Tables for
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2006). Vol. B, ch. 5.1, pp. 534-551   | 1 | 2 |

Chapter 5.1. Dynamical theory of X-ray diffraction

A. Authiera*

aLaboratoire de Minéralogie-Cristallographie, Université P. et M. Curie, 4 Place Jussieu, F-75252 Paris CEDEX 05, France
Correspondence e-mail:


Authier, A. (1970). Ewald waves in theory and experiment. Adv. Struct. Res. Diffr. Methods, 3, 1–51.Google Scholar
Authier, A. (1986). Angular dependence of the absorption induced nodal plane shifts of X-ray stationary waves. Acta Cryst. A42, 414–426.Google Scholar
Authier, A. (1989). X-ray standing waves. J. Phys. (Paris), 50, C7–215, C7–224.Google Scholar
Authier, A. (2001). Dynamical theory of X-ray diffraction. IUCr Monographs on Crystallography. Oxford University Press.Google Scholar
Authier, A. & Balibar, F. (1970). Création de nouveaux champs d'onde généralisés dus à la présence d'un objet diffractant. II. Cas d'un défaut isolé. Acta Cryst. A26, 647–654.Google Scholar
Authier, A. & Malgrange, C. (1998). Diffraction physics. Acta Cryst. A54, 806–819.Google Scholar
Batterman, B. W. (1964). Effect of dynamical diffraction in X-ray fluorescence scattering. Phys. Rev. A, 133, 759–764.Google Scholar
Batterman, B. W. (1969). Detection of foreign atom sites by their X-ray fluorescence scattering. Phys. Rev. Lett. 22, 703–705.Google Scholar
Batterman, B. W. & Bilderback, D. H. (1991). X-ray monochromators and mirrors. In Handbook on synchrotron radiation, Vol. 3, edited by G. Brown & D. E. Moncton, pp. 105–153. Amsterdam: Elsevier Science Publishers BV.Google Scholar
Batterman, B. W. & Cole, H. (1964). Dynamical diffraction of X-rays by perfect crystals. Rev. Mod. Phys. 36, 681–717.Google Scholar
Batterman, B. W. & Hildebrandt, G. (1967). Observation of X-ray Pendellösung fringes in Darwin reflection. Phys. Status Solidi, 23, K147–K149.Google Scholar
Batterman, B. W. & Hildebrandt, G. (1968). X-ray Pendellösung fringes in Darwin reflection. Acta Cryst. A24, 150–157.Google Scholar
Bedzyk, M. J. (1988). New trends in X-ray standing waves. Nucl. Instrum. Methods A, 266, 679–683.Google Scholar
Bonse, U. & Teworte, R. (1980). Measurement of X-ray scattering factors of Si from the fine structure of Laue case rocking curves. J. Appl. Cryst. 13, 410–416.Google Scholar
Born, M. & Wolf, E. (1983). Principles of optics, 6th ed. Oxford: Pergamon Press.Google Scholar
Borrmann, G. (1950). Die Absorption von Röntgenstrahlen in Fall der Interferenz. Z. Phys. 127, 297–323.Google Scholar
Borrmann, G. (1954). Der kleinste Absorption Koeffizient interfierender Röntgenstrahlung. Z. Kristallogr. 106, 109–121.Google Scholar
Borrmann, G. (1959). Röntgenwellenfelder. Beit. Phys. Chem. 20 Jahrhunderts, pp. 262–282. Braunschweig: Vieweg und Sohn.Google Scholar
Bragg, W. L. (1913). The diffraction of short electromagnetic waves by a crystal. Proc. Cambridge Philos. Soc. 17, 43–57.Google Scholar
Bragg, W. L., Darwin, C. G. & James, R. W. (1926). The intensity of reflection of X-rays by crystals. Philos. Mag. 1, 897–922.Google Scholar
Brümmer, O. & Stephanik, H. (1976). Dynamische Interferenztheorie. Leipzig: Akademische Verlagsgesellshaft.Google Scholar
Chang, S.-L. (1987). Solution to the X-ray phase problem using multiple diffraction – a review. Crystallogr. Rev. 1, 87–189.Google Scholar
Cowan, P. L., Brennan, S., Jach, T., Bedzyk, M. J. & Materlik, G. (1986). Observations of the diffraction of evanescent X-rays at a crystal surface. Phys. Rev. Lett. 57, 2399–2402.Google Scholar
Darwin, C. G. (1914a). The theory of X-ray reflection. Philos. Mag. 27, 315–333.Google Scholar
Darwin, C. G. (1914b). The theory of X-ray reflection. Part II. Philos. Mag. 27, 675–690.Google Scholar
