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5.2. DYNAMICAL THEORY OF ELECTRON DIFFRACTION

In terms of the ‘Hamiltonian’ of the two-dimensional system,
1
- 2k,

the evolution operator U(z,z), defined by (z) = U(z,20)%0,
satisfies

_H(Z) (VJch + K(%) + oy,

iQU(z, z20) = H(z)U(z, 29),

2.4.1
% (5 a)

or

Ulz2o) = 1 — i [Uzz)H(z) dar.

20

(5.2.4.1b)

5.2.5. Projection approximation — real-space solution

Many of the features of the more general solutions are retained in
the practically important projection approximation in which
©(x,y,z) is replaced by its projected mean value ¢, (x,y), so that
the corresponding Hamiltonian H,, does not depend on z. Equation
(5.2.4.1D) can then be solved directly by iteration to give

U,(z,20) = exp{—iH,(z — 20)},

and the solution may be verified by substitution into equation
(5.24.1a).

Many of the results of dynamical theory can be obtained by
expansion of equation (5.2.5.1) as

(5.2.5.1)

)
U, = l—iH,,(z—zo)—I—%Hf,(z—zo) —

followed by the direct evaluation of the differentials. Such
expressions can be used, for instance, to explore symmetries in
image space.

5.2.6. Semi-reciprocal space

In the derivation of electron-diffraction equations, it is more usual
to work in semi-reciprocal space (Tournarie, 1962). This can be
achieved by transforming equation (5.2.2.1) with respect to x and y
but not with respect to z, to obtain Tournarie’s equation

&)
dz?

Here |U) is the column vector of scattering amplitudes and Mj(z) is
a matrix, appropriate to LEED, with k vectors as diagonal elements
and Fourier coefficients of the potential as nondiagonal elements.

This equation is factorized in a manner parallel to that used on the
real-space equation [equation (5.2.3.1)] (Lynch & Moodie, 1972) to
obtain Tournarie’s forward-scattering equation

= —M,(2)|U). (5.2.6.1a)

diU=) e
& - +iM™(2)|U™), (5.2.6.1b)
where
M*(z) = +[K + (1/2)K 'V (2)],
K] = 6K,
and

[Vij] = 2k._Vi_jexp{—2milz},
1

where V; = ov; are the scattering coefficients and v; are the structure
amplitudes in volts. In order to simplify the electron-diffraction
expression, the third crystallographic index ‘I’ is taken to represent
the periodicity along the z direction.

The double solution involving M of equation (5.2.6.1b) is of
interest in displaying the symmetry of reciprocity, and may be
compared with the double solution obtained for the real-space
equation [equation (5.2.3.2)]. Normally the M" solution will be
followed through to give the fast-electron forward-scattering
equations appropriate in HEED. M™, however, represents the
equivalent set of equations corresponding to the z reversed
reciprocity configuration. Reciprocity solutions will yield diffrac-
tion symmetries in the forward direction when coupled with crystal-
inverting symmetries (Section 2.5.3).

Once again we set out to solve the forward-scattering equation
(5.2.6.1a,b) now in semi-reciprocal space, and define an operator
Q(z) [compare with equation (5.2.4.1a)] such that

|U.) = Q.|Up) with Uy =10);

i.e., Q, is an operator that, when acting on the incident wavevector,
generates the wavefunction in semi-reciprocal space.

Again, the differential equation can be transformed into an
integral equation, and once again this can be iterated. In the
projection approximation, with M independent of z, the solution can
be written as

Q, = exp{iM,(z = 2)}.

A typical off-diagonal element is given by V;_;/ cos 6;, where 6; is
the angle through which the beam is scattered. It is usual in the
literature to find that cos 6; has been approximated as unity, since
even the most accurate measurements are, so far, in error by much
more than this amount.

This expression for Q,, is Sturkey’s (1957) solution, a most useful

relation, written explicitly as
|U) = exp{iM,T}|0) (5.2.6.2)

with T the thickness of the crystal, and |0), the incident state, a
column vector with the first entry unity and the rest zero.

S = exp{iM, T}

is a unitary matrix, so that in this formulation scattering is described
as rotation in Hilbert space.

5.2.7. Two-beam approximation

In the two-beam approximation, as an elementary example,

equation (5.2.6.2) takes the form
u\ { 0 V*h) 0
<Mh> —exp{z<v(h) K, T 1)

If this expression is expanded directly as a Taylor series, it proves
surprisingly difficult to sum. However, the symmetries of Clifford
algebra can be exploited by summing in a Pauli basis thus,

ol "))
= exp{ig}Eexp{(% o+ Ve, - v102> T}.

