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4.2. DISORDER DIFFUSE SCATTERING OF X-RAYS AND NEUTRONS

behaviour, there is also a displacement component parallel to the
plane of intergrowth in question. The semi-quantitative interpreta-
tion has been given in his paper.

(3) Rotations

The discussion concerning layers related by a twofold rotation
parallel to ¢ may easily be made by simply considering their
structure factors. Since the layers do not obey the twofold symmetry
their structure factors are generally different; unless they equalize
accidentally there are sharp and diffuse reflections according to the
values of (F) and AF, respectively. Obviously, Fy = F, is valid
only if h = k = 0; consequently there is just one reciprocal-lattice
row free from diffuse scattering.

(4) Asymmetric case
In the asymmetric case the symmetry conditions used above are
no longer valid:

P1 # D2:P12 # P21, P11 # P2-

But there is one condition which may be derived from the
invariance of the numbers of pairs in the relevant and its opposite
direction:

PuPy (M) = pypy,(—m).

This equation requires that p,,,(m) is not necessarily symmetric in
m. The calculation of characteristic values yields

A =1, A= (al + 052) —1. (4.2.4.6)

The a priori probabilities are now different from %, and may be
calculated by considering p,s(m) — p,(m — 00):

p1=ai/(a + a); P2 = /(o) + ).

The intensity is given by an expression very similar to (4.2.4.5):
1(H) = L(h)l[en /(a1 + @) 1 + [/ (a1 + a)|Faf*
LK) /(e + a)|Fr — o/ (o + ) Fal?

x (1 =|X)?)/(1 = 2X; cos 2l + | M. (42.4.7)

Again there are sharp Bragg reflections and diffuse ones in the same
positions, or in a displaced position depending on the sign of A;.

From a discussion of the next-nearest-neighbour Ising model one
may conclude that the detailed study of the qualitative behaviour of
sharp and diffuse reflections may give additional information on the
symmetry of the layers involved.

In the case of translations between neighbouring layers not
fulfilling the condition h-r = integer, where r is parallel to the
layer, more than two structure factors have to be taken into account.
If nh - r = integer, where n is the smallest integer fulfilling the said
condition, n different structure factors have to be considered. The
characteristic equation has formally to be derived with the aid of an
n X n matrix containing internal symmetries which may be avoided
by adding the phase factors e =-exp{2mH r/n}, " =
exp{—2miH - r/n} to the probability of pairs. The procedure is
allowed if the displacements r and —r are admitted only for
neighbouring layers. The matrix yielding the characteristic values
may then be reduced to

(0

and yields the characteristic equation

(1 - Oz1>€+
ne™
P )\(0116 + Oéz€+) —l+a +a,=0.

Equation (4.2.4.8) gives sharp Bragg reflections for
H - r/n = integer; the remaining diffuse reflections are displaced

(4.2.4.8)

corresponding to the phase of the complex characteristic value.
Equation (4.2.4.8) has been used in many cases. Qualitative
examples are the mixed-layer structures published by Hendricks
& Teller (1942). An example of a four-layer-type structure is treated
by Dubernat & Pezerat (1974). A first quantitative treatment with
good agreement between theory and experimental data (powder
diffraction) has been given by Dorner & Jagodzinski (1972) for the
binary system TiO,—SnO,. In the range of the so-called spinodal
decomposition the chemical composition of the two domains and
the average lengths of the two types of domains could be
determined. Another quantitative application was reported by
Jagodzinski & Hellner (1956) for the transformation of RhSnj
into a very complicated mixed-layer type. A good agreement of
measured and calculated diffuse scattering (asymmetric line
profiles, displacement of maxima) could be found over a wide
angular range of single-crystal diffraction.

4.2.4.2.1. Stacking disorder in close-packed structures

From an historical point of view stacking disorder in close-
packed systems is most important. The three relevant positions of
ordered layers are represented by the atomic coordinates
0,0[,|4,2[,%, 4| in the hexagonal setting of the unit cell, or
simply by the figures 1, 2, 3 in the same sequence. Structure factors
F\, F,, F5 refer to the corresponding positions of the same layer:

F, = Fyexp{2wi(h — k)/3},
F3 = Fyexp{—2mi(h — k)/3},

s

hence
Fi=F,=F; 1fh—k§0(mod3)

According to the above discussion the said indices define the
reciprocal-lattice rows exhibiting sharp reflections only, as long as
the distances between the layers are exactly equal. The symmetry
conditions caused by the translation are normally:

P1=p2 =D3,
P12 = P23 = P31,

P11 = P22 = P33,
P13 = P21 = P32

For the case of close packing of spheres and some other problems
any configuration of m layers determining the a posteriori
probability p,,,(m), u = 1/, has a symmetrical counterpart where
wisreplaced by ¢/ + 1 (if ¢/ =3,/ +1=1).

