International
Tables for
Crystallography
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2006). Vol. B. ch. 4.2, pp. 407-442   | 1 | 2 |
https://doi.org/10.1107/97809553602060000564

Chapter 4.2. Disorder diffuse scattering of X-rays and neutrons

H. Jagodzinskia and F. Freyb

aInstitut für Kristallographie und Mineralogie, Universität, Theresienstrasse 41, D-8000 München 2, Germany, and  bInstitut für Kristallographie und Mineralogie, Universität, Theresienstrasse 41, D-8000 München 2, Germany

References

First citation Amorós, J. L. & Amorós, M. (1968). Molecular crystals: their transforms and diffuse scattering. New York: John Wiley.Google Scholar
First citation Arndt, U. W. (1986a). X-ray position sensitive detectors. J. Appl. Cryst. 19, 145–163.Google Scholar
First citation Arndt, U. W. (1986b). The collection of single crystal diffraction data with area detectors. J. Phys. (Paris) Colloq. 47(C5), 1–6.Google Scholar
First citation Axe, J. D. (1980). Debye–Waller factors for incommensurate structures. Phys. Rev. B, 21, 4181–4190.Google Scholar
First citation Bardhan, P. & Cohen, J. B. (1976). X-ray diffraction study of short-range-order structure in a disordered Au3Cu alloy. Acta Cryst. A32, 597–614.Google Scholar
First citation Bauer, G., Seitz, E. & Just, W. (1975). Elastic diffuse scattering of neutrons as a tool for investigation of non-magnetic point defects. J. Appl. Cryst. 8, 162–175.Google Scholar
First citation Bauer, G. S. (1979). Diffuse elastic neutron scattering from nonmagnetic materials. In Treatise on materials science and technology, Vol. 15, edited by G. Kostorz, pp. 291–336. New York: Academic Press.Google Scholar
First citation Bessière, M., Lefebvre, S. & Calvayrac, Y. (1983). X-ray diffraction study of short-range order in a disordered Au3Cu alloy. Acta Cryst. B39, 145–153.Google Scholar
First citation Beyeler, H. U., Pietronero, L. & Strässler, S. (1980). Configurational model for a one-dimensional ionic conductor. Phys. Rev. B, 22, 2988–3000.Google Scholar
First citation Borie, B. & Sparks, C. J. (1971). The interpretation of intensity distributions from disordered binary alloys. Acta Cryst. A27, 198–201.Google Scholar
First citation Böttger, H. (1983). Principles of the theory of lattice dynamics. Weinheim: Physik Verlag.Google Scholar
First citation Boysen, H. (1985). Analysis of diffuse scattering in neutron powder diagrams. Applications to glassy carbon. J. Appl. Cryst. 18, 320–325.Google Scholar
First citation Boysen, H. & Adlhart, W. (1987). Resolution corrections in diffuse scattering experiments. J. Appl. Cryst. 20, 200–209.Google Scholar
First citation Bradley, C. J. & Cracknell, A. P. (1972). The mathematical theory of symmetry in solids, pp. 51–76. Oxford: Clarendon Press.Google Scholar
First citation Brämer, R. (1975). Statistische Probleme der Theorie des Parakristalls. Acta Cryst. A31, 551–560.Google Scholar
First citation Brämer, R. & Ruland, W. (1976). The limitations of the paracrystalline model of disorder. Macromol. Chem. 177, 3601–3617.Google Scholar
First citation Bubeck, E. & Gerold, V. (1984). An X-ray investigation in the small and wide angle range from G.P.I. zones in Al–Cu. In Microstructural characterization of materials by non-microscopical techniques, edited by N. H. Andersen, M. Eldrup, N. Hansen, R. J. Jensen, T. Leffers, H. Lilholt, O. B. Pedersen & B. N. Singh. Roskilde: Risø National Laboratory.Google Scholar
First citation Caglioti, G., Paoletti, A. & Ricci, R. (1958). Choice of collimators for a crystal spectrometer for neutron diffraction. Nucl. Instrum. Methods, 3, 223–226.Google Scholar
First citation Cenedese, P., Bley, F. & Lefebvre, S. (1984). Diffuse scattering in disordered ternary alloys: neutron measurements of local order in a stainless steel Fe0.56Cr0.21Ni0.23. Acta Cryst. A40, 228–240.Google Scholar
First citation Collongues, R., Fayard, M. & Gautier, F. (1977). Ordre et désordre dans les solides. J. Phys. (Paris) Colloq. 38(C7), Suppl.Google Scholar
