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Preface

By Uri Shmueli

The purpose of Volume B of International Tables for Crystal-
lography is to provide the user or reader with accounts of some
well established topics, of importance to the science of crystal-
lography, which are related in one way or another to the concepts
of reciprocal lattice and, more generally, reciprocal space. Efforts
have been made to extend the treatment of the various topics to
include X-ray, electron, and neutron diffraction techniques, and
thereby do some justice to the inclusion of the present Volume in
the new series of International Tables for Crystallography.

An important crystallographic aspect of symmetry in reci-
procal space, space-group-dependent expressions of trigono-
metric structure factors, already appears in Volume I of
International Tables for X-ray Crystallography, and preliminary
plans for incorporating this and other crystallographic aspects of
reciprocal space in the new edition of International Tables date
back to 1972. However, work on a volume of International Tables
for Crystallography, largely dedicated to the subject of reciprocal
space, began over ten years later. The present structure of
Volume B, as determined in the years preceding the 1984
Hamburg congress of the International Union of Crystallography
(IUCr), is due to (i) computer-controlled production of concise
structure-factor tables, (ii) the ability to introduce many more
aspects of reciprocal space – as a result of reducing the effort of
producing the above tables, as well as their volume, and (iii)
suggestions by the National Committees and individual crystal-
lographers of some additional interesting topics. It should be
pointed out that the initial plans for the present Volume and
Volume C (Mathematical, Physical and Chemical Tables, edited
by Professor A. J. C. Wilson), were formulated and approved
during the same period.

The obviously delayed publication of Volume B is due to
several reasons. Some minor delays were caused by a require-
ment that potential contributors should be approved by the
Executive Committee prior to issuing relevant invitations. Much
more serious delays were caused by authors who failed to deliver
their contributions. In fact, some invited contributions had to be
excluded from this first edition of Volume B. Some of the topics
here treated are greatly extended, considerably updated or
modern versions of similar topics previously treated in the old
Volumes I, II, and IV. Most of the subjects treated in Volume B
are new to International Tables.

I gratefully thank Professor A. J. C. Wilson, for suggesting that
I edit this Volume and for sharing with me his rich editorial
experience. I am indebted to those authors of Volume B who
took my requests and deadlines seriously, and to the Computing
Center of Tel Aviv University for computing facilities and time.
Special thanks are due to Mrs Z. Stein (Tel Aviv University) for
skilful assistance in numeric and symbolic programming,
involved in my contributions to this Volume.

I am most grateful to many colleagues–crystallographers for
encouragement, advice, and suggestions. In particular, thanks
are due to Professors J. M. Cowley, P. Goodman and C. J.
Humphreys, who served as Chairmen of the Commission on
Electron Diffraction during the preparation of this Volume, for
prompt and expert help at all stages of the editing. The kind
assistance of Dr J. N. King, the Executive Secretary of the IUCr,
is also gratefully acknowledged. Last, but certainly not least, I
wish to thank Mr M. H. Dacombe, the Technical Editor of the
IUCr, and his staff for the skilful and competent treatment of the
variety of drafts and proofs out of which this Volume arose.

Preface to the second edition

By Uri Shmueli

The first edition of Volume B appeared in 1993, and was
followed by a corrected reprint in 1996. Although practically all
the material for the second edition was available in early 1997,
its publication was delayed by the decision to translate all of
Volume B, and indeed all the other volumes of International
Tables for Crystallography, to Standard Generalized
Markup Language (SGML) and thus make them available
also in an electronic form suitable for modern publishing
procedures.

During the preparation of the second edition, most chapters
that appeared in the first edition have been corrected and/or
revised, some were rather extensively updated, and five new
chapters were added. The overall structure of the second edition
is outlined below.

After an introductory chapter, Part 1 presents the reader with
an account of structure-factor formalisms, an extensive treat-
ment of the theory, algorithms and crystallographic applications
of Fourier methods, and treatments of symmetry in reciprocal
space. These are here enriched with more advanced aspects of
representations of space groups in reciprocal space.

In Part 2, these general accounts are followed by detailed
expositions of crystallographic statistics, the theory of direct
methods, Patterson techniques, isomorphous replacement and
anomalous scattering, and treatments of the role of electron

microscopy and diffraction in crystal structure determination.
The latter topic is here enhanced by applications of direct
methods to electron crystallography.

Part 3, Dual Bases in Crystallographic Computing, deals with
applications of reciprocal space to molecular geometry and
‘best’-plane calculations, and contains a treatment of
the principles of molecular graphics and modelling and their
applications; it concludes with the presentation of a
convergence-acceleration method, of importance in the compu-
tation of approximate lattice sums.

Part 4 contains treatments of various diffuse-scattering
phenomena arising from crystal dynamics, disorder and low
dimensionality (liquid crystals), and an exposition of the
underlying theories and/or experimental evidence. The new
additions to this part are treatments of polymer crystallography
and of reciprocal-space images of aperiodic crystals.

Part 5 contains introductory treatments of the theory of the
interaction of radiation with matter, the so-called dynamical
theory, as applied to X-ray, electron and neutron diffraction
techniques. The chapter on the dynamical theory of neutron
diffraction is new.

I am deeply grateful to the authors of the new contributions
for making their expertise available to Volume B and for their
excellent collaboration. I also take special pleasure in thanking
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those authors of the first edition who revised and updated their
contributions in view of recent developments. Last but not least,
I wish to thank all the authors for their contributions and their
patience, and am grateful to those authors who took my requests
seriously. I hope that the updating and revision of future editions
will be much easier and more expedient, mainly because of the
new format of International Tables.

Four friends and greatly respected colleagues who
contributed to the second edition of Volume B are no longer
with us. These are Professors Arthur J. C. Wilson, Peter
Goodman, Verner Schomaker and Boris K. Vainshtein. I asked
Professors Michiyoshi Tanaka, John Cowley and Douglas Dorset
if they were prepared to answer queries related to the
contributions of the late Peter Goodman and Boris K.
Vainshtein to Chapter 2.5. I am most grateful for their prompt
agreement.

This editorial work was carried out at the School of Chemistry
and the Computing Center of Tel Aviv University. The facilities
they put at my disposal are gratefully acknowledged on my behalf
and on behalf of the IUCr. I wish to thank many colleagues for
interesting conversations and advice, and in particular Professor
Theo Hahn with whom I discussed at length problems regarding
Volume B and International Tables in general.

Given all these expert contributions, the publication of this
volume would not have been possible without the expertise and
devotion of the Technical Editors of the IUCr. My thanks go to
Mrs Sue King, for her cooperation during the early stages of the
work on the second edition of Volume B, while the material was
being collected, and to Dr Nicola Ashcroft, for her collaboration
during the final stages of the production of the volume, for her
most careful and competent treatment of the proofs, and last but
not least for her tactful and friendly attitude.

Preface to the third edition

By Uri Shmueli

The second edition of Volume B appeared in 2001. Plans for the
third edition included the addition of new chapters and sections,
the substantial revision of several chapters that existed in the
second edition and minor revisions and updating of existing
chapters. The overall structure of Volume B remained
unchanged.

In Part 1, Chapter 1.5 on classifications of space-group
representations in reciprocal space has been extensively revised.

In Part 2, Chapter 2.2 on direct methods has been
considerably extended to include applications of these methods
to macromolecular crystallography. Chapter 2.3 on Patterson
and molecular replacement techniques has been updated and
extended. Section 2.5.3 on convergent-beam electron diffraction
has been completely rewritten by a newly invited author, and
Section 2.5.6 on three-dimensional reconstruction has been
updated and extended by a newly invited author, who has also
added Section 2.5.7 on single-particle reconstruction. The
Foreword to Chapter 2.5 on electron diffraction and microscopy
has also been revised.

In Part 3, Chapter 3.3 on computer graphics and molecular
modelling has been enriched by Section 3.3.4 on the implemen-
tation of molecular graphics to small and medium-sized
molecules, and a comprehensive Chapter 3.5 on modern
extensions of Ewald methods has been added, dealing with (i)
inclusion of fast Fourier transforms in the computation of sums
and (ii) departure from the point-charge model in Ewald
summations.

In Part 4, Chapter 4.1 on thermal diffuse scattering of X-rays
and neutrons has been updated, and Chapter 4.2 on disorder
diffuse scattering of X-rays and neutrons has been extensively
revised and updated.

Minor updates and corrections have also been made to several
existing chapters and sections in all the parts of the volume.

My gratitude is extended to the authors of new contributions
and to the authors of the first and second editions of the volume
for significant revisions of their chapters and sections in view of
new developments. I wish to thank all the authors for their
excellent collaboration and for sharing with the International
Tables for Crystallography their expertise. I hope that the
tradition of keeping the contributions up to date will also persist
in future editions of Volume B. This will be aided by significant
improvements in various aspects of technical editing which were
already apparent in the preparation of this edition.

Three greatly respected friends and colleagues who
contributed to this and previous editions of Volume B
passed away after the second edition of Volume B was
published. These are Professors John Cowley, Boris
Zvyagin and Donald Williams. I asked Professors John
Spence, Douglas Dorset and Pawel Penczek to take care of
any questions about the articles of the late John Cowley, Boris
Zvyagin and Boris Vainshtein in Chapter 2.5, and Dr Bill Smith
to answer any questions about Chapter 3.4 by the late Donald
Williams. They all agreed promptly and I am most grateful for
this.

My editorial work was carried out at the School of Chemistry
of Tel Aviv University and I wish to acknowledge gratefully the
facilities that were put at my disposal. I am grateful to many
friends and colleagues for interesting conversations and
exchanges related to this volume. Thanks are also due to my
friends from the IUCr office in Chester for their helpful
interest.

Finally, I think that the publication of the third edition of
Volume B would not have been possible without the competent,
tactful and friendly collaboration of Dr Nicola Ashcroft, the
Technical Editor of this project during all the stages of the
preparation of this edition.

PREFACE
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1.1. Reciprocal space in crystallography

By U. Shmueli

1.1.1. Introduction

The purpose of this chapter is to provide an introduction to
several aspects of reciprocal space, which are of general impor-
tance in crystallography and which appear in the various chapters
and sections to follow. We first summarize the basic definitions
and briefly inspect some fundamental aspects of crystallography,
while recalling that they can be usefully and simply discussed in
terms of the concept of the reciprocal lattice. This introductory
section is followed by a summary of the basic relationships
between the direct and associated reciprocal lattices. We then
introduce the elements of tensor-algebraic formulation of such
dual relationships, with emphasis on those that are important in
many applications of reciprocal space to crystallographic algo-
rithms. We proceed with a section that demonstrates the role of
mutually reciprocal bases in transformations of coordinates and
conclude with a brief outline of some important analytical aspects
of reciprocal space, most of which are further developed in other
parts of this volume.

1.1.2. Reciprocal lattice in crystallography

The notion of mutually reciprocal triads of vectors dates back to
the introduction of vector calculus by J. Willard Gibbs in the
1880s (e.g. Wilson, 1901). This concept appeared to be useful in
the early interpretations of diffraction from single crystals
(Ewald, 1913; Laue, 1914) and its first detailed exposition and the
recognition of its importance in crystallography can be found in
Ewald’s (1921) article. The following free translation of Ewald’s
(1921) introduction, presented in a somewhat different notation,
may serve the purpose of this section:

To the set of ai, there corresponds in the vector calculus a set of

‘reciprocal vectors’ bi, which are defined (by Gibbs) by the

following properties:

ai � bk ¼ 0 ðfor i 6¼ kÞ ð1:1:2:1Þ

and

ai � bi ¼ 1; ð1:1:2:2Þ

where i and k may each equal 1, 2 or 3. The first equation, (1.1.2.1),

says that each vector bk is perpendicular to two vectors ai, as follows

from the vanishing scalar products. Equation (1.1.2.2) provides the

norm of the vector bi: the length of this vector must be chosen such

that the projection of bi on the direction of ai has the length 1=ai,

where ai is the magnitude of the vector ai . . . .

The consequences of equations (1.1.2.1) and (1.1.2.2) were
elaborated by Ewald (1921) and are very well documented in the
subsequent literature, crystallographic as well as other.

As is well known, the reciprocal lattice occupies a rather
prominent position in crystallography and there are nearly as
many accounts of its importance as there are crystallographic
texts. It is not intended to review its applications, in any detail, in
the present section; this is done in the remaining chapters and
sections of the present volume. It seems desirable, however, to
mention by way of an introduction some fundamental geome-
trical, physical and mathematical aspects of crystallography, and

try to give a unified demonstration of the usefulness of mutually
reciprocal bases as an interpretive tool.

Consider the equation of a lattice plane in the direct lattice. It
is shown in standard textbooks (e.g. Buerger, 1941) that this
equation is given by

hxþ kyþ lz ¼ n; ð1:1:2:3Þ

where h, k and l are relatively prime integers (i.e. not having a
common factor other than þ1 or �1), known as Miller indices of
the lattice plane, x, y and z are the coordinates of any point lying
in the plane and are expressed as fractions of the magnitudes of
the basis vectors a, b and c of the direct lattice, respectively, and n
is an integer denoting the serial number of the lattice plane within
the family of parallel and equidistant ðhklÞ planes, the interplanar
spacing being denoted by dhkl; the value n ¼ 0 corresponds to the
ðhklÞ plane passing through the origin.

Let r ¼ xaþ ybþ zc and rL ¼ uaþ vbþ wc, where u, v, w are
any integers, denote the position vectors of the point xyz and a
lattice point uvw lying in the plane (1.1.2.3), respectively, and
assume that r and rL are different vectors. If the plane normal is
denoted by N, where N is proportional to the vector product of
two in-plane lattice vectors, the vector form of the equation of the
lattice plane becomes

N � ðr� rLÞ ¼ 0 or N � r ¼ N � rL: ð1:1:2:4Þ

For equations (1.1.2.3) and (1.1.2.4) to be identical, the plane
normal N must satisfy the requirement that N � rL ¼ n, where n is
an (unrestricted) integer.

Let us now consider the basic diffraction relations (e.g. Lipson
& Cochran, 1966). Suppose a parallel beam of monochromatic
radiation, of wavelength �, falls on a lattice of identical point
scatterers. If it is assumed that the scattering is elastic, i.e. there is
no change of the wavelength during this process, the wavevectors
of the incident and scattered radiation have the same magnitude,
which can conveniently be taken as 1=�. A consideration of path
and phase differences between the waves outgoing from two
point scatterers separated by the lattice vector rL (defined as
above) shows that the condition for their maximum constructive
interference is given by

ðs� s0Þ � rL ¼ n; ð1:1:2:5Þ

where s0 and s are the wavevectors of the incident and scattered
beams, respectively, and n is an arbitrary integer.

Since rL ¼ uaþ vbþ wc, where u, v and w are unrestricted
integers, equation (1.1.2.5) is equivalent to the equations of Laue:

h � a ¼ h; h � b ¼ k; h � c ¼ l; ð1:1:2:6Þ

where h ¼ s� s0 is the diffraction vector, and h, k and l are
integers corresponding to orders of diffraction from the three-
dimensional lattice (Lipson & Cochran, 1966). The diffraction
vector thus has to satisfy a condition that is analogous to that
imposed on the normal to a lattice plane.

The next relevant aspect to be commented on is the Fourier
expansion of a function having the periodicity of the crystal
lattice. Such functions are e.g. the electron density, the density of
nuclear matter and the electrostatic potential in the crystal, which
are the operative definitions of crystal structure in X-ray, neutron
and electron-diffraction methods of crystal structure determina-
tion. A Fourier expansion of such a periodic function may be
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1.2. The structure factor

By P. Coppens

1.2.1. Introduction

The structure factor is the central concept in structure analysis by
diffraction methods. Its modulus is called the structure amplitude.
The structure amplitude is a function of the indices of the set of
scattering planes h, k and l, and is defined as the amplitude of
scattering by the contents of the crystallographic unit cell,
expressed in units of scattering. For X-ray scattering, that unit is
the scattering by a single electron (2.82 � 10�15 m), while for
neutron scattering by atomic nuclei, the unit of scattering length
of 10�14 m is commonly used. The complex form of the structure
factor means that the phase of the scattered wave is not simply
related to that of the incident wave. However, the observable,
which is the scattered intensity, must be real. It is proportional to
the square of the scattering amplitude (see, e.g., Lipson &
Cochran, 1966).

The structure factor is directly related to the distribution of
scattering matter in the unit cell which, in the X-ray case, is the
electron distribution, time-averaged over the vibrational modes
of the solid.

In this chapter we will discuss structure-factor expressions for
X-ray and neutron scattering, and, in particular, the modelling
that is required to obtain an analytical description in terms of the
features of the electron distribution and the vibrational displa-
cement parameters of individual atoms. We concentrate on the
most basic developments; for further details the reader is referred
to the cited literature.

1.2.2. General scattering expression for X-rays

The total scattering of X-rays contains both elastic and inelastic
components. Within the first-order Born approximation (Born,
1926) it has been treated by several authors (e.g. Waller &
Hartree, 1929; Feil, 1977) and is given by the expression

ItotalðSÞ ¼ Iclassical

P

n

R
 �n expð2�iS � rjÞ 0 dr

�
�

�
�2; ð1:2:2:1Þ

where Iclassical is the classical Thomson scattering of an
X-ray beam by a free electron, which is equal to
ðe2=mc2Þ

2
ð1þ cos2 2�Þ=2 for an unpolarized beam of unit inten-

sity,  is the n-electron space-wavefunction expressed in the 3n
coordinates of the electrons located at rj and the integration is
over the coordinates of all electrons. S is the scattering vector of
length 2 sin �=�.