Darwin, C. G. (1922). The reflection of X-rays from imperfect crystals. Philos. Mag. 43, 800–829.Google Scholar
Ewald, P. P. (1917). Zur Begründung der Kristalloptik. III. Röntgenstrahlen. Ann. Phys. (Leipzig), 54, 519–597.Google Scholar
Ewald, P. P. (1958). Group velocity and phase velocity in X-ray crystal optics. Acta Cryst. 11, 888–891.Google Scholar
Fewster, P. F. (1993). X-ray diffraction from low-dimensional structures. Semicond. Sci. Technol. 8, 1915–1934.Google Scholar
Fingerland, A. (1971). Some properties of the single crystal rocking curve in the Bragg case. Acta Cryst. A27, 280–284.Google Scholar
Golovchenko, J. A., Patel, J. R., Kaplan, D. R., Cowan, P. L. & Bedzyk, M. J. (1982). Solution to the surface registration problem using X-ray standing waves. Phys. Rev. Lett. 49, 560–563.Google Scholar
Hart, M. (1981). Bragg angle measurement and mapping. J. Crystal Growth, 55, 409–427.Google Scholar
Hirsch, P. B. & Ramachandran, G. N. (1950). Intensity of X-ray reflection from perfect and mosaic absorbing crystals. Acta Cryst. 3, 187–194.Google Scholar
Hümmer, K. & Weckert, E. (1995). Enantiomorphism and three-beam X-ray diffraction: determination of the absolute structure. Acta Cryst. A51, 431–438.Google Scholar
International Tables for Crystallography (2004). Vol. C. Mathematical, physical and chemical tables, edited by E. Prince. Dordrecht: Kluwer Academic Publishers.Google Scholar
James, R. W. (1950). The optical principles of the diffraction of X-rays. London: G. Bell and Sons Ltd.Google Scholar
James, R. W. (1963). The dynamical theory of X-ray diffraction. Solid State Phys. 15, 53.Google Scholar
Kato, N. (1955). Integrated intensities of the diffracted and transmitted X-rays due to ideally perfect crystal. J. Phys. Soc. Jpn, 10, 46–55.Google Scholar
Kato, N. (1958). The flow of X-rays and material waves in an ideally perfect single crystal. Acta Cryst. 11, 885–887.Google Scholar
Kato, N. (1960). The energy flow of X-rays in an ideally perfect crystal: comparison between theory and experiments. Acta Cryst. 13, 349–356.Google Scholar
Kato, N. (1961a). A theoretical study of Pendellösung fringes. Part I. General considerations. Acta Cryst. 14, 526–532.Google Scholar
Kato, N. (1961b). A theoretical study of Pendellösung fringes. Part 2. Detailed discussion based upon a spherical wave theory. Acta Cryst. 14, 627–636.Google Scholar
Kato, N. (1963). Pendellösung fringes in distorted crystals. I. Fermat's principle for Bloch waves. J. Phys. Soc. Jpn, 18, 1785–1791.Google Scholar
Kato, N. (1964a). Pendellösung fringes in distorted crystals. II. Application to two-beam cases. J. Phys. Soc. Jpn, 19, 67–77.Google Scholar
Kato, N. (1964b). Pendellösung fringes in distorted crystals. III. Application to homogeneously bent crystals. J. Phys. Soc. Jpn, 19, 971–985.Google Scholar
Kato, N. (1968a). Spherical-wave theory of dynamical X-ray diffraction for absorbing perfect crystals. I. The crystal wave fields. J. Appl. Phys. 39, 2225–2230.Google Scholar
Kato, N. (1968b). Spherical-wave theory of dynamical X-ray diffraction for absorbing perfect crystals. II. Integrated reflection power. J. Appl. Phys. 39, 2231–2237.Google Scholar
Kato, N. (1974). X-ray diffraction. In X-ray diffraction, edited by L. V. Azaroff, R. Kaplow, N. Kato, R. J. Weiss, A. J. C. Wilson & R. A. Young, pp. 176–438. New York: McGraw-Hill.Google Scholar
Kato, N. & Lang, A. R. (1959). A study of Pendellösung fringes in X-ray diffraction. Acta Cryst. 12, 787–794.Google Scholar
Kikuta, S. (1971). Determination of structure factors of X-rays using half-widths of the Bragg diffraction curves from perfect single crystals. Phys. Status Solidi B, 45, 333–341.Google Scholar