First citation Comes, R. & Shirane, G. (1979). X-ray and neutron scattering from one-dimensional conductors. In Highly conducting one dimensional solids, ch. 2, edited by J. T. Devreese, R. P. Evrard & V. E. Van Doren. New York: Plenum.Google Scholar
First citation Conradi, E. & Müller, U. (1986). Fehlordnung bei Verbindungen mit Schichtstrukturen. II. Analyse der Fehlordnung in Wismuttriiodid. Z. Kristallogr. 176, 263–269.Google Scholar
First citation Convert, P. & Forsyth, J. B. (1983). Position-sensitive detectors of thermal neutrons. London: Academic Press.Google Scholar
First citation Cooper, M. J. & Nathans, R. (1968a). The resolution function in neutron diffractometry. II. The resolution function of a conventional two-crystal neutron diffractometer for elastic scattering. Acta Cryst. A24, 481–484.Google Scholar
First citation Cooper, M. J. & Nathans, R. (1968b). The resolution function in neutron diffractometry. III. Experimental determination and properties of the elastic two-crystal resolution function. Acta Cryst. A24, 619–624.Google Scholar
First citation Courville-Brenasin, J. de, Joyez, G. & Tchoubar, D. (1981). Méthode d'ajustement automatique entre courbes experiméntale et calculée dans les diagrammes de diffraction de poudre. Cas des solides à structure lamellaire. I. Développement de la méthode. J. Appl. Cryst. 14, 17–23.Google Scholar
First citation Cowley, J. M. (1950a). X-ray measurement of order in single crystals of Cu3Au. J. Appl. Phys. 21, 24–36.Google Scholar
First citation Cowley, J. M. (1950b). An approximate theory of order in alloys. Phys. Rev. 77, 664–675.Google Scholar
First citation Cowley, J. M. (1976a). Diffraction by crystals with planar faults. I. General theory. Acta Cryst. A32, 83–87.Google Scholar
First citation Cowley, J. M. (1976b). Diffraction by crystals with planar faults. II. Magnesium fluorogermanate. Acta Cryst. A32, 88–91.Google Scholar
First citation Cowley, J. M. (1981). Diffraction physics, 2nd ed. Amsterdam: North-Holland.Google Scholar
First citation Cowley, J. M. & Au, A. Y. (1978). Diffraction by crystals with planar faults. III. Structure analysis using microtwins. Acta Cryst. A34, 738–743.Google Scholar
First citation Cowley, J. M., Cohen, J. B., Salamon, M. B. & Wuensch, B. J. (1979). Modulated structures. AIP Conf. Proc. No. 53. Google Scholar
First citation Debye, B. & Menke, H. (1931). Untersuchung der molekularen Ordnung in Flüssigkeiten mit Röntgenstrahlung. Ergeb. Tech. Roentgenkd. II, 1–22.Google Scholar
First citation Dederichs, P. H. (1973). The theory of diffuse X-ray scattering and its application to the study of point defects and their clusters. J. Phys. F, 3, 471–496.Google Scholar
First citation Dolling, G., Powell, B. M. & Sears, V. F. (1979). Neutron diffraction study of the plastic phases of polycrystalline SF6 and CBr4. Mol. Phys. 37, 1859–1883.Google Scholar
First citation Dorner, B. & Comes, R. (1977). Phonons and structural phase transformation. In Dynamics of solids and liquids by neutron scattering, ch. 3, edited by S. Lovesey & T. Springer. Topics in current physics, Vol. 3. Berlin: Springer.Google Scholar
First citation Dorner, C. & Jagodzinski, H. (1972). Entmischung im System SnO2–TiO2. Krist. Tech. 7, 427–444.Google Scholar
First citation Dubernat, J. & Pezerat, H. (1974). Fautes d'empilement dans les oxalates dihydratés des métaux divalents de la série magnésienne (Mg, Fe, Co, Ni, Zn, Mn). J. Appl. Cryst. 7, 387–393.Google Scholar
First citation Edwards, O. S. & Lipson, H. (1942). Imperfections in the structure of cobalt. I. Experimental work and proposed structure. Proc. R. Soc. London Ser. A, 180, 268–277.Google Scholar
First citation Emery, V. J. & Axe, J. D. (1978). One-dimensional fluctuations and the chain-ordering transformation in Hg3 − δAsF6. Phys. Rev. Lett. 40, 1507–1511.Google Scholar