The coherent elastic component of the scattering, in units of
the scattering of a free electron, is given by

Icoherent; elasticðSÞ ¼
R
 �0

�
�

�
�P

j

expð2�iS � rjÞj 0 drj2: ð1:2:2:2Þ

If integration is performed over all coordinates but those of the
jth electron, one obtains after summation over all electrons

Icoherent; elasticðSÞ ¼ j
R
�ðrÞ expð2�iS � rÞ drj2; ð1:2:2:3Þ

where �ðrÞ is the electron distribution. The scattering amplitude
AðSÞ is then given by

AðSÞ ¼
R
�ðrÞ expð2�iS � rÞ dr ð1:2:2:4aÞ

or

AðSÞ ¼ F̂Ff�ðrÞg; ð1:2:2:4bÞ

where F̂F is the Fourier transform operator.

1.2.3. Scattering by a crystal: definition of a structure factor

In a crystal of infinite size, �ðrÞ is a three-dimensional periodic
function, as expressed by the convolution

�crystalðrÞ ¼
P

n

P

m

P

p

�unit cellðrÞ � �ðr� na�mb� pcÞ; ð1:2:3:1Þ

where n, m and p are integers, and � is the Dirac delta function.
Thus, according to the Fourier convolution theorem,

AðSÞ ¼ F̂Ff�ðrÞg ¼
P

n

P

m

P

p

F̂Ff�unit cellðrÞgF̂Ff�ðr� na�mb� pcÞg;

ð1:2:3:2Þ

which gives

AðSÞ ¼ F̂Ff�unit cellðrÞg
P

h

P

k

P

l

�ðS� ha� � kb� � lc�Þ: ð1:2:3:3Þ

Expression (1.2.3.3) is valid for a crystal with a very large
number of unit cells, in which particle-size broadening is negli-
gible. Furthermore, it does not account for multiple scattering of
the beam within the crystal. Because of the appearance of the
delta function, (1.2.3.3) implies that S = H with H ¼ ha� þ
kb� þ lc�.

The first factor in (1.2.3.3), the scattering amplitude of one unit
cell, is defined as the structure factor F:

FðHÞ ¼ F̂Ff�unit cellðrÞg ¼
R

unit cell�ðrÞ expð2�iH � rÞ dr: ð1:2:3:4Þ

1.2.4. The isolated-atom approximation in X-ray diffraction

To a reasonable approximation, the unit-cell density can be
described as a superposition of isolated, spherical atoms located
at rj.

�unit cellðrÞ ¼
P

j

�atom; jðrÞ � �ðr� rjÞ: ð1:2:4:1Þ

Substitution in (1.2.3.4) gives

FðHÞ ¼
P

j

F̂Ff�atom; jgF̂Ff�ðr� rjÞg ¼
P

j

fj expð2�iH � rjÞ

ð1:2:4:2aÞ

or

Fðh; k; lÞ ¼
P

j

fj exp 2�iðhxj þ kyj þ lzjÞ

¼
P

j

fjfcos 2�ðhxj þ kyj þ lzjÞ

þ i sin 2�ðhxj þ kyj þ lzjÞg: ð1:2:4:2bÞ

fjðSÞ, the spherical atomic scattering factor, or form factor, is the
Fourier transform of the spherically averaged atomic density
�jðrÞ, in which the polar coordinate r is relative to the nuclear
position. fjðSÞ can be written as (James, 1982)

10
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PðuÞ ¼ ð2�hu2iÞ
�3=2 expf�juj2=2hu2ig; ð1:2:10:1Þ

where hu2i is the mean-square displacement in any direction.
The corresponding trivariate normal distribution to be used for

anisotropic harmonic motion is, in tensor notation,

PðuÞ ¼
jr�1j

1=2

ð2�Þ3=2
expf� 1

2 r�1
jk ðu

jukÞg: ð1:2:10:2aÞ

Here r is the variance–covariance matrix, with covariant
components, and jr�1j is the determinant of the inverse of r.
Summation over repeated indices has been assumed. The
corresponding equation in matrix notation is

PðuÞ ¼
jr�1j

1=2

ð2�Þ3=2
expf� 1

2 ðuÞ
T

r�1ðuÞg; ð1:2:10:2bÞ

where the superscript T indicates the transpose.
The characteristic function, or Fourier transform, of PðuÞ is

TðHÞ ¼ expf�2�2
 jkhjhkg ð1:2:10:3aÞ

or

TðHÞ ¼ expf�2�2HTrHg: ð1:2:10:3bÞ

With the change of variable b jk ¼ 2�2
 jk, (1.2.10.3a) becomes

TðHÞ ¼ expf�b jkhjhkg:

1.2.11. Rigid-body analysis

The treatment of rigid-body motion of molecules or molecular
fragments was developed by Cruickshank (1956) and expanded
into a general theory by Schomaker & Trueblood (1968). The
theory has been described by Johnson (1970b) and by Dunitz
(1979). The latter reference forms the basis for the following
treatment.

The most general motions of a rigid body consist of rotations
about three axes, coupled with translations parallel to each of the
axes. Such motions correspond to screw rotations. A libration

around a vector k ð�1; �2; �3Þ, with length corresponding to the
magnitude of the rotation, results in a displacement �r, such that

�r ¼ ðk� rÞ ¼ Dr ð1:2:11:1Þ

with

D ¼
0 ��3 �2

�3 0 ��1

��2 �1 0

2

4

3

5; ð1:2:11:2Þ

or in Cartesian tensor notation, assuming summation over
repeated indices,

�ri ¼ Dijrj ¼ �"ijk�krj ð1:2:11:3Þ

where the permutation operator "ijk equals +1 for i, j, k a cyclic
permutation of the indices 1, 2, 3, or �1 for a noncyclic permu-
tation, and zero if two or more indices are equal. For i = 1, for
example, only the "123 and "132 terms occur. Addition of a
translational displacement gives

�ri ¼ Dijrj þ ti: ð1:2:11:4Þ

When a rigid body undergoes vibrations the displacements
vary with time, so suitable averages must be taken to derive the
mean-square displacements. If the librational and translational
motions are independent, the cross products between the two
terms in (1.2.11.4) average to zero and the elements of the mean-
square displacement tensor of atom n, Un

ij , are given by

Un
11 ¼ þL22r2

3 þ L33r2
2 � 2L23r2r3 þ T11

Un
22 ¼ þL33r2

1 þ L11r2
3 � 2L13r1r3 þ T22

Un
33 ¼ þL11r2

2 þ L22r2
1 � 2L12r1r2 þ T33

Un
12 ¼ �L33r1r2 � L12r2

3 þ L13r2r3 þ L23r1r3 þ T12

Un
13 ¼ �L22r1r3 þ L12r2r3 � L13r2

2 þ L23r1r2 þ T13

Un
23 ¼ �L11r2r3 þ L12r1r3 � L13r1r2 � L23r2

1 þ T23;

ð1:2:11:5Þ

where the coefficients Lij ¼ h�i�ji and Tij ¼ htitji are the
elements of the 3� 3 libration tensor L and the 3 � 3 translation
tensor T, respectively. Since pairs of terms such as htitji and htjtii

18

Table 1.2.7.4. Closed-form expressions for Fourier transform of Slater-type functions (Avery & Watson, 1977; Su & Coppens, 1990)

hjki �
R1

0 rN expð�ZrÞjkðKrÞ dr;K ¼ 4� sin �=�:

k

N

1 2 3 4 5 6 7 8

0 1

K2 þ Z2

2Z

ðK2 þ Z2Þ
2

2ð3Z2 � K2Þ

ðK2 þ Z2Þ
3

24ZðZ2 � K2Þ

ðK2 þ Z2Þ
4

24ð5Z2 � 10K2Z2 þ K4Þ

ðK2 þ Z2Þ
5

240ZðK2 � 3Z2Þð3K2 � Z2Þ

ðK2 þ Z2Þ
6

720ð7Z6 � 35K2Z4 þ 21K4Z2 � K6Þ

ðK2 þ Z2Þ
7

40320ðZ7 � 7K2Z5 þ 7K4Z3 � K6ZÞ

ðK2 þ Z2Þ
8

1 2K

ðK2 þ Z2Þ
2

8KZ

ðK2 þ Z2Þ
3

8Kð5Z2 �K2Þ

ðK2 þ Z2Þ
4

48KZð5Z2 � 3K2Þ

ðK2 þ Z2Þ
5

48Kð35Z4 � 42K2Z2 þ 3K4Þ

ðK2 þ Z2Þ
6

1920KZð7Z4 � 14K2Z2 þ 3K4Þ

ðK2 þ Z2Þ
7

5760Kð21Z6 � 63K2Z4 þ 27K4Z2 � K6Þ

ðK2 þ Z2Þ
8

2 8K2

ðK2 þ Z2Þ
3

48K2Z

ðK2 þ Z2Þ
4

48K2ð7Z2 � K2Þ

ðK2 þ Z2Þ
5

384K2Zð7Z2 � 3K2Þ

ðK2 þ Z2Þ
6

1152K2ð21Z4 � 18K2Z2 þ K4Þ

ðK2 þ Z2Þ
7

11520K2Zð21Z4 � 30K2Z2 þ 5K4Þ

ðK2 þ Z2Þ
8

3 48K3

ðK2 þ Z2Þ
4

384K3Z

ðK2 þ Z2Þ
5

384K3ð9Z2 � K2Þ

ðK2 þ Z2Þ
6

11520K3Zð3Z2 �K2Þ

ðK2 þ Z2Þ
7

11520K3ð33Z4 � 22K2Z2 þ K4Þ

ðK2 þ Z2Þ
8

4 384K4

ðK2 þ Z2Þ
5

3840K4Z

ðK2 þ Z2Þ
6

3840K4ð11Z2 �K2Þ

ðK2 þ Z2Þ
7

46080K4Zð11Z2 � 3K2Þ

ðK2 þ Z2Þ
8

5 3840K5

ðK2 þ Z2Þ
6

46080K5Z

ðK2 þ Z2Þ
7

40680K5ð13Z2 � K2Þ

ðK2 þ Z2Þ
8

6 46080K6

ðK2 þ Z2Þ
7

645120K6Z

ðK2 þ Z2Þ
8

7 645120K7

ðK2 þ Z2Þ
8
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(5) Parseval/Plancherel property. If u, w, U, W are as above,
then

ðF ðNÞ½U�;F ðNÞ½W�ÞW ¼
1

jdet Nj
ðU;WÞW�

ð �FF ðNÞ½u�; �FF ðNÞ½w�ÞW ¼
1

jdet Nj
ðu;wÞW :

(6) Period 4. When N is symmetric, so that the ranges of
indices k and k� can be identified, it makes sense to speak of
powers of F ðNÞ and �FF ðNÞ. Then the ‘standardized’ matrices
ð1=jdet Nj1=2

ÞF ðNÞ and ð1=jdet Nj1=2
Þ �FF ðNÞ are unitary matrices

whose fourth power is the identity matrix (Section 1.3.2.4.3.4);
their eigenvalues are therefore �1 and �i.

1.3.3. Numerical computation of the discrete Fourier transform

1.3.3.1. Introduction

The Fourier transformation’s most remarkable property is
undoubtedly that of turning convolution into multiplication. As
distribution theory has shown, other valuable properties – such as
the shift property, the conversion of differentiation into multi-
plication by monomials, and the duality between periodicity and
sampling – are special instances of the convolution theorem.

This property is exploited in many areas of applied mathe-
matics and engineering (Campbell & Foster, 1948; Sneddon,
1951; Champeney, 1973; Bracewell, 1986). For example, the
passing of a signal through a linear filter, which results in its being
convolved with the response of the filter to a �-function ‘impulse’,
may be modelled as a multiplication of the signal’s transform by
the transform of the impulse response (also called transfer
function). Similarly, the solution of systems of partial differential
equations may be turned by Fourier transformation into a divi-
sion problem for distributions. In both cases, the formulations
obtained after Fourier transformation are considerably simpler
than the initial ones, and lend themselves to constructive solution
techniques.

Whenever the functions to which the Fourier transform is
applied are band-limited, or can be well approximated by band-
limited functions, the discrete Fourier transform (DFT) provides a
means of constructing explicit numerical solutions to the
problems at hand. A great variety of investigations in physics,
engineering and applied mathematics thus lead to DFT calcula-
tions, to such a degree that, at the time of writing, about 50% of all
supercomputer CPU time is alleged to be spent calculating DFTs.

The straightforward use of the defining formulae for the DFT
leads to calculations of size N2 for N sample points, which
become unfeasible for any but the smallest problems. Much
ingenuity has therefore been exerted on the design and imple-
mentation of faster algorithms for calculating the DFT
(McClellan & Rader, 1979; Nussbaumer, 1981; Blahut, 1985;
Brigham, 1988). The most famous is that of Cooley & Tukey
(1965) which heralded the age of digital signal processing.
However, it had been preceded by the prime factor algorithm of
Good (1958, 1960), which has lately been the basis of many new
developments. Recent historical research (Goldstine, 1977, pp.
249–253; Heideman et al., 1984) has shown that Gauss essentially
knew the Cooley–Tukey algorithm as early as 1805 (before
Fourier’s 1807 work on harmonic analysis!); while it has long
been clear that Dirichlet knew of the basis of the prime factor
algorithm and used it extensively in his theory of multiplicative
characters [see e.g. Chapter I of Ayoub (1963), and Chapters 6
and 8 of Apostol (1976)]. Thus the computation of the DFT, far
from being a purely technical and rather narrow piece of
specialized numerical analysis, turns out to have very rich
connections with such central areas of pure mathematics as
number theory (algebraic and analytic), the representation

theory of certain Lie groups and coding theory – to list only a few.
The interested reader may consult Auslander & Tolimieri (1979);
Auslander, Feig & Winograd (1982, 1984); Auslander & Tolimieri
(1985); Tolimieri (1985).

One-dimensional algorithms are examined first. The Sande
mixed-radix version of the Cooley–Tukey algorithm only calls
upon the additive structure of congruence classes of integers. The
prime factor algorithm of Good begins to exploit some of their
multiplicative structure, and the use of relatively prime factors
leads to a stronger factorization than that of Sande. Fuller use of
the multiplicative structure, via the group of units, leads to the
Rader algorithm; and the factorization of short convolutions then
yields the Winograd algorithms.

Multidimensional algorithms are at first built as tensor
products of one-dimensional elements. The problem of factoring
the DFT in several dimensions simultaneously is then examined.
The section ends with a survey of attempts at formalizing the
interplay between algorithm structure and computer architecture
for the purpose of automating the design of optimal DFT code.

It was originally intended to incorporate into this section a
survey of all the basic notions and results of abstract algebra
which are called upon in the course of these developments, but
time limitations have made this impossible. This material,
however, is adequately covered by the first chapter of Tolimieri et
al. (1989) in a form tailored for the same purposes. Similarly, the
inclusion of numerous detailed examples of the algorithms
described here has had to be postponed to a later edition, but an
abundant supply of such examples may be found in the signal
processing literature, for instance in the books by McClellan &
Rader (1979), Blahut (1985), and Tolimieri et al. (1989).

1.3.3.2. One-dimensional algorithms

Throughout this section we will denote by eðtÞ the expression
expð2�itÞ, t 2 R. The mapping t 7 �! eðtÞ has the following prop-
erties:

eðt1 þ t2Þ ¼ eðt1Þeðt2Þ

eð�tÞ ¼ eðtÞ ¼ ½eðtÞ��1

eðtÞ ¼ 1, t 2 Z:

Thus e defines an isomorphism between the additive group R=Z
(the reals modulo the integers) and the multiplicative group of
complex numbers of modulus 1. It follows that the mapping
‘ 7 �! eð‘=NÞ, where ‘ 2 Z and N is a positive integer, defines an
isomorphism between the one-dimensional residual lattice Z=NZ
and the multiplicative group of Nth roots of unity.

The DFT on N points then relates vectors X and X� in W and
W� through the linear transformations:

FðNÞ : XðkÞ ¼
1

N

X

k�2Z=NZ

X�ðk�Þeð�k�k=NÞ

�FFðNÞ : X�ðk�Þ ¼
X

k2Z=NZ

XðkÞeðk�k=NÞ:

1.3.3.2.1. The Cooley–Tukey algorithm

The presentation of Gentleman & Sande (1966) will be
followed first [see also Cochran et al. (1967)]. It will then be
reinterpreted in geometric terms which will prepare the way for
the treatment of multidimensional transforms in Section 1.3.3.3.

Suppose that the number of sample points N is composite, say
N ¼ N1N2. We may write k to the base N1 and k� to the base N2

as follows:

52



1. GENERAL RELATIONSHIPS AND TECHNIQUES

136

Table A1.4.3.3. Monoclinic space groups

Each expression for A or B in the monoclinic system and for the space-group settings chosen in IT A is represented in terms of one of the following symbols:

cðhlÞcðkyÞ ¼ cos½2�ðhxþ lzÞ� cosð2�kyÞ;

cðhlÞsðkyÞ ¼ cos½2�ðhxþ lzÞ� sinð2�kyÞ;

sðhlÞcðkyÞ ¼ sin½2�ðhxþ lzÞ� cosð2�kyÞ;

sðhlÞsðkyÞ ¼ sin½2�ðhxþ lzÞ� sinð2�kyÞ;

cðhkÞcðlzÞ ¼ cos½2�ðhxþ kyÞ� cosð2�lzÞ;

cðhkÞsðlzÞ ¼ cos½2�ðhxþ kyÞ� sinð2�lzÞ;

sðhkÞcðlzÞ ¼ sin½2�ðhxþ kyÞ� cosð2�lzÞ;

sðhkÞsðlzÞ ¼ sin½2�ðhxþ kyÞ� sinð2�lzÞ; ðA1:4:3:1Þ

where the left-hand column of expressions corresponds to space-group representations in the second setting, with b taken as the unique axis, and the right-hand column
corresponds to representations in the first setting, with c taken as the unique axis.

