International
Tables for
Crystallography
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2006). Vol. B. ch. 4.2, pp. 431-432   | 1 | 2 |

Section 4.2.4.4.2. Random distribution

H. Jagodzinskia and F. Freyb

aInstitut für Kristallographie und Mineralogie, Universität, Theresienstrasse 41, D-8000 München 2, Germany, and  bInstitut für Kristallographie und Mineralogie, Universität, Theresienstrasse 41, D-8000 München 2, Germany

4.2.4.4.2. Random distribution

| top | pdf |

As shown above in the case of random distributions all [p'_{\nu \nu'} ({\bf r})] are zero, except for [{\bf r} = 0]. Consequently, [p'_{\nu \nu'} ({\bf r}) l({\bf r})] may be replaced by [\alpha_{\nu} p'_{\nu \nu'} ({\bf r}) = \alpha_{\nu} \delta_{\nu \nu'} - \alpha_{\nu} \alpha_{\nu'}. \eqno(4.2.4.72)] According to (4.2.4.59)[link] and (4.2.4.61)[link] the diffuse scattering can be given by the Fourier transformation of [\eqalign{&\textstyle\sum\limits_{\nu} \textstyle\sum\limits_{\nu'} \Delta \pi_{\nu} ({\bf r}) * \Delta \pi_{\nu'} (-{\bf r}) * F_{\nu} ({\bf r}) * F_{\nu} (-{\bf r})\cr \noalign{\vskip5pt}&\quad = \textstyle\sum\limits_{\nu} \textstyle\sum\limits_{\nu'} p'_{\nu \nu'} ({\bf r}) * F_{\nu} ({\bf r}) * F_{\nu'} (-{\bf r})}] or with (4.2.4.72)[link]: [i_{d} ({\bf r}) = N \textstyle\sum\limits_{\nu} \textstyle\sum\limits_{\nu'} [\alpha_{\nu} \delta_{\nu \nu'} - \alpha_{\nu} \alpha_{\nu'}] * F_{\nu} ({\bf r}) * F_{\nu'} (-{\bf r}).] Fourier transformation gives [\eqalignno{I_{d} ({\bf H}) &= N \left\{\textstyle\sum\limits_{\nu} \alpha_{\nu} |F_{\nu} ({\bf H})|^{2} - \textstyle\sum\limits_{\nu} \alpha_{\nu} F_{\nu} ({\bf H}) \textstyle\sum\limits_{\nu'} \alpha_{\nu'} F_{\nu'}^{+} ({\bf H})\right\} &\cr \noalign{\vskip5pt}&= N \{\langle |F({\bf H})|^{2}\rangle - |\langle F({\bf H})\rangle |^{2}\}. &(4.2.4.73)}] This is the most general form of any diffuse scattering of systems ordered randomly (`Laue scattering'). Occasionally it is called `incoherent scattering' (see Section 4.2.2[link]).








































to end of page
to top of page