First citation Endres, H., Pouget, J. P. & Comes, R. (1982). Diffuse X-ray scattering and order–disorder effects in the iodine chain compounds N,N′-diethyl-N,N′-dihydrophenazinium iodide, E2PI1.6 and N,N′-dibenzyl-N,N′-dihydrophenazinium iodide, B2PI1.6. J. Phys. Chem. Solids, 43, 739–748.Google Scholar
First citation Epstein, J. & Welberry, T. R. (1983). Least-squares analysis of diffuse scattering from substitutionally disordered crystals: application to 2,3-dichloro-6,7-dimethylanthracene. Acta Cryst. A39, 882–892.Google Scholar
First citation Epstein, J., Welberry, T. R. & Jones, R. (1982). Analysis of the diffuse X-ray scattering from substitutionally disordered molecular crystals of monoclinic 9-bromo-10-methylanthracene. Acta Cryst. A38, 611–618.Google Scholar
First citation Fender, B. E. F. (1973). Diffuse scattering and the study of defect solids. In Chemical applications of thermal neutron scattering, ch. 11, edited by B. T. M. Willis. Oxford University Press.Google Scholar
First citation Flack, H. D. (1970). Short-range order in crystals of anthrone and in mixed crystals of anthrone–anthraquinone. Philos. Trans. R. Soc. London Ser. A, 266, 583–591.Google Scholar
First citation Fontaine, D. de (1972). An analysis of clustering and ordering in multicomponent solid solutions. I. Stability criteria. J. Phys. Chem. Solids, 33, 297–310.Google Scholar
First citation Fontaine, D. de (1973). An analysis of clustering and ordering in multicomponent solid solutions. II. Fluctuations and kinetics. J. Phys. Chem. Solids, 34, 1285–1304.Google Scholar
First citation Forst, R., Jagodzinski, H., Boysen, H. & Frey, F. (1987). Diffuse scattering and disorder in urea inclusion compounds OC(NH2)2 + CnH2n + 2. Acta Cryst. B43, 187–197.Google Scholar
First citation Fouret, P. (1979). Diffuse X-ray scattering by orientationally disordered solids. In The plastically crystalline state, ch. 3, edited by J. N. Sherwood. New York: John Wiley.Google Scholar
First citation Frey, F. & Boysen, H. (1981). Disorder in cobalt single crystals. Acta Cryst. A37, 819–826.Google Scholar
First citation Frey, F., Jagodzinski, H. & Steger, W. (1986). On the phase transformation zinc blende to wurtzite. Bull. Minéral. Crystallogr. 109, 117–129.Google Scholar
First citation Gehlen, P. & Cohen, J. B. (1965). Computer simulation of the structure associated with local order in alloys. Phys. Rev. A, 139, 844–855.Google Scholar
First citation Georgopoulos, P. & Cohen, J. B. (1977). The determination of short range order and local atomic displacements in disordered binary solid solutions. J. Phys. (Paris) Colloq. 38(C7), 191–196.Google Scholar
First citation Gerlach, P., Schärpf, O., Prandl, W. & Dorner, B. (1982). Separation of the coherent and incoherent scattering of C2Cl6 by polarization analysis. J. Phys. (Paris) Colloq. 43(C7), 151–157.Google Scholar
First citation Gerold, V. (1954). Röntgenographische Untersuchungen über die Aushärtung einer Aluminium–Kupfer-Legierung mit Kleinwinkel-Schwenkaufnahmen. Z. Metallkd. 45, 593–607.Google Scholar
First citation Grabcev, B. (1974). Instrumental widths and intensities in neutron crystal diffractometry. Acta Cryst. A35, 957–961.Google Scholar
First citation Gragg, J. E., Hayakawa, M. & Cohen, J. B. (1973). Errors in qualitative analysis of diffuse scattering from alloys. J. Appl. Cryst. 6, 59–66.Google Scholar
First citation Guinier, A. (1942). Le mécanisme de la précipitation dans un cristal de solution solide métallique. Cas des systémes aluminum–cuivre et aluminum–argent. J. Phys. Radium, 8, 124–136.Google Scholar
First citation Guinier, A. (1963). X-ray diffraction in crystals, imperfect solids and amorphous bodies. San Francisco: Freeman.Google Scholar
First citation Halla, F., Jagodzinski, H. & Ruston, W. R. (1953). One-dimensional disorder in dodecahydrotriphenylene, C18H24. Acta Cryst. 6, 478–488.Google Scholar