The lattice types in this table are P, A, B, C and I, and are all explicit in the full space-group symbol only (see below). Note that s(hl), s(hk), s(ky) and s(lz) are zero for
h = l = 0, h = k = 0, k = 0 and l = 0, respectively.

No.

Group symbol

Parity A B
Unique
axisShort Full

3 P2 P121 2c(hl)c(ky) 2c(hl)s(ky) b

3 P2 P112 2c(hk)c(lz) 2c(hk)s(lz) c

4 P21 P1211 k ¼ 2n 2c(hl)c(ky) 2c(hl)s(ky) b

k ¼ 2nþ 1 �2s(hl)s(ky) 2s(hl)c(ky)

4 P21 P1121 l ¼ 2n 2c(hk)c(lz) 2c(hk)s(lz) c

l ¼ 2nþ 1 �2s(hk)s(lz) 2s(hk)c(lz)

5 C2 C121 4c(hl)c(ky) 4c(hl)s(ky) b

5 C2 A121 4c(hl)c(ky) 4c(hl)s(ky) b

5 C2 I121 4c(hl)c(ky) 4c(hl)s(ky) b

5 C2 A112 4c(hk)c(lz) 4c(hk)s(lz) c

5 C2 B112 4c(hk)c(lz) 4c(hk)s(lz) c

5 C2 I112 4c(hk)c(lz) 4c(hk)s(lz) c

6 Pm P1m1 2c(hl)c(ky) 2s(hl)c(ky) b

6 Pm P11m 2c(hk)c(lz) 2s(hk)c(lz) c

7 Pc P1c1 l ¼ 2n 2c(hl)c(ky) 2s(hl)c(ky) b

l ¼ 2nþ 1 �2s(hl)s(ky) 2c(hl)s(ky)

7 Pc P1n1 hþ l ¼ 2n 2c(hl)c(ky) 2s(hl)c(ky) b

hþ l ¼ 2nþ 1 �2s(hl)s(ky) 2c(hl)s(ky)

7 Pc P1a1 h ¼ 2n 2c(hl)c(ky) 2s(hl)c(ky) b

h ¼ 2nþ 1 �2s(hl)s(ky) 2c(hl)s(ky)

7 Pc P11a h ¼ 2n 2c(hk)c(lz) 2s(hk)c(lz) c

h ¼ 2nþ 1 �2s(hk)s(lz) 2c(hk)s(lz)

7 Pc P11n hþ k ¼ 2n 2c(hk)c(lz) 2s(hk)c(lz) c

hþ k ¼ 2nþ 1 �2s(hk)s(lz) 2c(hk)s(lz)

7 Pc P11b k ¼ 2n 2c(hk)c(lz) 2s(hk)c(lz) c

k ¼ 2nþ 1 �2s(hk)s(lz) 2c(hk)s(lz)

8 Cm C1m1 4c(hl)c(ky) 4s(hl)c(ky) b

8 Cm A1m1 4c(hl)c(ky) 4s(hl)c(ky) b

8 Cm I1m1 4c(hl)c(ky) 4s(hl)c(ky) b

8 Cm A11m 4c(hk)c(lz) 4s(hk)c(lz) c

8 Cm B11m 4c(hk)c(lz) 4s(hk)c(lz) c

8 Cm I11m 4c(hk)c(lz) 4s(hk)c(lz) c

9 Cc C1c1 l ¼ 2n 4c(hl)c(ky) 4s(hl)c(ky) b

l ¼ 2nþ 1 �4s(hl)s(ky) 4c(hl)s(ky)

9 Cc A1n1 hþ l ¼ 2n 4c(hl)c(ky) 4s(hl)c(ky) b

hþ l ¼ 2nþ 1 �4s(hl)s(ky) 4c(hl)s(ky)

9 Cc I1a1 h ¼ 2n 4c(hl)c(ky) 4s(hl)c(ky) b

h ¼ 2nþ 1 �4s(hl)s(ky) 4c(hl)s(ky)

9 Cc A11a h ¼ 2n 4c(hk)c(lz) 4s(hk)c(lz) c

h ¼ 2nþ 1 �4s(hk)s(lz) 4c(hk)s(lz)

9 Cc B11n hþ k ¼ 2n 4c(hk)c(lz) 4s(hk)c(lz) c

hþ k ¼ 2nþ 1 �4s(hk)s(lz) 4c(hk)s(lz)

9 Cc I11b k ¼ 2n 4c(hk)c(lz) 4s(hk)c(lz) c

k ¼ 2nþ 1 �4s(hk)s(lz) 4c(hk)s(lz)

10 P2=m P12=m1 4c(hl)c(ky) 0 b

10 P2=m P112=m 4c(hk)c(lz) 0 c

11 P21=m P121=m1 k ¼ 2n 4c(hl)c(ky) 0 b

k ¼ 2nþ 1 �4s(hl)s(ky) 0
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P4212 No. 90 (143)

(1) hkl: (2) hkl: (3) khl: �110/2 (4) khl: �110/2

(5) hkl: �110/2 (6) hkl: �110/2 (7) khl: (8) khl:

P4122 No. 91 (144)

(1) hkl: (2) hkl: �001/2 (3) khl: �001/4 (4) khl: �003/4

(5) hkl: (6) hkl: �001/2 (7) khl: �003/4 (8) khl: �001/4

P41212 No. 92 (145)

(1) hkl: (2) hkl: �001/2 (3) khl: �221/4 (4) khl: �223/4

(5) hkl: �221/4 (6) hkl: �223/4 (7) khl: (8) khl: �001/2

P4222 No. 93 (146)

(1) hkl: (2) hkl: (3) khl: �001/2 (4) khl: �001/2

(5) hkl: (6) hkl: (7) khl: �001/2 (8) khl: �001/2

P42212 No. 94 (147)

(1) hkl: (2) hkl: (3) khl: �111/2 (4) khl: �111/2

(5) hkl: �111/2 (6) hkl: �111/2 (7) khl: (8) khl:

P4322 No. 95 (148)

(1) hkl: (2) hkl: �001/2 (3) khl: �003/4 (4) khl: �001/4

(5) hkl: (6) hkl: �001/2 (7) khl: �001/4 (8) khl: �003/4

P43212 No. 96 (149)

(1) hkl: (2) hkl: �001/2 (3) khl: �223/4 (4) khl: �221/4

(5) hkl: �223/4 (6) hkl: �221/4 (7) khl: (8) khl: �001/2

I422 No. 97 (150)

(1) hkl: (2) hkl: (3) khl: (4) khl:

(5) hkl: (6) hkl: (7) khl: (8) khl:

I4122 No. 98 (151)

(1) hkl: (2) hkl: �111/2 (3) khl: �021/4 (4) khl: �203/4

(5) hkl: �203/4 (6) hkl: �021/4 (7) khl: �111/2 (8) khl:

Point group: 4mm Tetragonal Laue group: 4/mmm

P4mm No. 99 (152)

(1) hkl: (2) hkl: (3) khl: (4) khl:

(5) hkl: (6) hkl: (7) khl: (8) khl:

P4bm No. 100 (153)

(1) hkl: (2) hkl: (3) khl: (4) khl:

(5) hkl: �110/2 (6) hkl: �110/2 (7) khl: �110/2 (8) khl: �110/2

P42cm No. 101 (154)

(1) hkl: (2) hkl: (3) khl: �001/2 (4) khl: �001/2

(5) hkl: �001/2 (6) hkl: �001/2 (7) khl: (8) khl:

P42nm No. 102 (155)

(1) hkl: (2) hkl: (3) khl: �111/2 (4) khl: �111/2

(5) hkl: �111/2 (6) hkl: �111/2 (7) khl: (8) khl:

P4cc No. 103 (156)

(1) hkl: (2) hkl: (3) khl: (4) khl:

(5) hkl: �001/2 (6) hkl: �001/2 (7) khl: �001/2 (8) khl: �001/2

P4nc No. 104 (157)

(1) hkl: (2) hkl: (3) khl: (4) khl:

(5) hkl: �111/2 (6) hkl: �111/2 (7) khl: �111/2 (8) khl: �111/2

P42mc No. 105 (158)

(1) hkl: (2) hkl: (3) khl: �001/2 (4) khl: �001/2

(5) hkl: (6) hkl: (7) khl: �001/2 (8) khl: �001/2

P42bc No. 106 (159)

(1) hkl: (2) hkl: (3) khl: �001/2 (4) khl: �001/2

(5) hkl: �110/2 (6) hkl: �110/2 (7) khl: �111/2 (8) khl: �111/2

I4mm No. 107 (160)

(1) hkl: (2) hkl: (3) khl: (4) khl:

(5) hkl: (6) hkl: (7) khl: (8) khl:

I4cm No. 108 (161)

(1) hkl: (2) hkl: (3) khl: (4) khl:

(5) hkl: �001/2 (6) hkl: �001/2 (7) khl: �001/2 (8) khl: �001/2

I41md No. 109 (162)

(1) hkl: (2) hkl: �111/2 (3) khl: �021/4 (4) khl: �203/4

(5) hkl: (6) hkl: �111/2 (7) khl: �203/4 (8) khl: �021/4

I41cd No. 110 (163)

(1) hkl: (2) hkl: �111/2 (3) khl: �021/4 (4) khl: �203/4

(5) hkl: �001/2 (6) hkl: �110/2 (7) khl: �201/4 (8) khl: �023/4

Point group: 42m Tetragonal Laue group: 4/mmm

P42m No. 111 (164)

(1) hkl: (2) hkl: (3) khl: (4) khl:

(5) hkl: (6) hkl: (7) khl: (8) khl:

P42c No. 112 (165)

(1) hkl: (2) hkl: (3) khl: (4) khl:

(5) hkl: �001/2 (6) hkl: �001/2 (7) khl: �001/2 (8) khl: �001/2

P421m No. 113 (166)

(1) hkl: (2) hkl: (3) khl: (4) khl:

(5) hkl: �110/2 (6) hkl: �110/2 (7) khl: �110/2 (8) khl: �110/2

P421c No. 114 (167)

(1) hkl: (2) hkl: (3) khl: (4) khl:

(5) hkl: �111/2 (6) hkl: �111/2 (7) khl: �111/2 (8) khl: �111/2

P4m2 No. 115 (168)

(1) hkl: (2) hkl: (3) khl: (4) khl:

(5) hkl: (6) hkl: (7) khl: (8) khl:

P4c2 No. 116 (169)

(1) hkl: (2) hkl: (3) khl: (4) khl:

(5) hkl: �001/2 (6) hkl: �001/2 (7) khl: �001/2 (8) khl: �001/2

P4b2 No. 117 (170)

(1) hkl: (2) hkl: (3) khl: (4) khl:

(5) hkl: �110/2 (6) hkl: �110/2 (7) khl: �110/2 (8) khl: �110/2

P4n2 No. 118 (171)

(1) hkl: (2) hkl: (3) khl: (4) khl:

(5) hkl: �111/2 (6) hkl: �111/2 (7) khl: �111/2 (8) khl: �111/2

I4m2 No. 119 (172)

(1) hkl: (2) hkl: (3) khl: (4) khl:

(5) hkl: (6) hkl: (7) khl: (8) khl:

Table A1.4.4.1 (cont.)
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Fig. 1.5.5.5. Brillouin zone with asymmetric unit and representation domain of CDML for arithmetic crystal class mm2F: a�2 < b�2 þ c�2, b�2 < c�2 þ a�2 and
c�2 < a�2 þ b�2. Space groups Fmm2� C18

2v (42), Fdd2� C19
2v (43). Reciprocal-space group (Imm2)*, No. 44: a�2 < b�2 þ c�2, b�2 < c�2 þ a�2 and c�2 < a�2 þ b�2

(see Table 1.5.5.5). The representation domain of CDML is different from the asymmetric unit. Auxiliary points: T4: 0; 1
2 ;�

1
2; Y2: 1

2 ; 0; 1
2; Y4: 1

2 ; 0;� 1
2; Z2: 0; 0;� 1

2.
Flagpoles: 0; 0; z: � 1

2 < z< 0; 0; 1
2 ; z: � 1

2 < z< 0. Wings: x; 0; z: 0< x< 1
2 ;�

1
2 < z< 0; 0; y; z: 0< y< 1

2 ;�
1
2 < z< 0.

Table 1.5.5.5. List of k-vector types for arithmetic crystal class mm2F: a�2 < b�2 þ c�2, b�2 < c�2 þ a�2 and c�2 < a�2 þ b�2

See Fig. 1.5.5.5. Parameter relations: x ¼ � 1
2�þ

1
2�þ

1
2 �, y ¼ 1

2��
1
2�þ

1
2 �, z ¼ 1

2�þ
1
2��

1
2 �.

k-vector label, CDML
Wyckoff position of IT A,
cf. Section 1.5.4.3 Parameters

� 0; 0; 0 ex 2 a mm2 0; 0; 0

Z 1
2 ;

1
2 ; 0 ex 2 a mm2 0; 0; 1

2

� �; �; 0 ex 2 a mm2 0; 0; z: 0< z< 1
2

LE ��;��; 0 ex 2 a mm2 0; 0; z: � 1
2 < z< 0

� [� [ Z [ LE 2 a mm2 0; 0; z: � 1
2 < z � 1

2

T 0; 1
2 ;

1
2 ex 2 b mm2 1

2 ; 0; 0

T � T2 0; 1
2 ;

1
2

Y 1
2 ; 0; 1

2 ex 2 b mm2 0; 1
2 ; 0

G �; 1
2þ �;

1
2 ex 2 b mm2 1

2 ; 0; z: 0< z � g0

G � H3 ¼ ½H2 T4� 0; 1
2 ; z: � 1

2 < z � � 1
2þ g0 ¼ h2

GA ��; 1
2� �;

1
2 ex 2 b mm2 1

2 ; 0; z: g2 ¼ �g0 < z< 0

GA � H1 ¼ ½H0 T2� 0; 1
2 ; z: 1

2� g0 ¼ h0 < z< 1
2

H 1
2þ �; �;

1
2 ex 2 b mm2 0; 1

2 ; z: 0< z � h0

HA 1
2� �;��;

1
2 ex 2 b mm2 0; 1

2 ; z: h2 ¼ �h0 < z< 0

T2 [H1 [H [ Y [HA [H3 2 b mm2 0; 1
2 ; z: � 1

2 < z � 1
2

� 0; �; � ex 4 c :m: x; 0; 0: 0< x< 1
2

A 1
2 ;

1
2þ �; � ex 4 c :m: x; 0; 1

2: 0< x � a0

C 1
2 ; �;

1
2þ � ex 4 c :m: x; 1

2 ; 0: 0< x< c0 ¼
1
2� a0

C � A1 x; 0; 1
2:

1
2� a0 ¼ c0 < x< 1

2

J �; �þ �; � ex 4 c :m: x; 0; z: ½� Z A0 G0 T�

JA ��;��þ �; � ex 4 c :m: x; 0; z: ½� T G2 A2 Z2�

K 1
2þ �; �þ �;

1
2þ � ex 4 c :m: x; 1

2 ; z: ½Y H0 C0�

K � J1 x; 0; z: ½Y4 G2 A2�

KA 1
2� �;��þ �;

1
2þ � ex 4 c :m: x; 1

2 ; z: ½Y C0 H2�

KA � J3 x; 0; z: ½Y2 G0 A0�

A [A1 [ J [ J3 [� [ JA [ J1 4 c :m: x; 0; z: 0< x< 1
2; 0< z � 1

2

� �; 0; � ex 4 d m:: 0; y; 0: 0< y< 1
2

B 1
2þ �;

1
2 ; � ex 4 d m:: 0; y; 1

2: 0< y< b0

D �; 1
2 ;

1
2þ � ex 4 d m:: 1

2 ; y; 0: 0< y � d0

D � B1 0; y; 1
2:

1
2� d0 ¼ b0 � y< 1

2

E �þ �; �; � ex 4 d m:: 0; y; z: ½� Y H0 B0 Z�

EA ��þ �;��; � ex 4 d m:: 0; y; z: ½� Z2 B2 H2 Y�

F �þ �; 1
2þ �;

1
2þ � ex 4 d m:: 1

2 ; y; z: ½T D0 G0�

F � E3 0; y; z: ½B2 T4 H2�

FA ��þ �; 1
2� �;

1
2þ � ex 4 d m:: 1

2 ; y; z: ½T G2 D0�

FA � E1 0; y; z: ½T2 B0 H0�

� [ B [ B1 [ E [ E1 [ EA [ E3 4 d m:: 0; y; z: 0< y< 1
2; �

1
2 < z � 1

2

GP �; �; � 8 e 1 x; y; z: 0< x; y< 1
2; 0< z � 1

2
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tion to the structure factor as a random variable. This is of course
a necessary requirement for any statistical treatment. If, however,
the atomic composition of the asymmetric unit is widely
heterogeneous, the structure factor is then a sum of unequally
distributed random variables and the Lindeberg–Lévy version of
the central-limit theorem (cf. Section 2.1.4.4) cannot be expected
to apply. Other versions of this theorem might still predict a
normal p.d.f. of the sum, but at the expense of a correspondingly
large number of terms/atoms. It is well known that atomic
heterogeneity gives rise to severe deviations from ideal beha-
viour (e.g. Howells et al., 1950) and one of the aims of crystal-
lographic statistics has been the introduction of a correct
dependence on the atomic composition into the non-ideal p.d.f.’s
[for a review of the early work on non-ideal distributions see
Srinivasan & Parthasarathy (1976)]. A somewhat less well known
fact is that the dependence of the p.d.f.’s of jEj on space-group
symmetry becomes more conspicuous as the composition
becomes more heterogeneous (e.g. Shmueli, 1979; Shmueli &
Wilson, 1981). Hence both the composition and the symmetry
dependence of the intensity statistics are of interest. Other
problems, which likewise give rise to non-ideal p.d.f.’s, are the
presence of heavy atoms in (variable) special positions, hetero-
geneous structures with complete or partial noncrystallographic
symmetry, and the presence of outstandingly heavy dispersive
scatterers.