In this particular case p1>(m) = p;3(m), and equivalent relations
generated by translation.

Nearest-neighbour interactions do not lead to an ordered
structure if the principle of close packing is obeyed (no pairs in
equal positions) (Hendricks & Teller, 1942; Wilson, 1942).
Extension of the interactions to next-but-one or more neighbours
may be carried out by introducing the method of matrix multi-
plication developed by Kakinoki & Komura (1954, 1965), or the
method of overlapping clusters (Jagodzinski, 1954). The latter
procedure is outlined in the case of interactions between four layers.
A given set of three layers may occur in the following 12
combinations:

123,231,312;
121,232,313;

132,213,321;

131,212,323.

Since three of them are equivalent by translation, only four

representatives have to be introduced:
123; 132; 121; 131.

In the following the new indices 1, 2, 3, 4 are used for these four
representatives for the sake of simplicity.
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In order to construct the statistics layer by layer the next layer
must belong to a triplet starting with the same two symbols with
which the preceding one ended, e.g. 123 can only be followed by
231, or 232. In a similar way 132 can only be followed by 321 or
323. Since both cases are symmetrically equivalent the probabilities
o and 1 — o are introduced. In a similar way 121 may be followed
by 212 or 213 etc. For these two groups the probabilities o, and
1 —a, are defined. The different translations of groups are
considered by introducing the phase factors as described above.
Hence, the matrix for the characteristic equation may be set up as
follows. As representative cluster of each group is chosen that one
having the number 1 at the centre, e.g. 312 is representative for the
group 123, 231, 312; in a similar way 213, 212 and 313 are the
remaining representatives. Since this arrangement of three layers is
equivalent by translation, it may be assumed that the structure of the
central layer is not influenced by the statistics to a first
approximation. The same arguments hold for the remaining three
groups. On the other hand, the groups 312 and 213 are equivalent by
rotation only. Consequently their structure factors may differ if the
influence of the two neighbours has to be taken into account. A
different situation exists for the groups 212 and 313 which are
correlated by a centre of symmetry, which causes different
corresponding structure factors. It should be pointed out, however,
that the structure factor is invariant as long as there is no influence
of neighbouring layers on the structure of the central layer. The
latter is often observed in close-packed metal structures, or in
compounds like ZnS, SiC and others. For the calculation of
intensities p,p, F ,,F; is needed.

According to the following scheme of sequences any sequence of
pairs is correlated with the same phase factor for FF™ due to
translation, if both members of the pair belong to the same group.
Consequently the phase factor may be attached to the sequence
probability such that FF* remains unchanged, and the group may
be treated as a single element in the statistics. In this way the
reduced matrix for the solution of the characteristic equation is
given by

reflections for [ =integer, and diffuse ones in a position
determined by the sequence probabilities «; and «; (position
either [ = integer, [ = %—i—integer, respectively). The remaining
two characteristic values may be given in the form
A = |\ exp{2mip}, where ¢ determines the position of the
reflection. If the structure factors of the layers are independent of
the cluster, A, A3, Ay become irrelevant because of the new identity
of the F’s (no diffuse scattering). Weak diffuse intensities on the
lattice rows k —k = 0 (mod 3) may be explained in terms of this
influence.

(2) The remaining two solutions for ¢ = exp{+2ni(h —k)/3}
are equivalent, and result in the same characteristic values. They
have been discussed explicitly in the literature; the reader is referred
to the papers of Jagodzinski (1949a.,b,c, 1954).

In order to calculate the intensities one has to reconsider the
symmetry of the clusters, which is different from the symmetry of
the layers. Fortunately, a threefold rotation axis is invariant against
the translations, but this is not true for the remaining symmetry
operations in the layer if there are any more. Since we have two
pairs of inequivalent clusters, namely 312, 213 and 212, 313, there
are only two different a priori probabilities p; = ps; and
pr=ps=5(1-2py).