First citation Harada, J., Iwata, H. & Ohshima, K. (1984). A new method for the measurement of X-ray diffuse scattering with a combination of an energy dispersive detector and a source of white radiation. J. Appl. Cryst. 17, 1–6.Google Scholar
First citation Harburn, G., Taylor, C. A. & Welberry, T. R. (1975). An atlas of optical transforms. London: Bell.Google Scholar
First citation Hashimoto, S. (1974). Correlative microdomain model for short range ordered alloy structures. I. Diffraction theory. Acta Cryst. A30, 792–798.Google Scholar
First citation Hashimoto, S. (1981). Correlative microdomain model for short range ordered alloy structures. II. Application to special cases. Acta Cryst. A37, 511–516.Google Scholar
First citation Hashimoto, S. (1983). Correlative microdomain model for short range ordered alloy structures. III. Analysis for diffuse scattering from quenched CuAu alloy. Acta Cryst. A39, 524–530.Google Scholar
First citation Hashimoto, S. (1987). Intensity expression for short-range order diffuse scattering with ordering energies in a ternary alloy system. J. Appl. Cryst. 20, 182–186.Google Scholar
First citation Haubold, H. G. (1975). Measurement of diffuse X-ray scattering between reciprocal lattice points as a new experimental method in determining interstitial structures. J. Appl. Cryst. 8, 175–183.Google Scholar
First citation Hayakawa, M. & Cohen, J. B. (1975). Experimental considerations in measurements of diffuse scattering. Acta Cryst. A31, 635–645.Google Scholar
First citation Hendricks, S. B. & Teller, E. (1942). X-ray interference in partially ordered layer lattices. J. Chem. Phys. 10, 147–167.Google Scholar
First citation Hohlwein, D., Hoser, A. & Prandl, W. (1986). Orientational disorder in cubic CsNO2 by neutron powder diffraction. Z. Kristallogr. 177, 93–102.Google Scholar
First citation Hosemann, R. (1975). Micro paracrystallites and paracrystalline superstructures. Macromol. Chem. Suppl. 1, pp. 559–577.Google Scholar
First citation Hosemann, R. & Bagchi, S. N. (1962). Direct analysis of diffraction by matter. Amsterdam: North-Holland.Google Scholar
First citation Iizumi, M. (1973). Lorentz factor in single crystal neutron diffraction. Jpn. J. Appl. Phys. 12, 167–172.Google Scholar
First citation Ishii, T. (1983). Static structure factor of Frenkel–Kontorova-systems at high temperatures. Application to K-hollandite. J. Phys. Soc. Jpn, 52, 4066–4073.Google Scholar
First citation Jagodzinski, H. (1949a). Eindimensionale Fehlordnung und ihr Einfluß auf die Röntgeninterferenzen. I. Berechnung des Fehlordnungsgrades aus den Röntgeninterferenzen. Acta Cryst. 2, 201–208.Google Scholar
First citation Jagodzinski, H. (1949b). Eindimensionale Fehlordnung und ihr Einfluß auf die Röntgeninterferenzen. II. Berechnung der fehlgeordneten dichtesten Kugelpackungen mit Wechsel wirkungen der Reichweite 3. Acta Cryst. 2, 208–214.Google Scholar
First citation Jagodzinski, H. (1949c). Eindimensionale Fehlordnung und ihr Einfluß auf die Röntgeninterferenzen. III. Vergleich der Berechungen mit experimentellen Ergebnissen. Acta Cryst. 2, 298–304.Google Scholar
First citation Jagodzinski, H. (1954). Der Symmetrieeinfluß auf den allgemeinen Lösungsansatz eindimensionaler Fehlordnungsprobleme. Acta Cryst. 7, 17–25.Google Scholar
First citation Jagodzinski, H. (1963). On disorder phenomena in crystals. In Crystallography and crystal perfection, edited by G. N. Ramachandran, pp. 177–188. London: Academic Press.Google Scholar
First citation Jagodzinski, H. (1964a). Allgemeine Gesichtspunkte für die Deutung diffuser Interferenzen von fehlgeordneten Kristallen. In Advances in structure research by diffraction methods, Vol. 1, edited by R. Brill & R. Mason, pp. 167–198. Braunschweig: Vieweg.Google Scholar
First citation Jagodzinski, H. (1964b). Diffuse disorder scattering by crystals. In Advanced methods of crystallography, edited by G. N. Ramachandran, pp. 181–219. London: Academic Press.Google Scholar
First citation Jagodzinski, H. (1968). Fokussierende Monochromatoren für Einkristallverfahren? Acta Cryst. B24, 19–23.Google Scholar