The need for theoretical representations of non-ideal p.d.f.’s is
exemplified in Fig. 2.1.7.1, which shows the ideal centric and
acentric p.d.f.’s together with a frequency histogram of jEj values,
recalculated for a centrosymmetric structure containing a
platinum atom in the asymmetric unit of P�11 (Faggiani et al., 1980).
Clearly, the deviation from the Gaussian p.d.f., predicted by the
central-limit theorem, is here very large and a comparison with
the possible ideal distributions can (in this case) lead to wrong
conclusions.

Two general approaches have so far been employed in deri-
vations of non-ideal p.d.f.’s which account for the above-
mentioned problems: the correction-factor approach, to be dealt
with in the following sections, and the more recently introduced
Fourier method, to which Section 2.1.8 is dedicated. In what
follows, we introduce briefly the mathematical background of the
correction-factor approach, apply this formalism to centric and
acentric non-ideal p.d.f.’s, and present the numerical values of the
moments of the trigonometric structure factor which permit an
approximate evaluation of such p.d.f.’s for all the three-
dimensional space groups.

2.1.7.2. Mathematical background

Suppose that pðxÞ is a p.d.f. which accurately describes the
experimental distribution of the random variable x, where x is
related to a sum of random variables and can be assumed to obey
(to some approximation) an ideal p.d.f., say pð0ÞðxÞ, based on the
central-limit theorem. In the correction-factor approach we seek
to represent pðxÞ as

pðxÞ ¼ pð0ÞðxÞ
P

k

dk fkðxÞ; ð2:1:7:1Þ

where dk are coefficients which depend on the cause of the
deviation of pðxÞ from the central-limit theorem approximation
and fkðxÞ are suitably chosen functions of x. A choice of the set
ffkg is deemed suitable, if only from a practical point of view, if it
allows the convenient introduction of the cause of the above
deviation of pðxÞ into the expansion coefficients dk. This
requirement is satisfied – also from a theoretical point of view –
by taking fkðxÞ as a set of polynomials which are orthogonal with
respect to the ideal p.d.f., taken as their weight function (e.g.
Cramér, 1951). That is, the functions fkðxÞ so chosen have to obey
the relationship

Rb

a

fkðxÞfmðxÞp
ð0ÞðxÞ dx ¼ �km ¼

1; if k ¼ m

0; if k 6¼ m

�

; ð2:1:7:2Þ

where ½a; b� is the range of existence of all the functions involved.
It can be readily shown that the coefficients dk are given by

dk ¼
Rb

a

fkðxÞpðxÞ dx ¼ hfkðxÞi ¼
Pk

n¼0

cðkÞn hx
ni; ð2:1:7:3Þ

where the brackets h i in equation (2.1.7.3) denote averaging with
respect to the unknown p.d.f. pðxÞ and cðkÞn is the coefficient of the
nth power of x in the polynomial fkðxÞ. The coefficients dk are
thus directly related to the moments of the non-ideal distribution
and the coefficients of the powers of x in the orthogonal poly-
nomials. The latter coefficients can be obtained by the Gram–
Schmidt procedure (e.g. Spiegel, 1974), or by direct use of the
Szegö determinants (e.g. Cramér, 1951), for any weight function
that has finite moments. However, the feasibility of the present
approach depends on our ability to obtain the moments hxni

without the knowledge of the non-ideal p.d.f., pðxÞ.

2.1.7.3. Application to centric and acentric distributions

We shall summarize here the non-ideal centric and acentric
distributions of the magnitude of the normalized structure factor
E (e.g. Shmueli & Wilson, 1981; Shmueli, 1982). We assume that
(i) all the atoms are located in general positions and have
rationally independent coordinates, (ii) all the scatterers are
dispersionless, and (iii) there is no noncrystallographic symmetry.
Arbitrary atomic composition and space-group symmetry are
admitted. The appropriate weight functions and the corre-
sponding orthogonal polynomials are

Non-ideal

pð0ÞðjEjÞ fkðxÞ distribution

ð2=�Þ1=2 expð�jEj2=2Þ He2kðjEjÞ=½ð2kÞ!�1=2 Centric

2jEj expð�jEj2Þ LkðjEj
2
Þ Acentric

ð2:1:7:4Þ
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Fig. 2.1.7.1. Atomic heterogeneity and intensity statistics. The histogram
appearing in this figure was constructed from jEj values which were
recalculated from atomic parameters published for the centrosymmetric
structure of C6H18Cl2N4O4Pt (Faggiani et al., 1980). The space group of the
crystal is P�11, Z ¼ 2, i.e. all the atoms are located in general positions. The
figure shows a comparison of the recalculated distribution of jEj with the
ideal centric [equation (2.1.5.11)] and acentric [equation (2.1.5.8)] p.d.f.’s,
denoted by �11 and 1, respectively.



2.2. Direct methods

By C. Giacovazzo

2.2.1. List of symbols and abbreviations

fj atomic scattering factor of jth atom
Zj atomic number of jth atom
N number of atoms in the unit cell
m order of the point group

½
r�p; ½
r�q; ½
r�N; . . . ¼
Pp

j¼1

Zr
j ;
Pq

j¼1

Zr
j ;
PN

j¼1

Zr
j ; . . .

½
r�N is always abbreviated to 
r when N is the number of atoms in
the cell

P
p;
P

q;
P

N; . . . ¼
Pp

j¼1

f 2
j ;
Pq

j¼1

f 2
j ;
PN

j¼1

f 2
j ; . . .

s.f. structure factor
n.s.f. normalized structure factor
cs. centrosymmetric
ncs. noncentrosymmetric
s.i. structure invariant
s.s. structure seminvariant
C ¼ ðR;TÞ symmetry operator; R is the rotational part,

T the translational part
’h phase of the structure factor Fh ¼ jFhj expði’hÞ

2.2.2. Introduction

Direct methods are today the most widely used tool for solving
small crystal structures. They work well both for equal-atom
molecules and when a few heavy atoms exist in the structure. In
recent years the theoretical background of direct methods has
been improved to take into account a large variety of prior
information (the form of the molecule, its orientation, a partial
structure, the presence of pseudosymmetry or of a superstructure,
the availability of isomorphous data or of data affected by
anomalous-dispersion effects, . . . ). Owing to this progress and to
the increasing availability of powerful computers, the phase
problem for small molecules has been solved in practice: a
number of effective, highly automated packages are today
available to the scientific community.

The combination of direct methods with so-called direct-space
methods have recently allowed the ab initio crystal structure
solution of proteins. The present limit of complexity is about 2500
non-hydrogen atoms in the asymmetric unit, but diffraction data
at atomic resolution (~1 Å) are required. Trials are under way to
bring this limit to 1.5 Å and have shown some success.

The theoretical background and tables useful for origin
specification are given in Section 2.2.3; in Section 2.2.4 the
procedures for normalizing structure factors are summarized.
Phase-determining formulae (inequalities, probabilistic formulae
for triplet, quartet and quintet invariants, and for one- and two-
phase s.s.’s, determinantal formulae) are given in Section 2.2.5. In
Section 2.2.6 the connection between direct methods and related
techniques in real space is discussed. Practical procedures for
solving small-molecule crystal structures are described in
Sections 2.2.7 and 2.2.8, and references to the most extensively
used packages are given in Section 2.2.9. The integration of direct
methods, isomorphous replacement and anomalous-dispersion
techniques is briefly discussed in Section 2.2.10.

The reader interested in a more detailed description of the
topic is referred to a recent textbook (Giacovazzo, 1998).

2.2.3. Origin specification

(a) Once the origin has been chosen, the symmetry operators
Cs � ðRs;TsÞ and, through them, the algebraic form of the s.f.
remain fixed.

A shift of the origin through a vector with coordinates X0

transforms ’h into

’0h ¼ ’h � 2�h � X0 ð2:2:3:1Þ

and the symmetry operators Cs into C0s ¼ ðR
0
s;T0sÞ, where

R0s ¼ Rs; T0s ¼ Ts þ ðRs � IÞX0 s ¼ 1; 2; . . . ;m: ð2:2:3:2Þ

(b) Allowed or permissible origins (Hauptman & Karle, 1953,
1959) for a given algebraic form of the s.f. are all those points in
direct space which, when taken as origin, maintain the same
symmetry operators Cs. The allowed origins will therefore
correspond to those points having the same symmetry environ-
ment in the sense that they are related to the symmetry elements
in the same way. For instance, if Ts ¼ 0 for s ¼ 1; . . . ; 8, then the
allowed origins in Pmmm are the eight inversion centres.

To each functional form of the s.f. a set of permissible origins
will correspond.

(c) A translation between permissible origins will be called a
permissible or allowed translation. Trivial allowed translations
correspond to the lattice periods or to their multiples. A change
of origin by an allowed translation does not change the algebraic
form of the s.f. Thus, according to (2.2.3.2), all origins allowed by
a fixed functional form of the s.f. will be connected by transla-
tional vectors Xp such that

ðRs � IÞXp ¼ V; s ¼ 1; 2; . . . ;m; ð2:2:3:3Þ

where V is a vector with zero or integer components.
In centred space groups, an origin translation corresponding to

a centring vector Bv does not change the functional form of the
s.f. Therefore all vectors Bv represent permissible translations. Xp

will then be an allowed translation (Giacovazzo, 1974) not only
when, as imposed by (2.2.3.3), the difference T0s � Ts is equal to
one or more lattice units, but also when, for any s, the condition

ðRs � IÞXp ¼ Vþ �Bv; s ¼ 1; 2; . . . ;m; � ¼ 0; 1 ð2:2:3:4Þ

is satisfied.
We will call any set of cs. or ncs. space groups having the same

allowed origin translations a Hauptman–Karle group (H–K
group). The 94 ncs. primitive space groups, the 62 primitive cs.
groups, the 44 ncs. centred space groups and the 30 cs. centred
space groups can be collected into 13, 4, 14 and 5 H–K groups,
respectively (Hauptman & Karle, 1953, 1956; Karle & Hauptman,
1961; Lessinger & Wondratschek, 1975). In Tables 2.2.3.1–2.2.3.4
the H–K groups are given together with the allowed origin
translations.

(d) Let us consider a product of structure factors

F
A1
h1
� F

A2
h2
� . . .� F

An

hn
¼
Qn

j¼1

F
Aj

hj

¼ exp i
Pn

j¼1

Aj’hj

 !
Qn

j¼1

jFhj
j
Aj ; ð2:2:3:5Þ

Aj being integer numbers.

215



2.2. DIRECT METHODS

SAPI: Fan, H.-F. (1999). Crystallographic software:
teXsan for Windows. http://www.rigaku.com/downloads/journal/
Vol15.1.1998/texsan.pdf.

SnB: Weeks, C. M. & Miller, R. (1999). The design and
implementation of SnB version 2.0. J. Appl. Cryst. 32, 120–124.

SHELX97 and SHELXS: Sheldrick, G. M. (2000). The
SHELX home page. http://shelx.uni-ac.gwdg.de/SHELX/.

SHELXD: Sheldrick, G. M. (1998). SHELX: applications to
macromolecules. In Direct methods for solving macromolecular
structures, edited by S. Fortier, pp. 401–411. Dordrecht: Kluwer
Academic Publishers.

SIR97: Altomare, A., Burla, M. C., Camalli, M., Cascarano,
G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G.,
Polidori, G. & Spagna, R. (1999). SIR97: a new tool for crystal
structure determination and refinement. J. Appl. Cryst. 32, 115–
119.

SIR2004: Burla, M. C., Caliandro, R., Camalli, M., Carrozzini,
B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. &
Spagna, R. (2005). SIR2004: an improved tool for crystal structure
determination and refinement. J. Appl. Cryst. 38, 381–388.

XTAL3.6.1: Hall, S. R., du Boulay, D. J. & Olthof-Hazekamp,
R. (1999). Xtal3.6 crystallographic software. http://xtal.
sourceforge.net/.

2.2.10. Direct methods in macromolecular crystallography

2.2.10.1. Introduction

The smallest protein molecules contain about 400 non-
hydrogen atoms, so they cannot be solved ab initio by the algo-
rithms specified in Sections 2.2.7 and 2.2.8. However, traditional
direct methods are applied for:

(a) improvement of the accuracy of the available phases
(refinement process);

(b) extension of phases from lower to higher resolution (phase-
extension process).

The application of standard tangent techniques to (a) and (b)
has not been found to be very satisfactory (Coulter & Dewar,
1971; Hendrickson et al., 1973; Weinzierl et al., 1969). Tangent
methods, in fact, require atomicity and non-negativity of the
electron density. Both these properties are not satisfied if data do
not extend to atomic resolution (d > 1.2 Å). Because of series
termination and other errors the electron-density map at d >
1.2 Å presents large negative regions which will appear as false
peaks in the squared structure. However, tangent methods use
only a part of the information given by the Sayre equation
(2.2.6.5). In fact, (2.2.6.5) express two equations relating the
radial and angular parts of the two sides, so obtaining a large
degree of overdetermination of the phases. To achieve this Sayre
(1972) [see also Sayre & Toupin (1975)] suggested minimizing
(2.2.10.1) by least squares as a function of the phases:
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: ð2:2:10:1Þ

Even if tests on rubredoxin (extensions of phases from 2.5 to
1.5 Å resolution) and insulin (Cutfield et al., 1975) (from 1.9 to
1.5 Å resolution) were successful, the limitations of the method
are its high cost and, especially, the higher efficiency of the least-
squares method. Equivalent considerations hold for the appli-
cation of determinantal methods to proteins [see Podjarny et al.
(1981); de Rango et al. (1985) and literature cited therein].

A question now arises: why is the tangent formula unable to
solve protein structures? Fan et al. (1991) considered the question
from a first-principle approach and concluded that:

(1) the triplet phase probability distribution is very flat for
proteins (N is very large) and close to the uniform distribution;

(2) low-resolution data create additional problems for direct
methods since the number of available phase relationships per
reflection is small.

Sheldrick (1990) suggested that direct methods are not
expected to succeed if fewer than half of the reflections in the
range 1.1–1.2 Å are observed with jFj> 4
ðjFjÞ (a condition
seldom satisfied by protein data).

The most complete analysis of the problem has been made by
Giacovazzo, Guagliardi et al. (1994). They observed that the
expected value of � (see Section 2.2.7) suggested by the tangent
formula for proteins is comparable with the variance of the �
parameter. In other words, for proteins the signal determining the
phase is comparable with the noise, and therefore the phase
indication is expected to be unreliable.

Quite relevant results have recently been obtained by inte-
grating direct methods with some additional experimental
information. In particular, we will describe the combination of
direct methods with:

(a) direct-space techniques for the ab initio crystal structure
solution of proteins;

(b) isomorphous-replacement (SIR–MIR) techniques;
(c) anomalous-dispersion (SAD–MAD) techniques;
(d) molecular replacement.

Point (d) will not be treated here, as it is described extensively in
IT F, Part 13.

2.2.10.2. Ab initio crystal structure solution of proteins

Ab initio techniques do not require prior information of any
atomic positions. The recent tremendous increase in computing
speed led to direct methods evolving towards the rapid devel-
opment of multisolution techniques. The new algorithms of the
program Shake-and-Bake (Weeks et al., 1994; Weeks & Miller,
1999; Hauptman et al., 1999) allowed an impressive extension of
the structural complexity amenable to direct phasing. In parti-
cular we mention: (a) the minimal principle (De Titta et al., 1994),
according to which the phase problem is considered as a
constrained global optimization problem; (b) the refinement
procedure, which alternately uses direct- and reciprocal-space
techniques; and (c) the parameter-shift optimization technique
(Bhuiya & Stanley, 1963), which aims at reducing the value of the
minimal function (Hauptman, 1991; De Titta et al., 1994). An
effective variant of Shake-and Bake is SHELXD (Sheldrick,
1998) which cyclically alternates tangent refinement in reciprocal
space with peak-list optimisation procedures in real space
(Sheldrick & Gould, 1995). Detailed information on these
programs is available in IT F (2001), Part 16.

A different approach is used by ACORN (Foadi et al., 2000),
which first locates a small fragment of the molecule (eventually
by molecular-replacement techniques) to obtain a useful
nonrandom starting set of phases, and then refines them by
means of solvent-flattening techniques.

The program SIR2004 (Burla et al., 2005) uses the tangent
formula as well as automatic Patterson techniques to obtain a first
imperfect structural model; then direct-space techniques are used
to refine the model. The Patterson approach is based on the use
of the superposition minimum function (Buerger, 1959;
Richardson & Jacobson, 1987; Sheldrick, 1992; Pavelcı́k, 1988;
Pavelcı́k et al., 1992; Burla et al., 2004). It may be worth noting
that even this approach is of multisolution type: up to 20 trial
solutions are provided by using as pivots the highest maxima in
the superposition minimum function.