The symmetry conditions of the new clusters may be determined
by means of the so-called ‘probability trees’ described by Wilson
(1942) and Jagodzinski (1949h, pp. 208-214). For example:
D11 = D33, P22 = Paa, P13 = P31, P24 = P4y e€lcC.

It should be pointed out that clusters 1 and 3 describe a cubic
arrangement of three layers in the case of simple close packing,
while clusters 2 and 4 represent the hexagonal close packing. There
may be a small change in the lattice constant ¢ perpendicular to the
layers. Additional phase factors then have to be introduced in the
matrix for the characteristic equation, and a recalculation of the
constants is necessary. As a consequence, the reciprocal-lattice
rows (h—k) =0 (mod 3) become diffuse if [#0, and the
diffuseness increases with /. A similar behaviour results for the
remaining reciprocal-lattice rows.

Fy (1) (2) (3) (4)
F, 312,123(c7),231(e) | 212,323(c7), 131(e) | 213,321(c7), 132(e) | 313, 121(c*), 232(c)
(1) 312,123(¢),231(e") e’ 0 0 (1—ay)et
(2) 212,323(¢),131(c™) (1 —a)et 0 0 ae”
(3) 213,321(¢),132(c™) 0 (1—-a)e Qe 0
(4) 313,121(c),232(c") 0 e (1— an)e 0

There are three solutions of the diffraction problem:
(1) If h—k=0 (mod 3), € =+1, there are two quadratic
equations:

)\2—(041+a2))\—1+0z1—|—a2:0

5 (4.2.4.9)
A —(Oq —0[2))\-|-1—011 —ap=0
with solutions
AN =1, M=o +a—1
(01 — o) v
Nyjy = ;azi il _40‘2 B (4.2.4.10)

A1 and ), are identical with the solution of the asymmetric case
of two kinds of layers [cf equation (4.2.4.6)]. They yield sharp

The final solution of the diffraction problem results in the
following general intensity formula:

I(H) = L(h, k)N ;{AV(H)(l — )

x [1 = 2|\ | cos2x(l — @) + [A)] !
—2B,(H)|\,|sin27(l — ;)

x [1 =2\ |cos2n(l — )+ M7 (4.2.4.11)
Here A, and B, represent the real and imaginary part of the
constants to be calculated with the aid of the boundary conditions of
the problem. The first term in equation (4.2.4.11) determines the
symmetrical part of a diffuse reflection with respect to the
maximum, and is completely responsible for the integrated
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intensity. The second term causes an antisymmetrical contribution
to intensity profiles but does not influence the integrated intensities.
These general relations enable a semi-quantitative interpretation of
the sharp and diffuse scattering in any case, without performing the
time-consuming calculations of the constants which may only be
done in more complicated disorder problems with the aid of a
computer program evaluating the boundary conditions of the
problem.

This can be carried out with the aid of the characteristic values
and a linear system of equations (Jagodzinski, 1949a,b,c), or with
the aid of matrix formalism (Kakinoki & Komura, 1954; Takaki &
Sakurai, 1976). As long as only the line profiles and positions of the
reflections are required, these quantities may be determined
experimentally and fitted to characteristic values of a matrix. The
size of this matrix is given by the number of sharp and diffuse
maxima observed, while |),| and exp{2mip,} may be found by
evaluating the line width and the position of diffuse reflections.
Once this matrix has been found, a semi-quantitative model of the
disorder problem can be given. If a system of sharp reflections is
available, the averaged structure can be solved as described in
Section 4.2.3.2. The determination of the constants of the
diffraction problem is greatly facilitated by considering the
intensity modulation of diffuse scattering, which enables a phase
determination of structure factors to be made under certain
conditions.

The theory of closed-packed structures with three equivalent
translation vectors has been applied very frequently, even to
systems which do not obey the principle of close-packing. The
first quantitative explanation was published by Halla et al. (1953). It
was shown there that single crystals of CigHy4 from the same
synthesis may have a completely different degree of order. This was
true even within the same crystal. Similar results were found for C,
Si, CdI,, CdS;, mica and many other compounds. Quantitative
treatments are less abundant [e.g. Cdl,: Martorana et al. (1986);
MX3 structures: Conradi & Miiller (1986)]. Special attention has
been paid to the quantitative study of polytypic phase transforma-
tions in order to gain information about the thermodynamical
stability or the mechanism of layer displacements, e.g. Co (Edwards
& Lipson, 1942; Frey & Boysen, 1981), SiC (Jagodzinski, 1972;
Pandey et al., 1980), ZnS (Miiller, 1952; Mardix & Steinberger,
1970; Frey et al., 1986) and others.