First citation Jagodzinski, H. (1972). Transformation from cubic to hexagonal silicon carbide as a solid state reaction. Kristallografiya, 16, 1235–1246. [Translated into English in Sov. Phys. Crystallogr. 16, 1081–1090.]Google Scholar
First citation Jagodzinski, H. (1987). Diffuse X-ray scattering from crystals. In Progress in crystal growth and characterization, edited by P. Krishna, pp. 47–102. Oxford: Pergamon Press.Google Scholar
First citation Jagodzinski, H. & Haefner, K. (1967). On order–disorder in ionic non-stoichiometric crystals. Z. Kristallogr. 125, 188–200.Google Scholar
First citation Jagodzinski, H. & Hellner, E. (1956). Die eindimensionale Phasenumwandlung des RhSn2. Z. Kristallogr. 107, 124–149.Google Scholar
First citation Jagodzinski, H. & Korekawa, M. (1965). Supersatelliten im Beugungsbild des Labradorits (Ca2Na)(Si2Al)2O8. Naturwissenschaften, 52, 640–641.Google Scholar
First citation Jagodzinski, H. & Korekawa, M. (1973). Diffuse X-ray scattering by lunar minerals. Geochim. Cosmochim. Acta Suppl. 4, 1, 933–951.Google Scholar
First citation Jagodzinski, H. & Laves, R. (1947). Über die Deutung der Entmischungsvorgänge in Mischkristallen unter besonderer Berücksichtigung der Systeme Aluminium–Kupfer und Aluminium–Silber. Z. Metallkd. 40, 296–305.Google Scholar
First citation Jagodzinski, H. & Penzkofer, B. (1981). A new type of satellite in plagioclases. Acta Cryst. A37, 754–762.Google Scholar
First citation James, R. W. (1954). The optical principles of diffraction of X-rays, ch. X. London: Bell.Google Scholar
First citation Janner, A. & Janssen, T. (1980a). Symmetry of incommensurate crystal phases. I. Commensurate basic structures. Acta Cryst. A36, 399–408.Google Scholar
First citation Janner, A. & Janssen, T. (1980b). Symmetry of incommensurate crystal phases. II. Incommensurate basic structures. Acta Cryst. A36, 408–415.Google Scholar
First citation Jefferey, J. W. (1953). Unusual X-ray diffraction effects from a crystal of wollastonite. Acta Cryst. 6, 821–826.Google Scholar
First citation Jones, R. C. (1949). X-ray diffraction by randomly oriented line gratings. Acta Cryst. 2, 252–257.Google Scholar
First citation Kakinoki, J. & Komura, Y. (1954). Intensity of X-ray diffraction by a one-dimensionally disordered crystal. I. General derivation in the cases of `Reichweite' s = 0 and s = 1. J. Phys. Soc. Jpn, 9, 169–183.Google Scholar
First citation Kakinoki, J. & Komura, Y. (1965). Diffraction by a one-dimensionally disordered crystal. I. The intensity equation. Acta Cryst. 19, 137–147.Google Scholar
First citation Kitaigorodsky, A. I. (1984). Mixed crystals. Springer series in solid state science, Vol. 33, chs. 6.4, 6.5, 8.4. Berlin: Springer.Google Scholar
First citation Klug, H. P. & Alexander, L. E. (1954). X-ray diffraction procedures. New York: John Wiley.Google Scholar
First citation Korekawa, M. (1967). Theorie der Satellitenreflexe. Habilitationsschrift der Naturwissenschaftlichen Fakultät der Universität München, Germany.Google Scholar
First citation Korekawa, M. & Jagodzinski, H. (1967). Die Satelliten-reflexe des Labradorits. Schweiz. Mineral. Petrogr. Mitt. 47, 269–278.Google Scholar
First citation Krivoglaz, M. A. (1969). Theory of X-ray and thermal neutron scattering by real crystals. Part I. New York: Plenum.Google Scholar
First citation Kunz, C. (1979). Editor. Synchrotron radiation – techniques and applications. Berlin: Springer.Google Scholar
First citation Lechner, R. E. & Riekel, C. (1983). Application of neutron scattering in chemistry. In Neutron scattering and muon spin rotation. Springer tracts in modern physics, Vol. 101, edited by G. Höhler, pp. 1–84. Berlin: Springer.Google Scholar
First citation Lefebvre, J., Fouret, R. & Zeyen, C. (1984). Structure determination of sodium nitrate near the order–disorder phase transition. J. Phys. (Paris), 45, 1317–1327.Google Scholar