It is today possible to solve structures up to 2500 non-hydrogen
atoms in the asymmetric unit provided data at atomic (about 1 Å)
resolution are available. Proteins with data at quasi-atomic
resolution (say up to 1.5–1.6 Å) can also be solved, but with
greater difficulties (Burla et al., 2005). A simple evaluation of the
potential of the ab initio techniques suggests that the structural
complexity range and the resolution limits amenable to the ab

235



2.3. Patterson and molecular replacement techniques, and the use of noncrystallographic
symmetry in phasing

By L. Tong, M. G. Rossmann and E. Arnold

2.3.1. Introduction

2.3.1.1. Background

Historically, the Patterson has been used in a variety of ways to
effect the solutions of crystal structures. While some simple
structures (Ketelaar & de Vries, 1939; Hughes, 1940; Speakman,
1949; Shoemaker et al., 1950) were solved by direct analysis of
Patterson syntheses, alternative methods have largely superseded
this procedure. An early innovation was the heavy-atom method
which depends on the location of a small number of relatively
strong scatterers (Harker, 1936). Image-seeking methods and
Patterson superposition techniques were first contemplated in
the late 1930s (Wrinch, 1939) and applied sometime later
(Beevers & Robertson, 1950; Clastre & Gay, 1950; Garrido,
1950a; Buerger, 1959). This experience provided the encourage-
ment for computerized vector-search methods to locate indivi-
dual atoms automatically (Mighell & Jacobson, 1963; Kraut, 1961;
Hamilton, 1965; Simpson et al., 1965) or to position known
molecular fragments in unknown crystal structures (Nordman &
Nakatsu, 1963; Huber, 1965). The Patterson function has been
used extensively in conjunction with the isomorphous replace-
ment method (Rossmann, 1960; Blow, 1958) or anomalous
dispersion (Rossmann, 1961a) to determine the position of
heavy-atom substitution. Pattersons have been used to detect the
presence and relative orientation of multiple copies of a given
chemical motif in the crystallographic asymmetric unit in the
same or different crystals (Rossmann & Blow, 1962). Finally, the
orientation and placement of known molecular structures
(‘molecular replacement’) into unknown crystal structures can be
accomplished via Patterson techniques.

The function, introduced by Patterson in 1934 (Patterson,
1934a,b), is a convolution of electron density with itself and may
be defined as

PðuÞ ¼
R

V

�ðxÞ � �ðuþ xÞ dx; ð2:3:1:1Þ

where PðuÞ is the ‘Patterson’ function at u, �ðxÞ is the crystal’s
periodic electron density and V is the volume of the unit cell. The
Patterson function, or F2 series, can be calculated directly from
the experimentally derived X-ray intensities as

PðuÞ ¼
2

V2

Xhemisphere

h

jFhj
2 cos 2�h � u: ð2:3:1:2Þ

The derivation of (2.3.1.2) from (2.3.1.1) can be found in this
volume (see Section 1.3.4.2.1.6) along with a discussion of the
physical significance and symmetry of the Patterson function,
although the principal properties will be restated here.

The Patterson can be considered to be a vector map of all the
pairwise interactions between the atoms in a unit cell. The vectors
in a Patterson correspond to vectors in the real (direct) crystal
cell but translated to the Patterson origin. Their weights are
proportional to the product of densities at the tips of the vectors
in the real cell. The Patterson unit cell has the same size as the
real crystal cell. The symmetry of the Patterson comprises the
Laue point group of the crystal cell plus any additional lattice
symmetry due to Bravais centring. The reduction of the real

space group to the Laue symmetry is produced by the translation
of all vectors to the Patterson origin and the introduction of a
centre of symmetry. The latter is a consequence of the relation-
ship between the vectors AB and BA. The Patterson symmetries
for all 230 space groups are tabulated in IT A (2005).

An analysis of Patterson peaks can be obtained by considering
N atoms with form factors fi in the unit cell. Then

Fh ¼
PN

i¼1

fi expð2�ih � xiÞ:

Using Friedel’s law,

jFhj
2
¼ Fh � F

�
h

¼
PN

i¼1

fi expð2�ih � xiÞ

� �
PN

j¼1

fj expð�2�ih � xjÞ

" #

;

which can be decomposed to

jFhj
2
¼
PN

i¼1

f 2
i þ

PN

i6¼j

PN
fi fj exp½2�ih � ðxi � xjÞ�: ð2:3:1:3Þ

On substituting (2.3.1.3) in (2.3.1.2), we see that the Patterson
consists of the sum of N2 total interactions of which N are of
weight f 2

i at the origin and NðN � 1Þ are of weight fi fj at xi � xj.
The weight of a peak in a real cell is given by

wi ¼
R

U

�iðxÞ dx ¼ Zi ðthe atomic numberÞ;

where U is the volume of the atom i. By analogy, the weight of a
peak in a Patterson (form factor fi fj) will be given by

wij ¼
R

U

PijðuÞ du ¼ ZiZj:

Although the maximum height of a peak will depend on the
spread of the peak, it is reasonable to assume that heights of
peaks in a Patterson are proportional to the products of the
atomic numbers of the interacting atoms.

There are a total of N2 interactions in a Patterson due to N
atoms in the crystal cell. These can be represented as an N � N
square matrix whose elements uij, wij indicate the position and
weight of the peak produced between atoms i and j (Table
2.3.1.1). The N vectors corresponding to the diagonal of this
matrix are located at the Patterson origin and arise from the
convolution of each atom with itself. This leaves NðN � 1Þ
vectors whose locations depend on the relative positions of all of
the atoms in the crystal cell and whose weights depend on the
atom types related by the vector. Complete specification of the
unique non-origin Patterson vectors requires description of only
the NðN � 1Þ=2 elements in either the upper or the lower triangle
of this matrix, since the two sets of vectors represented by
the two triangles are related by a centre of symmetry
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2.4. Isomorphous replacement and anomalous scattering

By M. Vijayan and S. Ramaseshan†

2.4.1. Introduction

Isomorphous replacement is among the earliest methods to be
employed for crystal structure determination (Cork, 1927). The
power of this method was amply demonstrated in the classical
X-ray work of J. M. Robertson on phthalocyanine in the 1930s
using centric data (Robertson, 1936; Robertson & Woodward,
1937). The structure determination of strychnine sulfate penta-
hydrate by Bijvoet and others provides an early example of the
application of this method to acentric reflections (Bokhoven et
al., 1951). The usefulness of isomorphous replacement in the
analysis of complex protein structures was demonstrated by
Perutz and colleagues (Green et al., 1954). This was closely
followed by developments in the methodology for the application
of isomorphous replacement to protein work (Harker, 1956;
Blow & Crick, 1959) and rapidly led to the first ever structure
solution of two related protein crystals, namely, those of
myoglobin and haemoglobin (Kendrew et al., 1960; Cullis et al.,
1961b). Since then isomorphous replacement has been the
method of choice in macromolecular crystallography and most of
the subsequent developments in and applications of this method
have been concerned with biological macromolecules, mainly
proteins (Blundell & Johnson, 1976; McPherson, 1982).

The application of anomalous-scattering effects has often
developed in parallel with that of isomorphous replacement.
Indeed, the two methods are complementary to a substantial
extent and they are often treated together, as in this article.
Although the most important effect of anomalous scattering,
namely, the violation of Friedel’s law, was experimentally
observed as early as 1930 (Coster et al., 1930), two decades
elapsed before this effect was made use of for the first time by
Bijvoet and his associates for the determination of the absolute
configuration of asymmetric molecules as well as for phase
evaluation (Bijvoet, 1949, 1954; Bijvoet et al., 1951). Since then
there has been a phenomenal spurt in the application of
anomalous-scattering effects (Srinivasan, 1972; Ramaseshan &
Abrahams, 1975; Vijayan, 1987). A quantitative formulation for
the determination of phase angles using intensity differences
between Friedel equivalents was derived by Ramachandran &
Raman (1956), while Okaya & Pepinsky (1956) successfully
developed a Patterson approach involving anomalous effects.
The anomalous-scattering method of phase determination has
since been used in the structure analysis of several structures,
including those of a complex derivative of vitamin B12 (Dale et al.,
1963) and a small protein (Hendrickson & Teeter, 1981). In the
meantime, the effect of changes in the real component of the
dispersion correction as a function of the wavelength of the
radiation used, first demonstrated by Mark & Szillard (1925), also
received considerable attention. This effect, which is formally
equivalent to that of isomorphous replacement, was demon-
strated to be useful in structure determination (Ramaseshan et
al., 1957; Ramaseshan, 1963). Protein crystallographers have
been quick to exploit anomalous-scattering effects (Rossmann,
1961; Kartha & Parthasarathy, 1965; North, 1965; Matthews, 1966;
Hendrickson, 1979) and, as in the case of the isomorphous
replacement method, the most useful applications of anomalous
scattering during the last two decades have been perhaps in the
field of macromolecular crystallography (Kartha, 1975; Waten-
paugh et al., 1975; Vijayan, 1981). In addition to anomalous
scattering of X-rays, that of neutrons was also found to have

interesting applications (Koetzle & Hamilton, 1975; Sikka &
Rajagopal, 1975). More recently there has been a further revival
in the development of anomalous-scattering methods with the
advent of synchrotron radiation, particularly in view of
the possibility of choosing any desired wavelength from a
synchrotron-radiation source (Helliwell, 1984).

It is clear from the foregoing that the isomorphous replace-
ment and the anomalous-scattering methods have a long and
distinguished history. It is therefore impossible to do full justice
to them in a comparatively short presentation like the present
one. Several procedures for the application of these methods
have been developed at different times. Many, although of
considerable historical importance, are not extensively used at
present for a variety of reasons. No attempt has been made to
discuss them in detail here; the emphasis is primarily on the state
of the art as it exists now. The available literature on isomorphous
replacement and anomalous scattering is extensive. The refer-
ence list given at the end of this part is representative rather than
exhaustive.

During the past few years, rapid developments have taken
place in the isomorphous replacement and anomalous-scattering
methods, particularly in the latter, as applied to macromolecular
crystallography. These developments are described in detail in
International Tables for Crystallography, Volume F (2001).
Therefore, they have not been dealt with in this chapter. Signif-
icant developments in applications of direct methods to macro-
molecular crystallography have also occurred in recent years. A
summary of these developments as well as the traditional direct
methods on which the recent progress is based are presented in
Chapter 2.2.

2.4.2. Isomorphous replacement method

2.4.2.1. Isomorphous replacement and isomorphous addition

Two crystals are said to be isomorphous if (a) both have the
same space group and unit-cell dimensions and (b) the types and
the positions of atoms in both are the same except for a repla-
cement of one or more atoms in one structure with different types
of atoms in the other (isomorphous replacement) or the presence
of one or more additional atoms in one of them (isomorphous
addition). Consider two crystal structures with identical space
groups and unit-cell dimensions, one containing N atoms and the
other M atoms. The N atoms in the first structure contain subsets
P and Q whereas the M atoms in the second structure contain
subsets P, Q0 and R. The subset P is common to both structures in
terms of atomic positions and atom types. The atomic positions
are identical in subsets Q and Q0, but at any given atomic position
the atom type is different in Q and Q0. The subset R exists only in
the second structure. If FN and FM denote the structure factors of
the two structures for a given reflection,

FN ¼ FP þ FQ ð2:4:2:1Þ

and

FM ¼ FP þ FQ0 þ FR; ð2:4:2:2Þ

where the quantities on the right-hand side represent contribu-
tions from different subsets. From (2.4.2.1) and (2.4.2.2) we have
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2.5. Electron diffraction and electron microscopy in structure determination

By J. M. Cowley,† J. C. H. Spence, M. Tanaka, B. K. Vainshtein,† B. B. Zvyagin,† P. A. Penczek

and D. L. Dorset

2.5.1. Foreword

By J. M. Cowley and J. C. H. Spence

Given that electrons have wave properties and the wavelengths
lie in a suitable range, the diffraction of electrons by matter is
completely analogous to the diffraction of X-rays. While for
X-rays the scattering function is the electron-density distribution,
for electrons it is the potential distribution which is similarly
peaked at the atomic sites. Hence, in principle, electron diffrac-
tion may be used as the basis for crystal structure determination.
In practice it is used much less widely than X-ray diffraction for
the determination of crystal structures but is receiving increasing
attention as a means for obtaining structural information not
readily accessible with X-ray- or neutron-diffraction techniques.

Electrons having wavelengths comparable with those of the
X-rays commonly used in diffraction experiments have energies
of the order of 100 eV. For such electrons, the interactions with
matter are so strong that they can penetrate only a few layers of
atoms on the surfaces of solids. They are used extensively for the
study of surface structures by low-energy electron diffraction
(LEED) and associated techniques. These techniques are not
covered in this series of volumes, which include the principles and
practice of only those diffraction and imaging techniques making
use of high-energy electrons, having energies in the range of
20 keV to 1 MeV or more, in transmission through thin speci-
mens.

For the most commonly used energy ranges of high-energy
electrons, 100 to 400 keV, the wavelengths are about 50 times
smaller than for X-rays. Hence the scattering angles are much
smaller, of the order of 10�2 rad, the recording geometry is
relatively simple and the diffraction pattern represents, to a
useful first approximation, a planar section of reciprocal space.
Extinction distances are hundreds of ångstroms, which, when
combined with typical lattice spacings, produces rocking-curve
widths which are, unlike the X-ray case, a significant fraction of
the Bragg angle.

The elastic scattering of electrons by atoms is several orders of
magnitude greater than for X-rays. This fact has profound
consequences, which in some cases are highly favourable and in
other cases are serious hindrances to structure analysis work. On
the one hand it implies that electron-diffraction patterns can be
obtained from very small single-crystal regions having thick-
nesses equal to only a few layers of atoms and, with recently
developed techniques, having diameters equivalent to only a few
interatomic distances. Hence single-crystal patterns can be
obtained from microcrystalline phases.

However, the strong scattering of electrons implies that the
simple kinematical single-scattering approximation, on which
most X-ray diffraction structure analysis is based, fails for elec-
trons except for very thin crystals composed of light-atom
materials. Strong dynamical diffraction effects occur for crystals
which may be 100 Å thick, or less for heavy-atom materials. As
a consequence, the theory of dynamical diffraction for electrons
has been well developed, particularly for the particular special
diffracting conditions relevant to the transmission of fast elec-
trons (see Chapter 5.2), and observations of dynamical diffrac-
tion effects are commonly made and quantitatively interpreted.
The possibility has thus arisen of using the observation of

dynamical diffraction effects as the basis for obtaining crystal
structure information. The fact that dynamical diffraction is
dependent on the relative phases of the diffracted waves then
implies that relative phase information can be deduced from the
diffraction intensities and the limitations of kinematical diffrac-
tion, such as Friedel’s law, do not apply. The most immediately
practicable method for making use of this possibility is conver-
gent-beam electron diffraction (CBED) as described in Section
2.5.3.

A further important factor, determining the methods for
observing electron diffraction, is that, being charged particles,
electrons can be focused by electromagnetic lenses. Many of the
resolution-limiting aberrations of cylindrical magnetic lenses
have now been eliminated through the use of aberration-
correction devices, so that for weakly scattering samples the
resolution is limited to about 1 Å by electronic and mechanical
instabilities. This is more than sufficient to distinguish the indi-
vidual rows of atoms, parallel to the incident beam, in the prin-
cipal orientations of most crystalline phases. Thus ‘structure
images’ can be obtained, sometimes showing direct representa-
tion of projections of crystal structures [see IT C (2004), Section
4.3.8]. However, the complications of dynamical scattering and of
the coherent imaging processes are such that the image inten-
sities vary strongly with crystal thickness and tilt, and with the
defocus or other parameters of the imaging system, making the
interpretation of images difficult except in special circumstances.
Fortunately, computer programs are readily available whereby
image intensities can be calculated for model structures [see IT C
(2004), Section 4.3.6]. Hence the means exist for deriving the
projection of the structure if only by a process of trial and error
and not, as would be desirable, from a direct interpretation of the
observations.

The accuracy with which the projection of a structure can be
deduced from an image, or series of images, improves as the
resolution of the microscope improves but is not at all compar-
able with the accuracy attainable with X-ray diffraction methods.
A particular virtue of high-resolution electron microscopy as a
structural tool is that it may give information on individual small
regions of the sample. Structures can be determined of ‘phases’
existing over distances of only a few unit cells and the defects and
local disorders can be examined, one by one.