Kikuta, S. & Kohra, K. (1970). X-ray collimators using successive asymmetric diffractions and their applications to measurements of diffraction curves. I. General considerations on collimators. J. Phys. Soc. Jpn, 29, 1322–1328.Google Scholar
Kovalchuk, M. V. & Kohn, V. G. (1986). X-ray standing waves – a new method of studying the structure of crystals. Sov. Phys. Usp. 29, 426–446.Google Scholar
Laue, M. von (1931). Die dynamische Theorie der Röntgenstrahl interferenzen in neuer Form. Ergeb. Exakten Naturwiss. 10, 133–158.Google Scholar
Laue, M. von (1952). Die Energie Strömung bei Röntgenstrahl interferenzen Kristallen. Acta Cryst. 5, 619–625.Google Scholar
Laue, M. von (1960). Röntgenstrahl-Interferenzen. Frankfurt am Main: Akademische Verlagsgesellschaft.Google Scholar
Lefeld-Sosnowska, M. & Malgrange, C. (1968). Observation of oscillations in rocking curves of the Laue reflected and refracted beams from thin Si single crystals. Phys. Status Solidi, 30, K23–K25.Google Scholar
Lefeld-Sosnowska, M. & Malgrange, C. (1969). Experimental evidence of plane-wave rocking curve oscillations. Phys. Status Solidi, 34, 635–647.Google Scholar
Ludewig, J. (1969). Debye–Waller factor and anomalous absorption (Ge; 293–5 K). Acta Cryst. A25, 116–118.Google Scholar
Materlik, G. & Zegenhagen, J. (1984). X-ray standing wave analysis with synchrotron radiation applied for surface and bulk systems. Phys. Lett. A, 104, 47–50.Google Scholar
Ohtsuki, Y. H. (1964). Temperature dependence of X-ray absorption by crystals. I. Photo-electric absorption. J. Phys. Soc. Jpn, 19, 2285–2292.Google Scholar
Ohtsuki, Y. H. (1965). Temperature dependence of X-ray absorption by crystals. II. Direct phonon absorption. J. Phys. Soc. Jpn, 20, 374–380.Google Scholar
Penning, P. & Polder, D. (1961). Anomalous transmission of X-rays in elastically deformed crystals. Philips Res. Rep. 16, 419–440.Google Scholar
Pinsker, Z. G. (1978). Dynamical scattering of X-rays in crystals. Springer series in solid-state sciences. Berlin: Springer-Verlag.Google Scholar
Prins, J. A. (1930). Die Reflexion von Röntgenstrahlen an absorbierenden idealen Kristallen. Z. Phys. 63, 477–493.Google Scholar
Renninger, M. (1955). Messungen zur Röntgenstrahl-Optik des Idealkristalls. I. Bestätigung der Darwin–Ewald–Prins–Kohler-Kurve. Acta Cryst. 8, 597–606.Google Scholar
Saka, T., Katagawa, T. & Kato, N. (1973). The theory of X-ray crystal diffraction for finite polyhedral crystals. III. The Bragg–(Bragg)m cases. Acta Cryst. A29, 192–200.Google Scholar
Takagi, S. (1962). Dynamical theory of diffraction applicable to crystals with any kind of small distortion. Acta Cryst. 15, 1311–1312.Google Scholar
Takagi, S. (1969). A dynamical theory of diffraction for a distorted crystal. J. Phys. Soc. Jpn, 26, 1239–1253.Google Scholar
Tanner, B. K. (1976). X-ray diffraction topography. Oxford: Pergamon Press.Google Scholar
Tanner, B. K. (1990). High resolution X-ray diffraction and topography for crystal characterization. J. Cryst. Growth, 99, 1315–1323.Google Scholar
Tanner, B. K. & Bowen, D. K. (1992). Synchrotron X-radiation topography. Mater. Sci. Rep. 8, 369–407.Google Scholar
Uragami, T. (1969). Pendellösung fringes of X-rays in Bragg case. J. Phys. Soc. Jpn, 27, 147–154.Google Scholar
Uragami, T. (1970). Pendellösung fringes in a crystal of finite thickness. J. Phys. Soc. Jpn, 28, 1508–1527.Google Scholar
Wagner, E. H. (1959). Group velocity and energy (or particle) flow density of waves in a periodic medium. Acta Cryst. 12, 345–346.Google Scholar
Zachariasen, W. H. (1945). Theory of X-ray diffraction in crystals. New York: John Wiley.Google Scholar
Zegenhagen, J. (1993). Surface structure determination with X-ray standing waves. Surf. Sci. Rep. 18, 199–271.Google Scholar