First citation Lovesey, S. W. (1984). Theory of neutron scattering from condensed matter, Vols. 1, 2. Oxford: Clarendon Press.Google Scholar
First citation Mardix, S. & Steinberger, I. T. (1970). Tilt and structure transformation in ZnS. J. Appl. Phys. 41, 5339–5341.Google Scholar
First citation Martorana, A., Marigo, A., Toniolo, L. & Zenetti, R. (1986). Stacking faults in the β-form of magnesium dichloride. Z. Kristallogr. 176, 1–12.Google Scholar
First citation Matsubara, E. & Georgopoulos, P. (1985). Diffuse scattering measurements with synchrotron radiation: instrumentation and techniques. J. Appl. Cryst. 18, 377–383.Google Scholar
First citation More, M., Lefebvre, J. & Hennion, B. (1984). Quasi-elastic coherent neutron scattering in the disordered phase of CBr4. Experimental evidence of local order and rotational dynamics of molecules. J. Phys. (Paris), 45, 303–307.Google Scholar
First citation More, M., Lefebvre, J., Hennion, B., Powell, B. M. & Zeyen, C. (1980). Neutron diffuse scattering in the disordered phase of CBr4. I. Experimental. Elastic and quasi-elastic coherent scattering in single crystals. J. Phys. C, 13, 2833–2846.Google Scholar
First citation Moss, S. C. (1966). Local order in solid alloys. In Local atomic arrangements studied by X-ray diffraction, ch. 3, edited by J. B. Cohen & J. E. Hilliard, pp. 95–122. New York: Gordon and Breach.Google Scholar
First citation Müller, H. (1952). Die eindimensionale Umwandlung Zinkblende-Wurtzit und die dabei auftretenden Anomalien. Neues Jahrb. Mineral. Abh. 84, 43–76.Google Scholar
First citation Niimura, N. (1986). Evaluation of data from 1-d PSD used in TOF method. J. Phys. (Paris) Colloq. 47(C5), Suppl., 129–136.Google Scholar
First citation Niimura, N., Ishikawa, Y., Arai, M. & Furusaka, M. (1982). Applications of position sensitive detectors to structural analysis using pulsed neutron sources. AIP conference proceedings, Vol. 89. Neutron scattering, edited by J. Faber, pp. 11–22. New York: AIP.Google Scholar
First citation Ohshima, K. & Harada, J. (1986). X-ray diffraction study of short-range ordered structure in a disordered Ag–15 at.% Mg alloy. Acta Cryst. B42, 436–442.Google Scholar
First citation Ohshima, K., Harada, J., Morinaga, M., Georgopoulos, P. & Cohen, J. B. (1986). Report on a round-robin study of diffuse X-ray scattering. J. Appl. Cryst. 19, 188–194.Google Scholar
First citation Ohshima, K. & Moss, S. C. (1983). X-ray diffraction study of basal-(ab)-plane structure and diffuse scattering from silver atoms in disordered stage-2 Ag0.18TiS2. Acta Cryst. A39, 298–305.Google Scholar
First citation Ohshima, K., Watanabe, D. & Harada, J. (1976). X-ray diffraction study of short-range order diffuse scattering from disordered Cu–29.8% Pd alloy. Acta Cryst. A32, 883–892.Google Scholar
First citation Overhauser, A. W. (1971). Observability of charge-density waves by neutron diffraction. Phys. Rev. B, 3, 3173–3182.Google Scholar
First citation Pandey, D., Lele, S. & Krishna, P. (1980a). X-ray diffraction from one dimensionally disordered 2H-crystals undergoing solid state transformation to the 6H structure. I. The layer displacement mechanism. Proc. R. Soc. London Ser. A, 369, 435–439.Google Scholar
First citation Pandey, D., Lele, S. & Krishna, P. (1980b). X-ray diffraction from one dimensionally disordered 2H-crystals undergoing solid state transformation to the 6H structure. II. The deformation mechanism. Proc. R. Soc. London Ser. A, 369, 451–461.Google Scholar
First citation Pandey, D., Lele, S. & Krishna, P. (1980c). X-ray diffraction from one dimensionally disordered 2H-crystals undergoing solid state transformation to the 6H structure. III. Comparison with experimental observations on SiC. Proc. R. Soc. London Ser. A, 369, 463–477.Google Scholar
First citation Patterson, A. L. (1959). Fourier theory. In International tables for X-ray crystallography, Vol. II, ch. 2.5. Birmingham: Kynoch Press.Google Scholar