The observation of electron-diffraction patterns forms an
essential part of the technique of structure imaging in high-
resolution electron microscopy, because the diffraction patterns
are used to align the crystals to appropriate axial orientations.
More generally, for all electron microscopy of crystalline mate-
rials the image interpretation depends on knowledge of the
diffraction conditions. Fortunately, the diffraction pattern and
image of any specimen region can be obtained in rapid succession
by a simple switching of lens currents. The ready comparison of
the image and diffraction data has become an essential compo-
nent of the electron microscopy of crystalline materials but has
also been of fundamental importance for the development of
electron-diffraction theory and techniques. The development of
the nanodiffraction method in the field-emission scanning
transmission electron microscope (STEM) has allowed micro-
diffraction patterns to be obtained from subnanometre-sized
regions, and so has become the ideal tool for the structural
analysis of the new microcrystalline phases important to
nanoscience. The direct phasing of these coherent nanodiffrac-
tion patterns is an active field of research.
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Table 2.5.3.9. Dynamical extinction lines appearing in ZOLZ reflections for all crystal space groups except Nos. 1 and 2

Point groups 2, m, 2/m (second setting, unique axis b)

Space group

Incident-beam
direction

[h0l]

3 P2

4 P21 0k0 A2 B2

21 B3

5 C2

6 Pm

7 Pc h0lo A2 B2

c A3

8 Cm

9 Cc he0lo A2 B2

c A3

10 P2/m

11 P21/m 0k0 A2 B2

21 B3

12 C2/m

13 P2/c h0lo A2 B2

c A3

14 P21/c 0k0 A2 B2

21 B3

h0lo A2 B2

c A3

15 C2/c he0lo A2 B2

c A3

Point group 222

Space group

Incident-beam direction

[100] [010] [001] [hk0] [0kl] [h0l]

16 P222

17 P2221 00l A2 B2 00l A2 B2 00l A2 B2

21 B3 21 B3 21 B3

18 P21212 0k0 A2 B2 h00 A2 B2 h00 A2 B2 h00 A2 B2 0k0 A2 B2

212 B3 211 B3 211 B3 211 B3 212 B3

0k0
212

19 P212121 0k0 A2 B2 h00 A2 B2 h00 A2 B2 00l A2 B2 h00 A2 B2 0k0 A2 B2

212 B3 211 B3 211 B3 213 B3 211 B3 212 B3

00l 00l 0k0
213 213 212

20 C2221 00l A2 B2 00l A2 B2 00l A2 B2

21 B3 21 B3 21 B3

21 C222

22 F222

23 I222

24 I212121

Point group mm2

Space group

Incident-beam direction

[100] [010] [001] [hk0] [0kl] [h0l]

25 Pmm2

26 Pmc21 00l A2 B2 00l 00l A2 B2 h0lo A2 B2

c, 21 A3 B3 21 B3 21 B3 c A3

27 Pcc2 00l 00l 0klo A2 B2 h0lo A2 B2

c2 A3 c1 A3 c1 A3 c2 A3

28 Pma2 h00 A2 B2 ho0l A2 B2

a A3 a A3

29 Pca21 00l 00l A2 B2 h00 A2 B2 00l A2 B2 0klo A2 B2 ho0l A2 B2

21 B3 c, 21 A3 B3 a A3 21 B3 c A3 a A3
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Fig. 2.5.3.16. CBED patterns of Sm3Se4. The procedures for identifying the symmetry are also shown. (a, b) [111] incidence at 80 kV: the WP symmetry is 3m (a)
and the projection (proj.) WP symmetry is 3m (b). (c, d) [100] incidence at 80 kV: the WP symmetry is 2mm (c) and the projection WP symmetry is 4mm (d).
Dynamical extinction lines A2 and A3 are seen (d). The point group is determined to be �443m. (e) Spot diffraction pattern taken with the [100] incidence at 80 kV
shows the absence of 0kl reflections. The lattice type is determined to be I. ( f ) [100] incidence at 100 kV: dynamical extinction lines A in HOLZ
reflections confirm the existence of a glide plane. The space group is determined to be I �443d.



2.5. ELECTRON DIFFRACTION AND ELECTRON MICROSCOPY IN STRUCTURE DETERMINATION

cation second’ approach. It is possible to reverse this order by
using invariants with the supporting rationale that once
approximately homogeneous classes of images were found, it
should be easy to align them subsequently as within each class
they will share the same motif.

A practical approach to reference-free alignment known as
alignment by classification (Dube et al., 1993) is based on the
observation that for a very large data set and centred particles
one can expect that although the in-plane rotation is arbitrary,
there is a high chance that at least some of the similar images will
be in the same rotational orientation. Therefore, in this approach
the images are first (approximately) centred, then subjected to
classification, and subsequently aligned.

In its simplest form, the multireference alignment belongs to
the class of supervised classification methods: given a set of
templates (i.e., reference images; these can be selected unpro-
cessed particle projections, or class averages that resulted from
preceding analysis, or projections of a previously determined EM
structure, or projections of an X-ray crystallographic structure),
each of the images from the available data sets is compared
(using a selected discrepancy measure) with all templates and
assigned to the class represented by the most similar one. Equally
often multireference alignment is understood as a form of
unsupervised classification, more precisely K-means classification,
even if the description is not formalized in terms of the latter.
Given a number of initial 2D templates, the images are compared
with all templates and assigned to the most similar one. New
templates are calculated by averaging images assigned to their
predecessors and the whole procedure is repeated until a stable
solution is reached.

2.5.7.7. Initial determination of 3D structure using tilt experiments

The 2D analysis of projection images provides insight into the
behaviour of the protein on the grid in terms of the structural
consistency and the number and shape of projection images. In
order to obtain 3D information, it is necessary to find geometrical
relations between different observed 2D images. The most robust
and historically the earliest approach is based on tilt experiments.
By tilting the stage in the microscope and acquiring additional
pictures of the same area of the grid it is possible to collect
projection images of the same molecule with some of the
required Eulerian angles determined accurately by the setting of
the goniometer of the microscope.

In random conical tilt (RCT) reconstruction (Radermacher et
al., 1987), two micrographs of the same specimen area are
collected: the first one is recorded at a tilt angle of ~50� while the
second one is recorded at 0� (Fig. 2.5.7.3). If particles have
preferred orientation on the support carbon film (or within the
amorphous ice layer, if no carbon support is used), the projec-
tions of particles in the tilted micrographs form a conical tilt
series. Since in-plane rotations of particles are random, the
azimuthal angles of the projections of tilted particles are also
randomly distributed; hence the name of the method. The
untilted image is required for two reasons: (i) the particle
projections from the untilted image are classified, thus a subset
corresponding to possibly identical images can be selected
ensuring that the projections originated from similar and simi-
larly oriented structures; and (ii) the in-plane rotation angle
found during alignment corresponds to the azimuthal angles in
three dimensions (one of the three Eulerian angles needed). The
second Eulerian angle, the tilt, is either taken from the micro-
scope setting of the goniometer or calculated based on geome-
trical relations between tilted and untilted micrographs. The third
Eulerian angle corresponds to the angle of the tilt axis of the
microscope stage and is also calculated using the geometrical
relations between two micrographs. In addition, it is necessary to
centre the particle projections selected from tilted micrographs;
although various correlation-based schemes have been proposed,

the problem is difficult as the tilt data tend to be very noisy and
have very low contrast.

Given three Eulerian angles and centred tilted projections, a
3D reconstruction is calculated. There are numerous advantages
of the RCT method. (i) Assuming the sign of the tilt angle is read
correctly (it can be confirmed by analysing the defocus gradient
in the tilted micrographs), the method yields a correct hand of the
structure. (ii) With the exception of the in-plane rotation of
untilted projections, which can be found relatively easily using
alignment procedures, the remaining parameters are determined
by the experimental settings. Even if they are not extremely
accurate, the possibility of a gross error is eliminated, which
positively distinguishes the method from the ab initio computa-
tional approaches that use only untilted data. (iii) The compu-
tational analysis is entirely done using the untilted data, which
have high contrast. (iv) The RCT method is often the only
method of obtaining 3D information if the molecule has strongly
preferential orientation and only one view is observed in untilted
micrographs. The main disadvantage is that the conical projection
series leaves a significant portion of the Fourier space unde-
termined. This follows from the central section theorem [equa-
tion (2.5.6.8) of Section 2.5.6]: as the tilt angle is less than 90�, the
undetermined region can be thought to form a cone in three
dimensions and is referred to as the missing cone. The problem
can be overcome if the molecule has more than one preferred
orientation. Subsets of particles that have similar untilted
appearance (as determined by clustering) are processed inde-
pendently and for each a separate 3D structure is calculated. If
the preferred orientations are sufficiently different, i.e., the
orientations of the original particles in three dimensions are
sufficiently different in terms of their angles with respect to the z
axis, the 3D structures can be aligned and merged, all but elim-
inating the problem of the missing cone and yielding a robust, if
resolution-limited, initial model of the molecule (Penczek et al.,

381

Fig. 2.5.7.3. Principle of random conical tilt reconstruction. A tilt pair of
images of the same grid area is collected. By aligning the particle images in
the untilted micrograph (left), the Eulerian angles of their counterparts in
the tilted micrograph (right) are established. The particle images from the
tilted micrograph are used for 3D reconstruction of the molecule (bottom).
The set of projections form a cone in Fourier space; information within the
cone remains undetermined.



3.1. Distances, angles, and their standard uncertainties

By D. E. Sands

3.1.1. Introduction

A crystal structure analysis provides information from which it is
possible to compute distances between atoms, angles between
interatomic vectors, and the uncertainties in these quantities. In
Cartesian coordinate systems, these geometric computations
require the Pythagorean theorem and elementary trigonometry.
The natural coordinate systems of crystals, though, are deter-
mined by symmetry, and only in special cases are the basis vectors
(or coordinate axes) of these systems constrained to be of equal
lengths or mutually perpendicular.

It is possible, of course, to transform the positional parameters
of the atoms to a Cartesian system and perform the subsequent
calculations with the transformed coordinates. Along with the
coordinates, the transformations must be applied to anisotropic
thermal factors, variance–covariance matrices and other impor-
tant quantities. Moreover, leaving the natural coordinate system
of the crystal sacrifices the simplified relationships imposed by
translational and point symmetry; for example, if an atom has
fractional coordinates x1, x2, x3, an equivalent atom will be at
1þ x1, x2, x3, etc.

Fortunately, formulation of the calculations in generalized
rectilinear coordinate systems is straightforward, and readily
adapted to computer languages (Section 3.1.12 illustrates the use
of Fortran for such calculations). The techniques for these
computations are those of tensor analysis, which provides a
compact and elegant notation. While an effort will be made to be
self-sufficient in this chapter, some proficiency in vector algebra is
assumed, and the reader not familiar with the basics of tensor
analysis should refer to Chapter 1.1 and Sands (1982a).

3.1.2. Scalar product

The scalar product of vectors u and v is defined as

u � v ¼ uv cos ’; ð3:1:2:1Þ

where u and v are the lengths of the vectors and ’ is the angle
between them. In terms of components,

u � v ¼ ðuiaiÞ � ðv
jajÞ ð3:1:2:2Þ

u � v ¼ uiv jai � aj ð3:1:2:3Þ

u � v ¼ uiv jgij: ð3:1:2:4Þ

In all equations in this chapter, the convention is followed that
summation is implied over an index that is repeated once as a
subscript and once as a superscript in an expression; thus, the
right-hand side of (3.1.2.4) implies the sum of nine terms

u1v1g11 þ u1v2g12 þ . . .þ u3v3g33:

The gij in (3.1.2.4) are the components of the metric tensor [see
Chapter 1.1 and Sands (1982a)]

gij ¼ ai � aj: ð3:1:2:5Þ

Subscripts are used for quantities that transform the same way as
the basis vectors ai; such quantities are said to transform covar-
iantly. Superscripts denote quantities that transform the same
way as coordinates xi; these quantities are said to transform
contravariantly (Sands, 1982a).

Equation (3.1.2.4) is in a form convenient for computer
evaluation, with indices i and j taking successively all values from
1 to 3. The matrix form of (3.1.2.4) is useful both for symbolic
manipulation and for computation,

u � v ¼ uTgv; ð3:1:2:6Þ

where the superscript italic T following a matrix symbol indicates
a transpose. Written out in full, (3.1.2.6) is

u � v ¼ ðu1u2u3Þ

g11 g12 g13

g21 g22 g23

g31 g32 g33

0

@

1

A
v1

v2

v3

0

@

1

A: ð3:1:2:7Þ

If u is the column vector with components u1; u2; u3, uT is the
corresponding row vector shown in (3.1.2.7).

3.1.3. Length of a vector

By (3.1.2.1), the scalar product of a vector with itself is

v � v ¼ ðvÞ2: ð3:1:3:1Þ

The length of v is, therefore, given by

v ¼ ðviv jgijÞ
1=2: ð3:1:3:2Þ

Computation of lengths in a generalized rectilinear coordinate
system is thus simply a matter of evaluating the double summa-
tion viv jgij and taking the square root.

3.1.4. Angle between two vectors

By (3.1.2.1) and (3.1.2.4), the angle ’ between vectors u and v is
given by

’ ¼ cos�1½uiv jgij=ðuvÞ�: ð3:1:4:1Þ

An even more concise expression of equations such as (3.1.4.1) is
possible by making use of the ability of the metric tensor g to
convert components from contravariant to covariant (Sands,
1982a). Thus,

vi ¼ gijv
j; uj ¼ giju

i; ð3:1:4:2Þ

and (3.1.2.4) may be written succinctly as

u � v ¼ uivi ð3:1:4:3Þ
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3.2. The least-squares plane

By R. E. Marsh and V. Schomaker†

3.2.1. Introduction

By way of introduction, we remark that in earlier days of crystal
structure analysis, before the advent of high-speed computers and
routine three-dimensional analyses, molecular planarity was
often assumed so that atom coordinates along the direction of
projection could be estimated from two-dimensional data [see,
e.g., Robertson (1948)]. Today, the usual aim in deriving the
coefficients of a plane is to investigate the degree of planarity of a
group of atoms as found in a full, three-dimensional structure
determination. We further note that, for such purposes, a crys-
tallographer will often be served just as well by establishing the
plane in an almost arbitrary fashion as by resorting to the most
elaborate, nit-picking and pretentious least-squares treatment.
The approximate plane and the associated perpendicular
distances of the atoms from it will be all he needs as scaffolding
for his geometrical and structural imagination; reasonable
common sense will take the place of explicit attention to error
estimates.

Nevertheless, we think it appropriate to lay out in some detail
the derivation of the ‘best’ plane, in a least-squares sense,
through a group of atoms and of the standard uncertainties
associated with this plane. We see two cases: (1) The weights of
the atoms in question are considered to be isotropic and uncor-
related (i.e. the weight matrix for the positions of all the atoms is
diagonal, when written in terms of Cartesian axes, and for each
atom the three diagonal elements are equal). In such cases the
weights may have little or nothing to do with estimates of random
error in the atom positions (they may have been assigned merely
for convenience or convention), and, therefore, no one should
feel that the treatment is proper in respect to the theory of errors.
Nevertheless, it may be desired to incorporate the error estimates
(variances) of the atom positions into the results of such calcu-
lations, whereupon these variances (which may be anisotropic,
with correlation between atoms) need to be propagated. In this
case the distinction between weights (or their inverses) and
variances must be kept very clear. (2) The weights are anisotropic
and are presumably derived from a variance–covariance matrix,
which may include correlation terms between different atoms;
the objective is to achieve a truly proper Gaussian least-squares
result.

3.2.2. Least-squares plane based on uncorrelated, isotropic
weights

This is surely the most common situation; it is not often that one
will wish to take the trouble, or be presumptive enough, to assign
anisotropic or correlated weights to the various atoms. And one
will sometimes, perhaps even often, not be genuinely interested
in the hypothesis that the atoms actually are rigorously coplanar;
for instance, one might be interested in examining the best plane
through such a patently nonplanar molecule as cyclohexane.
Moreover, the calculation is simple enough, given the availability
of computers and programs, as to be a practical realization of the
off-the-cuff treatment suggested in our opening paragraph. The
problem of deriving the plane’s coefficients is intrinsically
nonlinear in the way first discussed by Schomaker et al. (1959;
SWMB). Any formulation other than as an eigenvalue–
eigenvector problem (SWMB), as far as we can tell, will some-

times go astray. As to the propagation of errors, numerous
treatments have been given, but none that we have seen is
altogether satisfactory.

We refer all vectors and matrices to Cartesian axes, because
that is the most convenient in calculation. However, a more
elegant formulation can be written in terms of general axes [e.g.,
as in Shmueli (1981)].

The notation is troublesome. Indices are needed for atom
number and Cartesian direction, and the exponent 2 is needed as
well, which is difficult if there are superscript indices. The best
way seems to be to write all the indices as subscripts and
distinguish among them by context – i, j, 1, 2, 3 for directions; k, l,
p (and sometimes K, . . . ) for atoms. In any case, atom first then
direction if there are two subscripts; direction, if only one index
for a vector component, but atom (in this section at least) if for a
weight or a vector. And 
d1

, e.g., for the standard uncertainty of
the distance of atom 1 from a plane. For simplicity in practice, we
use Cartesian coordinates throughout.

The first task is to find the plane, which we write as

0 ¼ m � r� d � mT r� d;

where r is here the vector from the origin to any point on the
plane (but usually represents the measured position of an atom),
m is a unit vector parallel to the normal from the origin to the
plane, d is the length of the normal, and m and r are the column
representations of m and r. The least-squares condition is to find
the stationary values of S � ½wkðm

T rk � dÞ
2
� subject to mTm ¼ 1,

with rk, k ¼ 1; . . . ; n, the vector from the origin to atom k and
with weights, wk, isotropic and without interatomic correlations
for the n atoms of the plane. We also write S as S � ½wðmT r� dÞ

2
�,

the subscript for atom number being implicit in the Gaussian
summations ð½. . .�Þ over all atoms, as it is also in the angle-bracket
notation for the weighted average over all atoms, for example in
hri – the weighted centroid of the groups of atoms – just below.

First solve for d, the origin-to-plane distance.

0 ¼ �
1

2

@S

@d
¼ ½wðmT r� dÞ� ¼ 0;

d ¼ ½wmT r�=½w� � mThri:

Then

S � ½wðmT r� dÞ
2
� ¼ ½wfmTðr� hriÞg2�

� ½wðmTsÞ2� � mT ½wssT �m � mTAm:

Here sk � rk � hri is the vector from the centroid to atom k. Then
solve for m. This is the eigenvalue problem – to diagonalize A
(bear in mind that Aij is just ½wsisj�) by rotating the coordinate
axes, i.e., to find the 3� 3 arrays M and L, L diagonal, to satisfy

MTAM ¼ L; MTM ¼ I:

A and M are symmetric; the columns m of M are the direction
cosines of, and the diagonal elements of L are the sums of
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3.3. Molecular modelling and graphics

By R. Diamond and L. M. D. Cranswick

3.3.1. Graphics

By R. Diamond

3.3.1.1. Coordinate systems, notation and standards

3.3.1.1.1. Cartesian and crystallographic coordinates

It is usual, for purposes of molecular modelling and of
computer graphics, to adopt a Cartesian coordinate system using
mutually perpendicular axes in a right-handed system using the
ångström unit or the nanometre as the unit of distance along such
axes, and largely to ignore the existence of crystallographic
coordinates expressed as fractions of unit-cell edges. Transfor-
mations between the two are thus associated, usually, with the
input and output stages of any software concerned with model-
ling and graphics, and it will be assumed after this section that all
coordinates are Cartesian using the chosen unit of distance as the
unit of coordinates. For a discussion of coordinate transforma-
tions and rotations without making this assumption see Chapter
1.1 in which formulations using co- and contravariant forms are
presented.