Here, the o; are the Pauli matrices

01N [0 i\ /=10
7T 0) T\ 0) P o )
1o
E-= ,
(o 1)

and VR, V! are the real and imaginary parts of the complex
scattering coefficients appropriate to a noncentrosymmetric crystal,

(5.27.1)
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i.e. Vo = VR +iV!. Expanding,

K
exp{i<7h o3+ Vo, — V’0'2>T}

K
:E+i<7h0'3 +VRe — V’02>T

1 (K 2
—§<7h0'3+VR0'1—V10'2> T+ ...,

using the anti-commuting properties of o;:

_V}

and putting [(Kn/2)2 + V)V (h)] =Q, M, =[(Kn/2)0
+VRa — Vg, so that M3 = QE and M3 = OM,, the powers
of the matrix can easily be evaluated. They fall into odd and even
series, corresponding to sine and cosine, and the classical two-beam
approximation is obtained in the form

o 0l/2
Q, = exp{i(Ky/2)T}E [(cos Q'2T)E + Z<SIH£TT> M2} :

(52.72)

This result was first obtained by Blackman (1939), using Bethe’s
dispersion formulation. Ewald and, independently, Darwin, each
with different techniques, had, in establishing the theoretical
foundations for X-ray diffraction, obtained analogous results (see
Section 5.1.3).

The two-beam approximation, despite its simplicity, exemplifies
some of the characteristics of the full dynamical theory, for instance
in the coupling between beams. As Ewald pointed out, a formal
analogy can be found in classical mechanics with the motion of
coupled pendulums. In addition, the functional form (sinax)/x,
deriving from the shape function of the crystal emerges, as it does,
albeit less obviously, in the N-beam theory.

This derivation of equation (5.2.7.2) exhibits two-beam diffrac-
tion as a typical two-level system having analogies with, for
instance, lasers and nuclear magnetic resonance and exhibiting the
symmetries of the special unitary group SU(2) (Gilmore, 1974).

0','0'j-|—0'j'0','
0;0;

5.2.8. Eigenvalue approach
In terms of the eigenvalues and eigenvectors, defined by
Hy|Jj) =l i),
the evolution operator can be written as

U(z,20) = [ 1)) exp{(z — 20) }(j] dj.

This integration becomes a summation over discrete eigen states
when an infinitely periodic potential is considered.

Despite the early developments by Bethe (1928), an N-beam
expression for a transmitted wavefunction in terms of the
eigenvalues and eigenvectors of the problem was not obtained
until Fujimoto (1959) derived the expression

Up = Zw({*w,{ exp{—i2my T}, (5.2.8.1)
J

where 1 is the & component of the j eigenvector with eigenvalue ;.

This expression can now be related to those obtained in the other
formulations. For example, Sylvester’s theorem (Frazer et al., 1963)
in the form

M) =3 A f ()

when applied to Sturkey’s solution yields

Dy, = exp(iM,z) = )P exp{i2myz}

(Kainuma, 1968; Hurley et al., 1978). Here, the P; are projection
operators, typically of the form

(MP - E’Yn)
P = Hiv‘ O
ntj T n

On changing to a lattice basis, these transform to ¢]"¢;..
Alternatively, the semi-reciprocal differential equation can be

uncoupled by diagonalizing M,, (Goodman & Moodie, 1974), a

process which involves the solution of the characteristic equation

M, —~E| = 0. (5.2.82)

5.2.9. Translational invariance

An important result deriving from Bethe’s initial analysis, and not
made explicit in the preceding formulations, is that the fundamental
symmetry of a crystal, namely translational invariance, by itself
imposes a specific form on wavefunctions satisfying Schrodinger’s
equation.

Suppose that, in a one-dimensional description, the potential in a
Hamiltonian H,(x) is periodic, with period ¢. Then,

plx+1) = p(x)
and
Hy(x) = E¢(x).
Now define a translation operator
If (x) =f(x +12),

for arbitrary f(x). Then, since I'p(x) = ¢(x), and V? is invariant
under translation,

I'H,(x) = H,(x)
and
T'H, (x)¢(x) = H;(x + 1)y (x + 1) = Hy (x) [ (x).

Thus, the translation operator and the Hamiltonian commute, and
therefore have the same eigenfunctions (but not of course the same
eigenvalues), i.e.

F(x) = a(x).

This is a simpler equation to deal with than that involving the
Hamiltonian, since raising the operator to an arbitrary power simply
increments the argument

I"(x) = (x4 mt) = " (x).

But 1)(x) is bounded over the entire range of its argument, positive
and negative, so that || = 1, and o must be of the form exp{i2mkt}.

Thus, ¥(x + t) = I'(x) = exp{i2mkt }1)(x), for which the solu-
tion is

(x) = exp{i2mkt }q(x)

with g(x + 1) = q(x).

This is the result derived independently by Bethe and Bloch.
Functions of this form constitute bases for the translation group, and
are generally known as Bloch functions. When extended in a direct
fashion into three dimensions, functions of this form ultimately
embody the symmetries of the Bravais lattice; i.e. Bloch functions
are the irreducible representations of the translational component of
the space group.
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