First citation Peisl, J. (1975). Diffuse X-ray scattering from the displacement field of point defects and defect clusters. J. Appl. Cryst. 8, 143–149.Google Scholar
First citation Prandl, W. (1981). The structure factor of orientational disordered crystals: the case of arbitrary space, site, and molecular point-group. Acta Cryst. A37, 811–818.Google Scholar
First citation Press, W. (1973). Analysis of orientational disordered structures. I. Method. Acta Cryst. A29, 252–256.Google Scholar
First citation Press, W., Grimm, H. & Hüller, A. (1979). Analysis of orientational disordered structures. IV. Correlations between orientation and position of a molecule. Acta Cryst. A35, 881–885.Google Scholar
First citation Press, W. & Hüller, A. (1973). Analysis of orientational disordered structures. II. Examples: Solid CD4, p-D2 and NDBr4. Acta Cryst. A29, 257–263.Google Scholar
First citation Radons, W., Keller, J. & Geisel, T. (1983). Dynamical structure factor of a 1-d harmonic liquid: comparison of different approximation methods. Z. Phys. B, 50, 289–296.Google Scholar
First citation Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65–71.Google Scholar
First citation Rosshirt, E., Frey, F., Boysen, H. & Jagodzinski, H. (1985). Chain ordering in E2PI1.6 (5,10-diethylphenazinium iodide). Acta Cryst. B41, 66–76.Google Scholar
First citation Sabine, T. M. & Clarke, P. J. (1977). Powder neutron diffraction – refinement of the total pattern. J. Appl. Cryst. 10, 277–280.Google Scholar
First citation Scaringe, P. R. & Ibers, J. A. (1979). Application of the matrix method to the calculation of diffuse scattering in linearly disordered crystals. Acta Cryst. A35, 803–810.Google Scholar
First citation Schmatz, W. (1973). X-ray and neutron scattering on disordered crystals. In Treatise on materials science and technology, Vol. 2, ch. 3.1, edited by H. Hermans. New York: Academic Press.Google Scholar
First citation Schmatz, W. (1983). Neutron scattering studies of lattice defects: static properties of defects. In Methods of experimental physics, solid state: nuclear physics, Vol. 21, ch. 3.1, edited by J. N. Mundy, S. J. Rothman, M. J. Fluss & L. C. Smedskajew. New York: Academic Press.Google Scholar
First citation Schulz, H. (1982). Diffuse X-ray diffraction and its application to materials research. In Current topics in materials science, ch. 4, edited by E. Kaldis. Amsterdam: North-Holland.Google Scholar
First citation Schwartz, L. H. & Cohen, J. B. (1977). Diffraction from materials. New York: Academic Press.Google Scholar
First citation Sherwood, J. N. (1979). The plastically crystalline state. New York: John Wiley.Google Scholar
First citation Sparks, C. J. & Borie, B. (1966). Methods of analysis for diffuse X-ray scattering modulated by local order and atomic displacements. In Atomic arrangements studied by X-ray diffraction, ch. 1, edited by J. B. Cohen & J. E. Hilliard, pp. 5–50. New York: Gordon and Breach.Google Scholar
First citation Springer, T. (1972). Quasielastic neutron scattering for the investigation of diffuse motions in solid and liquids. Springer tracts in modern physics, Vol. 64. Berlin: Springer.Google Scholar
First citation Takaki, Y. & Sakurai, K. (1976). Intensity of X-ray scattering from one-dimensionally disordered crystal having the multilayer average structure. Acta Cryst. A32, 657–663.Google Scholar
First citation Tibbals, J. E. (1975). The separation of displacement and substitutional disorder scattering: a correction for structure factor ratio variation. J. Appl. Cryst. 8, 111–114.Google Scholar
First citation Tucciarone, A., Lau, H. Y., Corliss, A. M., Delapalme, A. & Hastings, J. M. (1971). Quantitative analysis of inelastic scattering in two-crystal and three-crystal spectrometry; critical scattering from RbMnF3. Phys. Rev. B, 4, 3206–3245.Google Scholar
First citation Turberfield, K. C. (1970). Time-of-flight diffractometry. In Thermal neutron diffraction, edited by B. T. M. Willis. Oxford University Press.Google Scholar