The relationship between these systems may be written

X ¼ Mx x ¼ M�1X

in which X and x are position vectors in direct space, written as
column vectors, with x expressed in crystallographic fractional
coordinates (dimensionless) and X in Cartesian coordinates
(dimension of length).

There are two forms of M in common use. The first of these sets
the first component of X parallel to a� and the third parallel to c
and is

M ¼

a’= sin � 0 0

aðcos � � cos� cos�Þ= sin � b sin � 0

a cos � b cos� c

0

B
@

1

C
A

M�1 ¼

sin �=a’ 0 0

ðcos � cos �� cos �Þ=b’ sin � 1=b sin � 0

ðcos � cos � � cos �Þ=c’ sin � �1=c tan� 1=c

0

B
@

1

C
A

in which

’ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 �� cos2 �� cos2 � þ 2 cos � cos � cos �

p

¼ sin � sin � sin ��:

’ is equal to the volume of the unit cell divided by abc, and is
unchanged by cyclic permutation of �, � and � and of ��, �� and
��. The Cartesian and crystallographic axes have the same chir-
ality if the positive square root is taken.

The second form sets the first component of X parallel to a and
the third component of X parallel to c� and is

M ¼

a b cos � c cos �

0 b sin � cðcos�� cos � cos �Þ= sin �

0 0 c’= sin �

0

B
@

1

C
A

M�1 ¼

1=a �1=a tan � ðcos � cos � � cos �Þ=a’ sin �

0 1=b sin � ðcos� cos � � cos�Þ=b’ sin �

0 0 sin �=c’

0

B
@

1

C
A:

A third form, suitable only for rhombohedral cells, is

M ¼
a

3

pþ 2q p� q p� q

p� q pþ 2q p� q

p� q p� q pþ 2q

0

B
@

1

C
A

M�1 ¼
1

3a

1

p
þ

2

q

1

p
�

1

q

1

p
�

1

q

1

p
�

1

q

1

p
þ

2

q

1

p
�

1

q

1

p
�

1

q

1

p
�

1

q

1

p
þ

2

q

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

in which

p ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2 cos�
p

q ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos�
p

;

which preserves the equivalence of axes. Here the chiralities of
the Cartesian and crystallographic axes are the same if p is chosen
positive, and different otherwise, and the two sets of axes coin-
cide in projection along the triad if q is chosen positive and are �
out of phase otherwise.

3.3.1.1.2. Homogeneous coordinates

Homogeneous coordinates have found wide application in
computer graphics. For some equipment their use is essential, and
they are of value analytically even if the available hardware does
not require their use.

Homogeneous coordinates employ four quantities, X, Y, Z and
W, to define the position of a point, rather than three. The fourth
coordinate has a scaling function so that it is the quantity X/W
(as delivered to the display hardware) which controls the left–
right positioning of the point within the picture. A point with
jX=Wj< 1 is in the picture, normally, and those with jX=Wj> 1
are outside it, but see Section 3.3.1.3.5.

There are many reasons why homogeneous coordinates may
be adopted, among them the following:

(i) X, Y, Z and W may be held as integers, thus enabling fast
arithmetic whilst offering much of the flexibility of floating-point
working. A single W value may be common to a whole array of
X, Y, Z values.

(ii) Perspective transformations can be implemented without
the need for any division. Only high-speed matrix multiplication
using integer arithmetic is necessary, provided only that the
drawing hardware can provide displacements proportional to the
ratio of two signals, X and W or Y and W. Rotation, translation,
scaling and the application of perspective are all effected by
operations of the same form, namely multiplication of a four-
vector by a 4 � 4 matrix. The hardware may thus be kept rela-
tively simple since only one type of operation needs to be
provided for.

(iii) Since kX, kY, kZ, kW represents the same point as X, Y, Z,
W, the hardware may be arranged to maximize resolution without
risk of integer overflow.

For analytical purposes it is convenient to regard homo-
geneous transformations in terms of partitioned matrices

M V

U N

� �
X

W

� �

;
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3.3. MOLECULAR MODELLING AND GRAPHICS

Crystallography Volume G (2005)] is slowly becoming a standard
in this regard, displacing the single-crystal SHELX INS format,
which has been a de-facto standard file format for much crystal-
lographic data exchange. Entering crystallographic data by hand
is slow and often introduces errors via typographical mistakes.
Such mistakes can be minimized by importing structures using a
known file type, or reformatting using a text editor or spreadsheet
program into a known file type. A variety of software programs
can be used for translating crystallographic structure files;
however, the output (especially the handling of the symmetry
operators and the space group) should be carefully checked. The
CCP14 website (Cockroft & Stephenson, 2005) lists a variety of
programs that can be used for this, of which a specialist program
is Cryscon (Dowty, 2005).

3.3.4.2. Types of crystal structure display and functionality

The following information was current at the time of writing,
but most software is continually changing with the insertion of
new features. Thus occasional checks for updated functionality
can be useful. Most software distributions include an ‘updates’
file containing new features and bug fixes. Detailed information
on the software referred to in this section, including functionality,
authorship, source and availability, is given in Tables 3.3.4.1 and
3.3.4.2.

3.3.4.2.1. Ball and stick

This is one of the most fundamental methods of displaying a
crystal structure and almost all software supports this. The
exceptions are STRUVIR and STRUPLO for Windows [a port of
STRUVIR incorporating a graphical user interface (GUI)], which
are both optimized for the polyhedral display of crystal struc-
tures.

3.3.4.2.2. Anisotropic displacement parameters

A subset of the programs that display ball-and-stick structures
can also display surfaces related to anisotropic displacement
parameters (ADPs) (also known colloquially as ‘thermals’,
‘anisotropic thermal ellipsoids’ or ‘ORTEPS’). By default, most
programs display the ellipsoid surfaces at a probability of 50%
and normally allow this value to be changed to values between 1
and 99%. Programs that can draw ADPs include ATOMS,
Cameron, Crystallographica, CrystalMaker, Crystal Studio,
CrystMol, Diamond, DrawXTL, FpStudio, GRETEP, MolXtl,
ORTEP-III, ORTEP-3 for Windows, ORTEX, PEANUT,
Platon, VENUS, XmLmctep, X-Seed and XtalDraw.

3.3.4.2.3. Mean-square displacement amplitude

When a more thorough investigation of the ADPs would be
informative (Hummel, Raselli & Bürgi, 1990), PEANUT can be
used for plotting the mean-square displacement amplitude
(MSDA), root-mean-square displacements (RMSDs) and differ-
ence surfaces. MSDA ‘peanuts’ can be displayed where the ADPs
are non-positive-definite and the ellipsoids cannot be drawn.
ORTEP-3 for Windows also has an option for plotting MSDAs.
Care should be taken to ensure the resulting display is
correct.

3.3.4.2.4. Polyhedral display

A method for understanding inorganic and intermetallic
structures is the use of coordination polyhedra. The faces defined
by the outer coordinated atoms generate a polyhedral object that
is displayed instead of the individual atoms. This can aid in
understanding the structures of polymeric inorganic materials
involving both simple and complex tilt systems, and distorted
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Table 3.3.4.1. Functionality of software for crystal structure display

Program

Ball
and
stick ADPs MSDA

Polyhedral
display

Cartesian
coordinates

Comparison/
overlay
of multiple
structures

Extended
structures/
topology
analysis

Magnetic
structures

Incommensurate
structures

ATOMS Yes Yes Yes Yes Yes

Balls&Sticks Yes Yes

BALSAC Yes Yes

Cameron Yes Yes

CaRIne Yes Yes Yes

Crystallographica Yes Yes Yes

CrystalMaker Yes Yes Yes Yes

Crystal Studio Yes Yes Yes Yes

CrystMol Yes Yes Yes Yes

Diamond Yes Yes Yes Yes Yes

DrawXTL Yes Yes Yes Yes

FpStudio Yes Yes Yes Yes

GRETEP Yes Yes Yes

Mercury Yes Yes

MolXtl Yes Yes Yes

OLEX Yes Yes Yes

ORTEP-III Yes Yes

ORTEP-3 for Windows Yes Yes Yes Yes

ORTEX/Oscail X Yes Yes

PEANUT Yes Yes Yes

Platon/Pluton Yes Yes Yes

PowderCell Yes

PRJMS Yes Yes

SCHAKAL Yes Yes

STRUPLO Yes Yes

STRUPLO for Windows Yes Yes

STRUVIR Yes

VENUS Yes Yes Yes Yes Yes

XmLmctep Yes Yes

X-Seed Yes Yes Yes

Xtal-3D Yes Yes Yes Yes

XtalDraw Yes Yes Yes



3. DUAL BASES IN CRYSTALLOGRAPHIC COMPUTING

the original sum, which contains the difference terms, is not
increased.

Vn ¼ ð1=2Þ
Pone cell

j

Pall cells

k

0 QjkR�n
jk WðRÞ

þ ð1=2Þ
Pone cell

j

Pall cells

k

0 QjkR�n
jk ½1�WðRÞ�:

In the accelerated-convergence method the difference terms
are expressed as an integral of the product of two functions.
According to Parseval’s theorem (described below) this integral
is equal to an integral of the product of the two Fourier trans-
forms of the functions. Finally, the integral over the Fourier
transforms of the functions is converted to a sum in reciprocal (or
Fourier-transform) space. The choice of the convergence function
W(R) is not unique; an obvious requirement is that the relevant
Fourier transforms must exist and have correct limiting beha-
viour. Nijboer and DeWette suggested using the incomplete
gamma function for W(R). More recently, Fortuin (1977) showed
that this choice of convergence function leads to optimal
convergence of the sums in both direct and reciprocal space:

WðRÞ ¼ �ðn=2; �w2R2Þ=�ðn=2Þ;

where �ðn=2Þ and �ðn=2; �w2R2Þ are the gamma function and the
incomplete gamma function, respectively:

�ðn=2; �w2R2Þ ¼
R1

�w2R2

tðn=2Þ�1 expð�tÞ dt

and

�ðn=2Þ ¼ �ðn=2; 0Þ:

The complement of the incomplete gamma function is

�ðn=2; �w2R2Þ ¼ �ðn=2Þ � �ðn=2; �w2R2Þ:

3.4.4. Preliminary derivation to obtain a formula which
accelerates the convergence of an R�n sum over lattice points

X(d)

The three-dimensional direct-space crystal lattice is specified by
the origin vectors a1, a2 and a3. A general vector in direct space is
defined as

XðxÞ ¼ x1a1 þ x2a2 þ x3a3;

where x1; x2; x3 are the fractional cell coordinates of X. A lattice
vector in direct space is defined as

XðdÞ ¼ d1a1 þ d2a2 þ d3a3;

where d1; d2; d3 are integers (specifying particular values of
x1; x2; x3) designating a lattice point. Vd is the direct-cell volume
which is equal to a1 � a2 � a3. A general point in the direct lattice
is X(x); the contents of the lattice are by definition identical as
the components of x are increased or decreased by integer
amounts.

The reciprocal-lattice vectors are defined by the relations

aj � bk ¼ 1 j ¼ k

¼ 0 j 6¼ k:

A general vector in reciprocal space H(r) is defined as

HðrÞ ¼ r1b1 þ r2b2 þ r3b3:

A reciprocal-lattice vector H(h) is defined by the integer triplet
h1; h2; h3 (specifying particular values of r1; r2; r3) so that

HðhÞ ¼ h1b1 þ h2b2 þ h3b3:

In other sections of this volume a shortened notation h is used for
the reciprocal-lattice vector. In this section the symbol H(h) is
used to indicate that it is a particular value of H(r).

The three-dimensional Fourier transform gðtÞ of a function f ðxÞ
is defined by

gðtÞ ¼ FT3½ f ðxÞ� ¼
R

f ðxÞ expð2�ix � tÞ dx:

The Fourier transform of the set of points defining the direct
lattice is the set of points defining the reciprocal lattice, scaled by
the direct-cell volume. It is useful for our purpose to express the
lattice transform in terms of the Dirac delta function �ðx� xoÞ

which is defined so that for any function f ðxÞ

f ðxoÞ ¼
R
�ðx� xoÞf ðxÞ dx:

We then write

FT3f
P

d

�½XðxÞ � XðdÞ�g ¼ V�1
d

P

h

�½HðrÞ �HðhÞ�:

First consider the lattice sum over the direct-lattice points X(d),
relative to a particular point XðxÞ ¼ R, with omission of the
origin lattice point.

S0ðn;RÞ ¼
P

d6¼0

jXðdÞ � Rj�n:

The special case with R ¼ 0 will also be needed:

S0ðn; 0Þ ¼
P

d6¼0

jXðdÞj�n:
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Table 3.4.2.2. Untreated lattice-sum results for the dispersion energy (n = 6) of
crystalline benzene (kJ mol�1, Å)

Truncation
limit

Number
of molecules

Number
of terms

Calculated
energy

6.0 26 524 �69.227

8.0 51 1313 �76.007

10.0 77 2631 �78.179

12.0 126 4718 �79.241

14.0 177 7531 �79.726

16.0 265 11274 �80.013

18.0 344 15904 �80.178

20.0 439 22049 �80.295

Converged value �80.589



3.5. Extensions of the Ewald method for Coulomb interactions in crystals

By T. A. Darden

3.5.1. Introduction

High-precision single-crystal X-ray structural analysis of small
organic molecules, yielding the space group, the unit-cell para-
meters and the fractional coordinates of the atoms making up the
molecule(s) in the asymmetric unit, has become a routine matter
as long as crystals of sufficient quality can be obtained. The
thermodynamic stability of the crystal, as described by the
enthalpy of sublimation �Hsub, can also be determined experi-
mentally (although not always to high precision). Theoretical
models for calculating intermolecular interaction energies can be
used to connect the crystal structure to the molar enthalpy of
sublimation using the relationship

�Hsubð0 KÞ ¼ �Elattice;

where the lattice or packing energy Elattice is the total (molar)
intermolecular interaction energy between all the molecules in
the crystal, which are treated as rigid entities with zero-point
energies of intra- and intermolecular vibrations neglected.
Connection to experimentally accessible heats of sublimation at
higher temperatures involves thermodynamic corrections.
Methods for calculating thermodynamic quantities of solids are
discussed in Gavezzotti (2002a) and (in more detail) in Frenkel &
Smit (2002).

Thus, given a parameterized intermolecular potential-energy
function, or if computationally affordable a first-principles
approach such as density-functional theory (or preferably, when
it becomes feasible for crystals, a good-quality post-Hartree–Fock
potential-energy surface that describes dispersion interactions),
one can sum the intermolecular energies to obtain the lattice
energy as a function of the above parameters defining the crystal
structure. If such an energy function is used together with a
method for systematic search of the crystal-structure parameters,
one could in principle predict the minimum-lattice-energy crystal
structure for a rigid organic molecule. To extend this approach to
flexible molecules one would need to minimize the sum of the
intramolecular energy plus the lattice energy. If the experimental
crystal structure corresponds to the thermodynamic minimum-
energy structure (i.e. it is not a metastable state determined by
crystal-growth kinetics), one could in principle predict the
experimental crystal structure of an organic compound through
this minimization protocol. Moreover, one could ideally predict
the additional metastable forms of the crystal.

Prediction of the structure of crystals of an organic molecule
from its molecular structure is a difficult problem that has been
compared to the protein folding problem (Dunitz, 2003; Dunitz &
Scheraga, 2004). Like the protein folding problem, a solution of
the crystal prediction problem has significant practical ramifica-
tions. A compound is often polymorphic, that is it has more than
one crystal structure, and it may be difficult to characterize the
conditions under which a particular crystal structure is formed
(Dunitz & Bernstein, 1995). Polymorphs may have very different
physical properties. An obvious example is diamond versus
graphite, but other commercially important examples include
food additives, various solid forms of explosives and the bio-
availability of various forms of a drug such as ritonavir (Chem-
burkar et al., 2000). A method for predicting the possible crystal
structures of the compound, and ideally for predicting the
dominant crystal structure given the experimental conditions,
would thus be very valuable. Note that due to the subtleties of

crystallization, the lowest-free-energy polymorph at given
temperature and pressure may not be the likeliest to form. The
kinetics of growth of microcrystals may largely determine which
low-energy polymorph appears (Dunitz, 2003). However, it is
generally agreed that accurate calculation of the relative free
energy of polymorphs is a prerequisite for predicting crystal
structures.

To assess progress towards solving this latter problem, a series
of blind tests of crystal-structure prediction has been undertaken
(Day, Motherwell, Ammon et al., 2005). The results of these tests
have highlighted the need for continued improvements in
sampling methods and intermolecular energy potentials. Since
extensive sampling of the crystal-structure parameters is neces-
sary [between 104 and 105 starting structures, each followed by
parameter minimizations (Price & Price, 2005)], there is a trade-
off in the computational cost versus accuracy of the inter-
molecular energy functions used. Calculating the work of trans-
forming between polymorphs is yet more ambitious in terms of
sampling. Consequently empirical force fields are likely to be
needed for the near term at least.

