known orientation. The magnitude
of the scattered wavevector, and hence the change of energy on
scattering by the sample, is found by measuring the Bragg angle at
which the neutrons are reflected by the crystal analyser. The
direction of Kk is defined by a collimator between the sample and
analyser.

In the ‘constant Q’ mode of operating the triple-axis spectro-
meter, the phonon wavevector is kept fixed while the energy
transfer fiw is varied. This allows the frequency spectrum to be
determined for all phonons sharing the same q; the spectrum will
contain up to 3n frequencies, corresponding to the 3n branches of
the dispersion relations.

In an inelastic neutron scattering experiment, where the TDS
1nten51ty is of the order of one-thousandth of the Bragg 1nten51ty, it
is necessary to use a large sample with a volume of 1 cm?, or more.
The sample should have a high cross section for coherent scattering
as compared with the cross sections for incoherent scattering and for
true absorption. Crystals containing hydrogen should be deuterated.

Dolling (1974) has given a comprehensive review of the
measurement of phonon dispersion relations by neutron spectro-

scopy.

4.1.5.3. Interpretation of dispersion relations

The usual procedure for analysing dispersion relations is to set up
the Born—von Kdrmdn formalism with interatomic force constants
®. The calculated frequencies w;(q) are then derived from the
eigenvalues of the dynamical matrix D (Section 4.1.2.1) and the
force constants fitted, by least squares, to the observed frequencies.
Several sets of force constants may describe the frequencies equally
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well, and to decide which set is preferable it is necessary to compare
eigenvectors as well as eigenvalues (Cochran, 1971).

The main interest in the curves is in testing different models of
interatomic potentials, whose derivatives are related to the
measured force constants. For the solid inert gases the curves are
reproduced reasonably well using a two-parameter Lennard—Jones
6-12 potential, although calculated frequencies are systematically
higher than the experimental points near the Brillouin-zone
boundary (Fujii et al., 1974). To reproduce the dispersion relations
in metals it is necessary to use a large number of interatomic force
constants, extending to at least fifth neighbours. The number of
independent constants is then too large for a meaningful analysis
with the Born—von Kdrmdn theory, but in the pseudo-potential
approximation (Harrison, 1966) only two parameters are required to
give good agreement between calculated and observed frequencies
of simple metals such as aluminium. In the rigid-ion model for ionic
crystals, the ions are treated as point charges centred on the nuclei
and polarization of the outermost electrons is ignored. This is
unsatisfactory at high frequencies. In the shell model, polarization is
accounted for by representing the ion as a rigid core connected by a
flexible spring to a polarizable shell of outermost electrons. There
are many variants of this model — extended shell, overlap shell,
deformation dipole, breathing shell . . . (Bilz & Kress, 1979). For
molecular crystals the contributions to the force constants from the
intermolecular forces can be derived from the non-bonded atomic
pair potential of, say, the 6-exponential type:

A
o(r)=— r_g + Bjjexp(—Cyr).

Here, i, j label atoms in different molecules. The values of the
parameters A, B, C depend on the pair of atomic species i, j only. For
hydrocarbons they have been tabulated for different atom pairs by
Kitaigorodskii (1966) and Williams (1967). The 6-exponential
potential is applicable to molecular crystals that are stabilized
mainly by London—van der Waals interactions; it is likely to fail
when hydrogen bonds are present.

4.1.6. Measurement of elastic constants

There is a close connection between the theory of lattice dynamics
and the theory of elasticity. Acoustic modes of vibration of long
wavelength propagate as elastic waves in a continuous medium,
with all the atoms in one unit cell moving in phase with one another.
These vibrations are sound waves with velocities which can be
calculated from the macroscopic elastic constants and from the
density. The sound velocities are also given by the slopes, at ¢ = 0,
of the acoustic branches of the phonon dispersion relations. A
knowledge of the velocities, or of the elastic constants, is necessary
in estimating the TDS contribution to measured Bragg intensities.

The elastic constants relate the nine components of stress and
nine components of strain, making 81 constants in all. This large

number is reduced to 36, because there are only six independent
components of stress and six independent components of strain. An
economy of notation is now possible, replacing the indices 11 by 1,
22 by 2, 33 by 3, 23 by 4, 31 by 5 and 12 by 6, so that the elastic
constants are represented by c; with i,j =1, ...,6. Applying the
principle of conservation of energy gives

Cij = Cj,'

and the number of constants is reduced further to 21. Crystal
symmetry effects yet a further reduction. For cubic crystals there are
just three independent constants (c;;,c12, c44) and the 6 X 6 matrix
of elastic constants is

ci ¢ cp 0 0 O
cp ¢ ¢ 0 0 0
cp cp ocn 0 0 O
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

In principle, the elastic constants can be derived from static
measurements of the four quantities — compressibility, Poisson’s
ratio, Young’s modulus and rigidity modulus. The measurements
are made along different directions in the crystal: at least six
directions are needed for the orthorhombic system. The accuracy of
the static method is limited by the difficulty of measuring small
strains.

Dynamic methods are more accurate as they depend on
measuring a frequency or velocity. For a cubic crystal, the three
elastic constants can be derived from the three sound velocities
propagating along the single direction [110]; for non-cubic crystals
the velocities must be measured along a number of non-equivalent
directions.

Sound velocities can be determined in a number of ways. In the
ultrasonic pulse technique, a quartz transducer sends a pulse
through the crystal; the pulse is reflected from the rear surface
back to the transducer, and the elapsed time for the round trip of
several cm is measured. Brillouin scattering of laser light is also
used (Vacher & Boyer, 1972). Fluctuations in dielectric constant
caused by (thermally excited) sound waves give rise to a Doppler
shift of the light frequency. The sound velocity is readily calculated
from this shift, and the elastic constants are then obtained from the
velocities along several directions, using the Christoffel relations
(Hearmon, 1956). The Brillouin method is restricted to transparent
materials. This restriction does not apply to neutron diffraction
methods, which employ the inelastic scattering of neutrons (Willis,
1986; Schofield & Willis, 1987; Popa & Willis, 1994).

Tables of elastic constants of cubic and non-cubic crystals have
been compiled by Hearmon (1946, 1956) and by Huntingdon
(1958).
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