International
Tables for
Crystallography
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2006). Vol. B. ch. 4.1, pp. 400-406   | 1 | 2 |
https://doi.org/10.1107/97809553602060000563

Chapter 4.1. Thermal diffuse scattering of X-rays and neutrons

B. T. M. Willisa*

aChemical Crystallography Laboratory, University of Oxford, 9 Parks Road, Oxford OX1 3PD, England
Correspondence e-mail: bertram.willis@chemcryst.ox.ac.uk

References

First citation Bilz, H. & Kress, W. (1979). Phonon dispersion relations in insulators. Berlin: Springer-Verlag.Google Scholar
First citation Blackman, M. (1937). On the vibrational spectrum of a three-dimensional lattice. Proc. R. Soc. London Ser. A, 159, 416–431.Google Scholar
First citation Bloch, F. (1928). Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys. 52, 555–600.Google Scholar
First citation Born, M. & Huang, K. (1954). The dynamical theory of crystal lattices. Oxford: Clarendon Press.Google Scholar
First citation Born, M. & von Kármán, T. (1912). Über Schwingungen in Raumgittern. Phys. Z. 13, 279–309.Google Scholar
First citation Born, M. & von Kármán, T. (1913). Zur Theorie der spezifischen Wärme. Phys. Z. 14, 15–19.Google Scholar
First citation Boutin, H. & Yip, S. (1968). Molecular spectroscopy with neutrons. Cambridge, Mass.: MIT Press.Google Scholar
First citation Brockhouse, B. N. & Stewart, A. T. (1958). Normal modes of aluminum by neutron spectrometry. Rev. Mod. Phys. 30, 236–249.Google Scholar
First citation Buyers, W. J. L., Pirie, J. D. & Smith, T. (1968). X-ray scattering from deformable ions. Phys. Rev. 165, 999–1005.Google Scholar
First citation Chaplot, S. L., Mierzejewski, A., Pawley, G. S., Lefebvre, J. & Luty, T. (1983). Phonon dispersion of the external and low-frequency internal vibrations in monoclinic tetracyanoethylene. J. Phys. C, 16, 625–644.Google Scholar
First citation Cochran, W. (1971). The relation between phonon frequencies and interatomic force constants. Acta Cryst. A27, 556–559.Google Scholar
First citation Cochran, W. (1973). The dynamics of atoms in crystals. London: Edward Arnold.Google Scholar
First citation Debye, P. (1912). Zur Theorie der spezifischen Wärme. Ann. Phys. (Leipzig), 39, 789–839.Google Scholar
First citation Dolling, C. (1974). Dynamical properties of solids. Vol. 1, edited by G. K. Horton & A. A. Maradudin, pp. 541–629. Amsterdam: North-Holland.Google Scholar
First citation Donovan, B. & Angress, J. F. (1971). Lattice vibrations. London: Chapman and Hall.Google Scholar
First citation Einstein, A. (1907). Die Plancksche Theorie der Strahlung und die Theorie der spezifisichen Wärme. Ann. Phys. (Leipzig), 22, 180–190, 800.Google Scholar
First citation Fujii, Y., Lurie, N. A., Pynn, R. & Shirane, G. (1974). Inelastic neutron scattering from solid 36Ar. Phys. Rev. B, 10, 3647–3659.Google Scholar
First citation Harrison, W. A. (1966). Phonons in perfect lattices, edited by R. W. H. Stevenson, pp. 73–109. Edinburgh: Oliver & Boyd.Google Scholar
First citation Hearmon, R. F. S. (1946). The elastic constants of anisotropic materials. Rev. Mod. Phys. 18, 409–440.Google Scholar
First citation Hearmon, R. F. S. (1956). The elastic constants of anisotropic materials. II. Adv. Phys. 5, 323–382.Google Scholar
First citation Huntingdon, H. B. (1958). The elastic constants of crystals. Solid State Phys. 7, 213–351.Google Scholar
First citation International Tables for Crystallography (2004). Vol. C. Mathematical, physical and chemical tables, edited by E. Prince. Dordrecht: Kluwer Academic Publishers.Google Scholar
First citation Kitaigorodskii, A. J. (1966). Empilement des molécules dans un cristal, potentiel d'interaction des atomes non liés par des liaisons de valence, et calcul du mouvement des molécules. J. Chim. Phys. 63, 8–16.Google Scholar
First citation Laval, J. (1939). Etude éxperimentale de la diffusion des rayons X par les cristaux. Bull. Soc. Fr. Minéral. 62, 137–253.Google Scholar
First citation Ledermann, W. (1944). Asymptotic formulae relating to the physical theory of crystals. Proc. R. Soc. London Ser. A, 82, 362–377.Google Scholar
First citation Olmer, P. (1948). Dispersion des vitesses des ondes acoustiques dans l'aluminium. Acta Cryst. 1, 57–63.Google Scholar
First citation Popa, N. C. & Willis, B. T. M. (1994). Thermal diffuse scattering in time-of-flight neutron diffractometry. Acta Cryst. A50, 57–63.Google Scholar
First citation Raman, C. V. (1941a). The quantum theory of X-ray reflection. Proc. Indian Acad. Sci. Sect. A, 14, 317–376.Google Scholar
First citation Raman, C. V. (1941b). The thermal energy of crystalline solids: basic theory. Proc. Indian Acad. Sci. Sect. A, 14 459–467.Google Scholar
First citation Schofield, P. & Willis, B. T. M. (1987). Thermal diffuse scattering in time-of-flight neutron diffraction. Acta Cryst. A43, 803–809.Google Scholar
First citation Schuster, S. L. & Weymouth, J. W. (1971). Study of thermal diffuse X-ray scattering from lead single crystals. Phys. Rev. B, 3, 4143–4153.Google Scholar
First citation Squires, G. L. (1978). Introduction to the theory of thermal neutron scattering. Cambridge University Press.Google Scholar
First citation Vacher, R. & Boyer, L. (1972). Brillouin scattering: a tool for the measurement of elastic and photoelastic constants. Phys. Rev. B, 6, 639–673.Google Scholar
First citation Van Hove, L. (1954). Correlations in space and time and Born approximation scattering in systems of interacting particles. Phys. Rev. 95, 249–262.Google Scholar
First citation Venkataraman, G., Feldkamp, L. A. & Sahni, V. C. (1975). Dynamics of perfect crystals. Cambridge Mass.: MIT Press.Google Scholar
First citation Walker, C. B. (1956). X-ray study of lattice vibrations in aluminum. Phys. Rev. 103, 547–557.Google Scholar
First citation Williams, D. E. (1967). Non-bonded potential parameters derived from crystalline hydrocarbons. J. Chem. Phys. 47, 4680–4684.Google Scholar
First citation Willis, B. T. M. (1986). Determination of the velocity of sound in crystals by time-of-flight neutron diffraction. Acta Cryst. A42, 514–525.Google Scholar
First citation Willis, B. T. M. & Pryor, A. W. (1975). Thermal vibrations in crystallography. Cambridge University Press.Google Scholar