
In terms of the ‘Hamiltonian’ of the two-dimensional system,

�H�z� � 1
2kz

��2
x� y � K2

0� � ��,

the evolution operator U�z, z0�, defined by ��z� � U�z, z0��0,
satisfies

i
�

�z
U�z, z0� � H�z�U�z, z0�, �5�2�4�1a�

or

U�z, z0� � 1� i
�z

z0

U�z, z1�H�z1� dz1� �5�2�4�1b�

5.2.5. Projection approximation – real-space solution

Many of the features of the more general solutions are retained in
the practically important projection approximation in which
��x, y, z� is replaced by its projected mean value �p�x, y�, so that
the corresponding Hamiltonian Hp does not depend on z. Equation
(5.2.4.1b) can then be solved directly by iteration to give

Up�z, z0� � exp��iHp�z� z0�	, �5�2�5�1�
and the solution may be verified by substitution into equation
(5.2.4.1a).

Many of the results of dynamical theory can be obtained by
expansion of equation (5.2.5.1) as

Up � 1� iHp�z� z0� � i2

2�
H2

p�z� z0� � � � � ,

followed by the direct evaluation of the differentials. Such
expressions can be used, for instance, to explore symmetries in
image space.

5.2.6. Semi-reciprocal space

In the derivation of electron-diffraction equations, it is more usual
to work in semi-reciprocal space (Tournarie, 1962). This can be
achieved by transforming equation (5.2.2.1) with respect to x and y
but not with respect to z, to obtain Tournarie’s equation

d2
U�
dz2

� �Mb�z�
U�� �5�2�6�1a�

Here 
U� is the column vector of scattering amplitudes and Mb�z� is
a matrix, appropriate to LEED, with k vectors as diagonal elements
and Fourier coefficients of the potential as nondiagonal elements.

This equation is factorized in a manner parallel to that used on the
real-space equation [equation (5.2.3.1)] (Lynch & Moodie, 1972) to
obtain Tournarie’s forward-scattering equation

d
U��
dz

� �iM��z�
U��, �5�2�6�1b�

where

M��z� � �
K� �1�2�K�1V �z��,

Kij� � �ijKi,

and


Vij� � 2kz
�

l
Vi�j exp��2	ilz	,

where Vi � �vi are the scattering coefficients and vi are the structure
amplitudes in volts. In order to simplify the electron-diffraction
expression, the third crystallographic index ‘l’ is taken to represent
the periodicity along the z direction.

The double solution involving M of equation (5.2.6.1b) is of
interest in displaying the symmetry of reciprocity, and may be
compared with the double solution obtained for the real-space
equation [equation (5.2.3.2)]. Normally the M� solution will be
followed through to give the fast-electron forward-scattering
equations appropriate in HEED. M�, however, represents the
equivalent set of equations corresponding to the z reversed
reciprocity configuration. Reciprocity solutions will yield diffrac-
tion symmetries in the forward direction when coupled with crystal-
inverting symmetries (Section 2.5.3).

Once again we set out to solve the forward-scattering equation
(5.2.6.1a,b) now in semi-reciprocal space, and define an operator
Q�z� [compare with equation (5.2.4.1a)] such that


Uz� � Qz
U0� with U0 � 
0�;
i.e., Qz is an operator that, when acting on the incident wavevector,
generates the wavefunction in semi-reciprocal space.

Again, the differential equation can be transformed into an
integral equation, and once again this can be iterated. In the
projection approximation, with M independent of z, the solution can
be written as

Qp � exp�iMp�z� z0�	�
A typical off-diagonal element is given by Vi�j� cos 
i, where 
i is
the angle through which the beam is scattered. It is usual in the
literature to find that cos 
i has been approximated as unity, since
even the most accurate measurements are, so far, in error by much
more than this amount.

This expression for Qp is Sturkey’s (1957) solution, a most useful
relation, written explicitly as


U� � exp�iMpT	
0� �5�2�6�2�
with T the thickness of the crystal, and 
0�, the incident state, a
column vector with the first entry unity and the rest zero.

S � exp�iMpT	
is a unitary matrix, so that in this formulation scattering is described
as rotation in Hilbert space.

5.2.7. Two-beam approximation

In the two-beam approximation, as an elementary example,
equation (5.2.6.2) takes the form

u0

uh

� �

� exp i
0 V ��h�

V �h� Kh

� �

T

� �
0
1

� �

� �5�2�7�1�

If this expression is expanded directly as a Taylor series, it proves
surprisingly difficult to sum. However, the symmetries of Clifford
algebra can be exploited by summing in a Pauli basis thus,

exp i
0 V ��h�

V �h� Kh

� �

T

� �

� exp i
KhT

2

� �

E exp i
Kh

2
�3 � V R�1 � V I�2

� �

T

� �

�

Here, the � i are the Pauli matrices

�1 �
0 1

1 0

� �

, �2 �
0 i

�i 0

� �

, �3 �
�1 0

0 1

� �

,

E � 1 0

0 1

� �

,

and V R , V I are the real and imaginary parts of the complex
scattering coefficients appropriate to a noncentrosymmetric crystal,
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i.e. Vh � V R � iV I . Expanding,

exp i
Kh

2
�3 � V R�1 � V I�2

� �

T

� �

� E� i
Kh

2
�3 � V R�1 � V I�2

� �

T

� 1
2

Kh

2
�3 � V R�1 � V I�2

� �2

T2 � � � � ,

using the anti-commuting properties of � i:

� i� j � � j� i � 0
� i� i � 1

�

and putting 
�Kh�2�2 � V �h�V ��h�� � �, M2 � 
�Kh�2��3

�V R�1 � V I�2�, so that M2
2 � �E and M3

2 � �M2, the powers
of the matrix can easily be evaluated. They fall into odd and even
series, corresponding to sine and cosine, and the classical two-beam
approximation is obtained in the form

Q2 � exp�i�Kh�2�T	E �cos�1�2T�E� i
sin�1�2T

�1�2

� �

M2

� �

�

�5�2�7�2�
This result was first obtained by Blackman (1939), using Bethe’s

dispersion formulation. Ewald and, independently, Darwin, each
with different techniques, had, in establishing the theoretical
foundations for X-ray diffraction, obtained analogous results (see
Section 5.1.3).

The two-beam approximation, despite its simplicity, exemplifies
some of the characteristics of the full dynamical theory, for instance
in the coupling between beams. As Ewald pointed out, a formal
analogy can be found in classical mechanics with the motion of
coupled pendulums. In addition, the functional form �sin ax��x,
deriving from the shape function of the crystal emerges, as it does,
albeit less obviously, in the N-beam theory.

This derivation of equation (5.2.7.2) exhibits two-beam diffrac-
tion as a typical two-level system having analogies with, for
instance, lasers and nuclear magnetic resonance and exhibiting the
symmetries of the special unitary group SU(2) (Gilmore, 1974).

5.2.8. Eigenvalue approach

In terms of the eigenvalues and eigenvectors, defined by

Hp
 j� � �j
 j�,
the evolution operator can be written as

U�z, z0� �
� 
 j� exp��j�z� z0�	� j
 dj�

This integration becomes a summation over discrete eigen states
when an infinitely periodic potential is considered.

Despite the early developments by Bethe (1928), an N-beam
expression for a transmitted wavefunction in terms of the
eigenvalues and eigenvectors of the problem was not obtained
until Fujimoto (1959) derived the expression

Uh �
�

j
� j�

0 � j
h exp��i2	�jT	, �5�2�8�1�

where � j
h is the h component of the j eigenvector with eigenvalue �j.

This expression can now be related to those obtained in the other
formulations. For example, Sylvester’s theorem (Frazer et al., 1963)
in the form

f �M� ��

j
Aj f ��j�

when applied to Sturkey’s solution yields

�h � exp�iMpz� ��
Pj exp�i2	�jz	

(Kainuma, 1968; Hurley et al., 1978). Here, the Pj are projection
operators, typically of the form

Pj �
	

n��j

�Mp � E�n�
�j � �n

�

On changing to a lattice basis, these transform to � j�
0 � j

h.
Alternatively, the semi-reciprocal differential equation can be

uncoupled by diagonalizing Mp (Goodman & Moodie, 1974), a
process which involves the solution of the characteristic equation


Mp � �jE
 � 0� �5�2�8�2�

5.2.9. Translational invariance

An important result deriving from Bethe’s initial analysis, and not
made explicit in the preceding formulations, is that the fundamental
symmetry of a crystal, namely translational invariance, by itself
imposes a specific form on wavefunctions satisfying Schrödinger’s
equation.

Suppose that, in a one-dimensional description, the potential in a
Hamiltonian Ht�x� is periodic, with period t. Then,

��x� t� � ��x�
and

Ht��x� � E��x��
Now define a translation operator

�f �x� � f �x� t�,
for arbitrary f �x�. Then, since ���x� � ��x�, and �2 is invariant
under translation,

�Ht�x� � Ht�x�
and

�Ht�x���x� � Ht�x� t���x� t� � Ht�x����x��
Thus, the translation operator and the Hamiltonian commute, and

therefore have the same eigenfunctions (but not of course the same
eigenvalues), i.e.

���x� � ���x��
This is a simpler equation to deal with than that involving the
Hamiltonian, since raising the operator to an arbitrary power simply
increments the argument

�m��x� � ��x� mt� � �m��x��
But ��x� is bounded over the entire range of its argument, positive
and negative, so that 
�
 � 1, and � must be of the form exp�i2	kt	.

Thus, ��x� t� � ���x� � exp�i2	kt	��x�, for which the solu-
tion is

��x� � exp�i2	kt	q�x�
with q�x� t� � q�x�.

This is the result derived independently by Bethe and Bloch.
Functions of this form constitute bases for the translation group, and
are generally known as Bloch functions. When extended in a direct
fashion into three dimensions, functions of this form ultimately
embody the symmetries of the Bravais lattice; i.e. Bloch functions
are the irreducible representations of the translational component of
the space group.
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