First citation Vainshtein, B. K. (1966). Diffraction of X-rays by chain molecules. Amsterdam: Elsevier.Google Scholar
First citation Warren, B. E. (1941). X-ray diffraction in random layer lattices. Phys. Rev. 59, 693–699.Google Scholar
First citation Warren, B. E. (1969). X-ray diffraction. Reading: Addison-Wesley.Google Scholar
First citation Warren, B. E. & Gingrich, N. S. (1934). Fourier integral analysis of X-ray powder patterns. Phys. Rev. 46, 368–372.Google Scholar
First citation Welberry, T. R. (1983). Routine recording of diffuse scattering from disordered molecular crystals. J. Appl. Phys. 16, 192–197.Google Scholar
First citation Welberry, T. R. (1985). Diffuse X-ray scattering and models of disorder. Rep. Prog. Phys. 48, 1543–1593.Google Scholar
First citation Welberry, T. R. & Glazer, A. M. (1985). A comparison of Weissenberg and diffractometer methods for the measurement of diffuse scattering from disordered molecular crystals. Acta Cryst. A41, 394–399.Google Scholar
First citation Welberry, T. R. & Siripitayananon, J. (1986). Analysis of the diffuse scattering from disordered molecular crystals: application to 1,4-dibromo-2,5-diethyl-3,6-dimethylbenzene at 295 K. Acta Cryst. B42, 262–272.Google Scholar
First citation Welberry, T. R. & Siripitayananon, J. (1987). Analysis of the diffuse scattering from disordered molecular crystals: application to 1,3-dibromo-2,5-diethyl-4,6-dimethylbenzene at 295 K. Acta Cryst. B43, 97–106.Google Scholar
First citation Welberry, T. R. & Withers, R. L. (1987). Optical transforms of disordered systems displaying diffuse intensity loci. J. Appl. Cryst. 20, 280–288.Google Scholar
First citation Wilke, W. (1983). General lattice factor of the ideal paracrystal. Acta Cryst. A39, 864–867.Google Scholar
First citation Wilson, A. J. C. (1942). Imperfections in the structure of cobalt. II. Mathematical treatment of proposed structure. Proc. R. Soc. London Ser. A, 180, 277–285.Google Scholar
First citation Wilson, A. J. C. (1949). X-ray diffraction by random layers: ideal line profiles and determination of structure amplitudes from observed line profiles. Acta Cryst. 2, 245–251.Google Scholar
First citation Wilson, A. J. C. (1962). X-ray optics, 2nd ed., chs. V, VI, VIII. London: Methuen.Google Scholar
First citation Windsor, C. G. (1982). Neutron diffraction performance in pulsed and steady sources. In Neutron scattering. AIP conference proceedings, Vol. 89, edited by J. Faber, pp. 1–10. New York: AIP.Google Scholar
First citation Wolff, P. M. de (1974). The pseudo-symmetry of modulated crystal structures. Acta Cryst. A30, 777–785.Google Scholar
First citation Wolff, P. M. de, Janssen, T. & Janner, A. (1981). The superspace groups for incommensurate crystal structures with a one-dimensional modulation. Acta Cryst. A37, 625–636.Google Scholar
First citation Wong, S. F., Gillan, B. E. & Lucas, B. W. (1984). Single crystal disorder diffuse X-ray scattering from phase II ammonium nitrate, NH4NO3. Acta Cryst. B40, 342–346.Google Scholar
First citation Wooster, W. A. (1962). Diffuse X-ray reflections from crystals, chs. IV, V. Oxford: Clarendon Press.Google Scholar
First citation Wu, T. B., Matsubara, E. & Cohen, J. B. (1983). New procedures for qualitative studies of diffuse X-ray scattering. J. Appl. Cryst. 16, 407–414.Google Scholar
First citation Yessik, M., Werner, S. A. & Sato, H. (1973). The dependence of the intensities of diffuse peaks on scattering angle in neutron diffraction. Acta Cryst. A29, 372–382.Google Scholar
First citation Young, R. A. (1975). Editor. International discussion meeting on studies of lattice distortions and local atomic arrangements by X-ray, neutron and electron diffraction. J. Appl. Cryst. 8, 79–191.Google Scholar
First citation Zernike, F. & Prins, J. A. (1927). Die Beugung von Röntgenstrahlen in Flüssigkeiten als Effekt der Molekülanordnung. Z. Phys. 41, 184–194.Google Scholar