International
Tables for
Crystallography
Volume B
Reciprocal Space
Edited by U. Shmueli

International Tables for Crystallography (2006). Vol. B. ch. 5.3, p. 558   | 1 | 2 |

Section 5.3.2.5. Translating X-ray dynamical theory into the neutron case

M. Schlenkera* and J.-P. Guigaya,b

aLaboratoire Louis Néel du CNRS, BP 166, F-38042 Grenoble CEDEX 9, France, and  bEuropean Synchrotron Radiation Facility, BP 220, F-38043 Grenoble, France
Correspondence e-mail:  schlenk@polycnrs-gre.fr

5.3.2.5. Translating X-ray dynamical theory into the neutron case

| top | pdf |

As shown in Chapter 5.1[link] , the basic equations of dynamical theory, viz Maxwell's equations for the X-ray case and the time-independent Schrödinger equation in the neutron case, have exactly the same form when the effect of the neutron spin can be neglected, i.e. in situations that do not involve magnetism and when no externally applied potential is taken into account. The translation scheme for the scattering factors and structure factors is described above. The one formal difference is that the wavefunction is scalar in the neutron case, hence there is no equivalent to the parallel and perpendicular polarizations of the X-ray situation: C in equation (5.1.2.20[link] ) of Chapter 5.1 should therefore be set to 1.

The physics of neutron diffraction by perfect crystals is therefore expected to be very similar to that of X-ray diffraction, with the existence of wavefields, Pendellösung effects, anomalous transmission, intrinsic rocking-curve shapes and reflectivity versus thickness behaviour in direct correspondence. All experimental tests of these predictions confirm this view (Section 5.3.6[link]).

Basic discussions of dynamical neutron scattering are given by Stassis & Oberteuffer (1974)[link], Sears (1978)[link], Rauch & Petrascheck (1978)[link], and Squires (1978)[link].

References

First citation Rauch, H. & Petrascheck, D. (1978). Dynamical neutron diffraction and its application. In Neutron diffraction, edited by H. Dachs, Topics in current physics, Vol. 6 pp. 305–351. Berlin: Springer.Google Scholar
First citation Sears, V. F. (1978). Dynamical theory of neutron diffraction. Can. J. Phys. 56, 1261–1288.Google Scholar
First citation Squires, G. L. (1978). Introduction to the theory of thermal neutron scattering. Cambridge University Press.Google Scholar
First citation Stassis, C. & Oberteuffer, J. A. (1974). Neutron diffraction by perfect crystals. Phys. Rev. B, 10, 5192–5202.Google Scholar








































to end of page
to top of page