Certain laws may be derived for the reduced integrated intensities
of diffuse reflections. ‘Reduction’ in this context means a division
of the diffuse scattering along / by the structure factor, or the
difference structure factor if (F) # 0. This procedure is valuable if
the number of stacking faults rather than the complete solution of
the diffraction problem is required.

The discussion given above has been made under the assumption
that the full symmetry of the layers is maintained in the statistics.
Obviously, this is not necessarily true if external lower symmetries
influence the disorder. An important example is the generation of
stacking faults during plastic deformation. Problems of this kind
need a complete reconsideration of symmetries. Furthermore, it
should be pointed out that a treatment with the aid of an extended
Ising model as described above is irrelevant in most cases.
Simplified procedures describing the diffuse scattering of intrinsic,
extrinsic, twin stacking faults and others have been described in the
literature. Since their influence on structure determination can
generally be neglected, the reader is referred to the literature for
additional information.

4.2.4.3. Two-dimensional disorder of chains

In this section disorder phenomena are considered which are
related to chain-like structural elements in crystals. This topic
includes the so-called ‘1D crystals’ where translational symmetry

(in direct space) exists in one direction only — crystals in which
highly anisotropic binding forces are responsible for chain-like
atomic groups, e.g. compounds which exhibit a well ordered 3D
framework structure with tunnels in a unique direction in which
atoms, ions or molecules are embedded. Examples are compounds
with platinum, iodine or mercury chains, urea inclusion compounds
with columnar structures (organic or inorganic), 1D ionic
conductors, polymers efc. Diffuse-scattering studies of 1D
conductors have been carried out in connection with investigations
of stability/instability problems, incommensurate structures, phase
transitions, dynamic precursor effects efc. These questions are not
treated here. For general reading of diffuse scattering in connection
with these topics see, e.g., Comes & Shirane (1979, and references
therein). Also excluded are specific problems related to polymers or
liquid crystals (mesophases) (see Chapter 4.4) and magnetic
structures with chain-like spin arrangements.

Trivial diffuse scattering occurs as 1D Bragg scattering (diffuse
layers) by internally ordered chains. Diffuse phenomena in
reciprocal space are due to ‘longitudinal’ disordering within the
chains (along the unique direction) as well as to ‘transverse’
correlations between different chains over a restricted volume. Only
static aspects are considered; diffuse scattering resulting from
collective excitations or diffusion-like phenomena which are of
inelastic or quasielastic origin are not treated here.

4.2.4.3.1. Scattering by randomly distributed collinear
chains

As found in any elementary textbook of diffraction the simplest
result of scattering by a chain with period ¢

I(r) =(z) = X2 6(z = n3) (4.2.4.12)
n3
is described by one of the Laue equations:
G(L) = |L(L)|* = sin® 7NL/ sin’ 7L (4.2.4.13)

which gives broadened profiles for small N. In the context of phase
transitions the Ornstein—Zernike correlation function is frequently
used, i.e. (4.2.4.13) is replaced by a Lorentzian:

1/{€ + 473 (L - 1)*}, (4.2.4.14)
where £ denotes the correlation length.
In the limiting case N — o0, (4.2.4.13) becomes
(4.2.4.15)

S (L - 1),
!

The scattering by a real chain a(r) consisting of molecules with
structure factor F), is therefore determined by

Fy(H) =) fexp{2mi(Hx; + Ky; + Lz;)}. (4.2.4.16)
J
The Patterson function is:
P(r) = (1/¢) [ [|Fo(H,K)|* cos 2n(Hx + Ky) dH dK
+(2/c) Y [ [ I exp{2riHx + Ky)}
]
x exp{—2milz} dH dK, (4.2.4.17)

where the index [ denotes the only relevant position L =1 (the
subscript M is omitted).

The intensity is concentrated in diffuse layers perpendicular to ¢*
from which the structural information may be extracted. Projections
are:

[a(r)dz= [ [Fo(H,K)exp{2mi(Hx + Ky)} dH dK (4.2.4.18)
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