In the remainder of the introduction we outline some of the
approaches to empirical potentials used in the calculation of the
lattice energy, and then, motivated by these developments,
discuss techniques for efficient summation of the electrostatic
and other slow-decaying interaction terms that occur in these
potential functions.

Methodological developments in the intermolecular force
fields used in crystal-structure prediction from early times to the
present state of the art have been reviewed (Price & Price, 2005).
Until recently, these force fields were made up of atom–atom
interactions. The earliest involved only repulsion and dispersion,
usually in the ‘exp-6’ form

UMN ¼ UMN
rep þ UMN

disp ¼
P

i2M;j2N

Aij expð�BijrijÞ � Ci;jr
�6
ij ;

where UMN denotes the intermolecular potential energy between
molecules M and N and rij is the distance between atoms i 2 M
and j 2 N. Sometimes the exponential form in the above equa-
tion is replaced by a simpler power law, as in the Lennard–Jones
potential. As was pointed out by Dunitz (2003), in comparison
with more sophisticated force fields, this repulsion–dispersion
form readily allows analysis of the significance of particular
atom–atom interactions, since the interactions are short-ranged
and thus can be localized. That is, the r�6 form of the attractive
dispersion energy means that interaction energies are halved for
every 12% increase in distance. In contrast, introduction of long-
range Coulombic interactions not only entails subtleties in lattice
summation (the subject of this contribution), but greatly
complicates the assignment of ‘key’ atom–atom interactions.
Gavezzotti and Fillipini systematically explored the use of the
exp-6 potential in fitting organic crystal structures with and
without hydrogen-bond interactions (Gavezzotti & Fillipini,
1994). They were surprisingly successful in accounting for weak
hydrogen bonding in this way, but selective use of point charges
improved the directionality of the potential. Earlier, Williams
derived exp-6 parameters for the atoms C, H, N, O, Cl, F and
polar H for use in organic crystal structures, but found it neces-
sary (Williams & Cox, 1984) to supplement these with selected
point charges, both atomic and at off-atom sites. Price and
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4.1. Thermal diffuse scattering of X-rays and neutrons

By B. T. M. Willis

4.1.1. Introduction

Thermal motion of the atoms in a crystal gives rise to a reduction
in the intensities of the Bragg reflections and to a diffuse distri-
bution of non-Bragg scattering in the rest of reciprocal space.
This distribution is known as thermal diffuse scattering (TDS).
Measurement and analysis of TDS give information about the
lattice dynamics of the crystal, i.e. about the small oscillatory
displacements of the atoms from their equilibrium positions
which arise from thermal excitations. Lattice-dynamical models
form the basis for interpreting many physical properties – for
example, specific heat and thermal conductivity – which cannot
be explained by a static model of the crystal.

Reference to a lattice-dynamical model is found in Newton’s
Principia, which contains a discussion of the vibrations of a linear
chain of equidistant mass points connected by springs. The model
was used to estimate the speed of sound in air. The vibrational
properties of a one-dimensional crystal treated as a linear chain
of atoms provide the starting point for several modern treatises
on the lattice dynamics of crystals.

The classical theory of the dynamics of three-dimensional
crystals is based on the treatment of Born & von Kármán (1912,
1913). In this theory, the restoring force on an atom is determined
not by the displacement of the atom from its equilibrium posi-
tion, but by its displacement relative to its neighbours. The
atomic motion is then considered in terms of travelling waves, or
‘lattice vibrations’, extending throughout the whole crystal. These
waves are the normal modes of vibration, in which each mode is
characterized by a wavevector q, an angular frequency !(q) and
certain polarization properties.

For twenty years after its publication the Born–von Kármán
treatment was eclipsed by the theory of Debye (1912). In the
Debye theory the crystal is treated as a continuous medium
instead of a discrete array of atoms. The theory gives a reasonable
fit to the integral vibrational properties (for example, the specific
heat or the atomic temperature factor) of simple monatomic
crystals. It fails to account for the form of the frequency distri-
bution function which relates the number of modes and their
frequency.

An even simpler model than Debye’s is due to Einstein (1907),
who considered the atoms in the crystal to be vibrating inde-
pendently of each other and with the same frequency !E. By
quantizing the energy of each atom in units of h- !E, Einstein
showed that the specific heat falls to zero at T = 0 K and rises
asymptotically to the Dulong and Petit value for T much larger
than h- !E=kB. (h- is Planck’s constant divided by 2� and kB is
Boltzmann’s constant.) His theory accounts satisfactorily for the
breakdown of equipartition of energy at low temperatures, but it
predicts a more rapid fall-off of specific heat with decreasing
temperature than is observed.

Deficiencies in the Debye theory were noted by Blackman
(1937), who showed that they are overcome satisfactorily using
the more rigorous Born–von Kármán theory. Extensive X-ray
studies of Laval (1939) on simple structures such as sylvine,
aluminium and diamond showed that the detailed features of the
TDS could only be explained in terms of the Born–von Kármán
theory. The X-ray work on aluminium was developed further by
Olmer (1948) and by Walker (1956) to derive the phonon
dispersion relations (see Section 4.1.5) along various symmetry
directions in the crystal.

It is possible to measure the vibrational frequencies directly
with X-rays, but such measurements are very difficult as lattice

vibrational energies are many orders of magnitude less than
X-ray energies. The situation is much more favourable with
thermal neutrons because their wavelength is comparable with
interatomic spacings and their energy is comparable with a
quantum of vibrational energy (or phonon). The neutron beam is
scattered inelastically by the lattice vibrations, exchanging energy
with the phonons. By measuring the energy change for different
directions of the scattered beam, the dispersion relations !ðqÞ can
be determined. Brockhouse & Stewart (1958) reported the first
dispersion curves to be derived in this way; since then the neutron
technique has become the principal experimental method for
obtaining detailed information about lattice vibrations.

In this chapter we shall describe briefly the standard treatment
of the lattice dynamics of crystals. There follows a section on the
theory of the scattering of X-rays by lattice vibrations, and a
similar section on the scattering of thermal neutrons. We then
refer briefly to experimental work with X-rays and neutrons. The
final section is concerned with the measurement of elastic
constants: these constants are required in calculating the TDS
correction to measured Bragg intensities (see Section 7.4.2 of IT
C, 2004).

4.1.2. Dynamics of three-dimensional crystals

For modes of vibration of very long wavelength, the crystal can
be treated as a homogeneous elastic continuum without referring
to its crystal or molecular structure. The theory of the propaga-
tion of these elastic waves is based on Hooke’s law of force and
on Newton’s equations of motion. As the wavelength of the
vibrations becomes shorter and shorter and approaches the
separation of adjacent atoms, the calculation of the vibrational
properties requires a knowledge of the crystal structure and of
the nature of the forces between adjacent atoms. The three-
dimensional treatment is based on the formulation of Born and
von Kármán, which is discussed in detail in the book by Born &
Huang (1954) and in more elementary terms in the books by
Cochran (1973) and by Willis & Pryor (1975).

Before setting up the equations of motion, it is necessary to
introduce three approximations:

(i) The harmonic approximation. When an atom is displaced
from its equilibrium position, the restoring force is assumed to be
proportional to the displacement, measured relative to the
neighbouring atoms. The approximation implies no thermal
expansion and other properties not possessed by real crystals; it is
a reasonable assumption in the lattice-dynamical theory provided
the displacements are not too large.

(ii) The adiabatic approximation. We wish to set up a potential
function for the crystal describing the binding between the atoms.
However, the binding involves electronic motions whereas the
dynamics involve nuclear motions. The adiabatic approximation,
known as the Born–Oppenheimer approximation in the context
of molecular vibrations, provides the justification for adopting the
same potential function to describe both the binding and the
dynamics. Its essence is that the electronic and nuclear motions
may be considered separately. This is possible if the nuclei move
very slowly compared with the electrons: the electrons can then
instantaneously take up a configuration appropriate to that of the
displaced nuclei without changing their quantum state. The
approximation holds well for insulators, where electronic tran-
sition energies are high owing to the large energy gap between
filled and unfilled electron states. Surprisingly, it even works for

484



4.2. Disorder diffuse scattering of X-rays and neutrons

By F. Frey, H. Boysen and H. Jagodzinski

4.2.1. Introduction

Diffuse scattering of X-rays, neutrons and other particles is an
accompanying effect in all diffraction experiments aimed at
structure analysis with the aid of elastic scattering. In this case,
the momentum exchange of the scattered photon or particle
includes the crystal as a whole; the energy transfer involved
becomes negligibly small and need not be considered in diffrac-
tion theory. Static distortions as a consequence of structural
changes cause typical elastic diffuse scattering. Many structural
phenomena and processes contribute to diffuse scattering, and a
general theory has to include all of them. Hence the exact
treatment of diffuse scattering becomes very complex.

Inelastic scattering is due to dynamical fluctuations or ioniza-
tion processes and may become observable as a ‘diffuse’ contri-
bution in a diffraction pattern. A separation of elastic from
inelastic diffuse scattering is generally possible, but difficulties
may result from small energy exchanges that cannot be resolved
for experimental reasons. The latter is true for scattering of
X-rays by phonons, which have energies of the order of
10�2–10�3 eV, values which are considerably smaller than 10 keV,
a typical value for X-ray quanta. Another equivalent explanation,
frequently forwarded in the literature, is the high speed of X-ray
photons, such that the rather slow motion of atoms cannot be
‘observed’ by them during diffraction. Hence, all movements
appear as static displacement waves of atoms, and temperature
diffuse scattering is pseudo-elastic for X-rays. This is not true in
the case of thermal neutrons, which have energies comparable to
those of phonons. Phonon-related or thermal diffuse scattering is
discussed separately in Chapter 4.1, i.e. the present chapter is
mainly concerned with the elastic (or pseudo-elastic other than
thermal) part of diffuse scattering. A particularly important
aspect concerns diffuse scattering related to phase transitions, in
particular the critical diffuse scattering observed at or close to the
transition temperature. In simple cases, a satisfactory description
may be given with the aid of a ‘soft phonon’, which freezes at
the critical temperature, thus generating typical temperature-
dependent diffuse scattering. If the geometry of the lattice is
maintained during the transformation (i.e. there is no breakdown
into crystallites of different cell geometry), the diffuse scattering
is very similar to diffraction phenomena described in this chapter.
Sometimes, however, very complicated interim stages (ordered or
disordered) are observed, demanding a complicated theory for
their full explanation (see, e.g., Dorner & Comes, 1977).

Obviously, there is a close relationship between thermo-
dynamics and diffuse scattering in disordered systems repre-
senting a stable or metastable thermal equilibrium. From the
thermodynamical point of view, the system is then characterized
by its grand partition function, which is intimately related to the
correlation functions used in the interpretation of diffuse scat-
tering. The latter is nothing other than a kind of ‘partial partition
function’ where two atoms, or two cell occupancies, are fixed such
that the sum of all partial partition functions represents the grand
partition function. This fact yields the useful correlation between
thermodynamics and diffuse scattering mentioned above, which
may well be used for a determination of thermodynamical
properties of the crystal. This important subject shall not be
included here for the following reason: real three-dimensional
crystals generally exhibit diffuse scattering by defects and/or
disordering effects that are not in thermal equilibrium. They are
created during crystal growth, or are frozen-in defects formed at

higher temperatures. Hence a thermodynamical interpretation of
diffraction data needs a careful study of diffuse scattering as a
function of temperature or some other thermodynamical para-
meters. This can be done in very rare cases only, so the omission
of this subject seems justified.

As shown in this chapter, electron-density fluctuations and
distribution functions of defects play an important role in the
complete interpretation of diffraction patterns. Both quantities
may best be studied in the low-angle scattering range. Hence
many problems cannot be solved without a detailed interpreta-
tion of low-angle diffraction (also called small-angle scattering).

Disorder phenomena in magnetic structures are also not
specifically discussed here. Magnetic diffuse neutron scattering
and special experimental techniques constitute a large subject by
themselves. Many aspects, however, may be analysed along
similar lines to those given here.

Glasses, liquids or liquid crystals show typical diffuse diffrac-
tion phenomena. Particle-size effects and strains have an
important influence on the diffuse scattering. The same is true for
dislocations and point defects such as interstitials or vacancies.
These defects are mainly described by their strain field, which
influences the intensities of sharp reflections like an artificial
temperature factor: the Bragg peaks diminish in intensity while
the diffuse scattering increases predominantly close to them.
These phenomena are less important from a structural point of
view, at least in the case of metals or other simple structures. This
statement is true as long as the structure of the ‘kernel’ of defects
may be neglected when compared with the influence of the strain
field. Whether dislocations in more complicated structures meet
this condition is not yet known.

Commensurate and incommensurate modulated structures
and quasicrystals frequently show a typical diffuse scattering, a
satisfactory explanation of which demands extensive experi-
mental and theoretical study. A reliable structure determination
becomes very difficult in cases where the interpretation of diffuse
scattering has not been incorporated. Many erroneous structural
conclusions have been published in the past. The solution of
problems of this kind needs careful thermodynamical consid-
eration as to whether a plausible explanation of the structural
data can be given.

For all of the reasons mentioned above, this article cannot be
complete. It is hoped, however, that it will provide a useful guide
for those who need a full understanding of the crystal chemistry
of a given structure.

The study of disorder in crystals by diffuse-scattering techni-
ques can be performed with X-rays, neutrons or electrons. Each
of these methods has its own advantages (and disadvantages) and
they often can (or have to) be used in a complementary way (cf.
Chapter 4.3 of this volume). Electron diffraction and microscopy
are usually restricted to relatively small regions in space and thus
supply information on a local scale, i.e. local defect structures.
Moreover, electron-microscopy investigations are carried out on
thin samples (films), where the disorder could be different from
the bulk, and, in addition, could be affected by the high heat load
deposited by the impinging electron beam. X-rays and neutrons
sample larger crystal volumes and thus provide thermo-
dynamically more important information on averages of the
disorder. These methods are also better suited to the analysis of
long-range correlated cooperative disorder phenomena. On the
other hand, electron microscopy and diffraction often allow more
direct access to disorder and can therefore provide valuable
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4.3. Diffuse scattering in electron diffraction

By J. M. Cowley† and J. K. Gjønnes

4.3.1. Introduction

The origins of diffuse scattering in electron-diffraction patterns
are the same as in the X-ray case: inelastic scattering due to
electronic excitations, thermal diffuse scattering (TDS) from
atomic motions, scattering from crystal defects or disorder. For
diffraction by crystals, the diffuse scattering can formally be
described in terms of a nonperiodic deviation �’ from the
periodic, average crystal potential, �’’:

’ðr; tÞ ¼ �’’ðrÞ þ�’ðr; tÞ; ð4:3:1:1Þ

where �’may have a static component from disorder in addition
to time-dependent fluctuations of the electron distribution or
atomic positions.

In the kinematical case, the diffuse scattering can be treated
separately. The intensity Id as a function of the scattering variable
u ðjuj ¼ 2 sin �=�Þ and energy transfer h is then given by the
Fourier transform F of �’

Iðu; Þ ¼ j��ðuÞj2 ¼ jF f�’ðr; tÞgj2 ¼ F fPdðr; Þg ð4:3:1:2Þ

and may also be written as the Fourier transform of a correlation
function Pd representing fluctuations in space and time (see
Cowley, 1981). When the energy transfers are small – as with TDS
– and hence not measured, the observed intensity corresponds to
an integral over :

IðuÞ ¼ IdðuÞ þ IavðuÞ

IdðuÞ ¼
R

Idðu; Þ d ¼ F fPdðr; 0Þg

and also

IdðuÞ ¼ hj�ðuÞj
2
i � jh�ðuÞij2; ð4:3:1:3Þ

where the brackets may indicate a time average, an expectation
value, or a spatial average over the periodicity of the lattice in the
case of static deviations from a periodic structure.

The considerations of TDS and static defects and disorder of
Chapters 4.1 and 4.2 thus may be applied directly to electron
diffraction in the kinematical approximation when the differ-
ences in experimental conditions and diffraction geometry are
taken into account.

The most prominent contribution to the diffuse background in
electron diffraction, however, is the inelastic scattering at low
angles arising mainly from the excitation of outer electrons. This
is quite different from the X-ray case where the inelastic
(‘incoherent’) scattering, SðuÞ, goes to zero at small angles and
increases to a value proportional to Z for high values of juj. The
difference is due to the Coulomb nature of electron scattering,
which leads to the kinematical intensity expression S=u4,
emphasizing the small-angle region. At high angles, the inelastic
scattering from an atom is then proportional to Z=u4, which is
considerably less than the corresponding elastic scattering
ðZ � f Þ

2=u4 which approaches Z2=u4 (Section 2.5.2) (see Fig.
4.3.1.1).

The kinematical description can be used for electron scattering
only when the crystal is very thin (10 nm or less) and composed of
light atoms. For heavy atoms such as Au or Pb, crystals of
thickness 1 nm or more in principal orientations show strong
deviations from kinematical behaviour. With increasing thick-
ness, dynamical scattering effects first modify the sharp Bragg
reflections and then have increasingly significant effects on the
diffuse scattering. Bragg scattering of the diffuse scattering
produces Kikuchi lines and other effects. Multiple diffuse scat-
tering broadens the distribution and smears out detail. As the
thickness increases further, the diffuse scattering increases and
the Bragg beams are reduced in intensity until there is only a
diffuse ‘channelling pattern’ where the features depend in only a
very indirect way on the incident-beam direction or on the
sources of the diffuse scattering (Uyeda & Nonoyama, 1968).

The multiple-scattering effects make the quantitative inter-
pretation of diffuse scattering more difficult and complicate the
extraction of particular components, e.g. disorder scattering.
Much of the multiple scattering involves inelastic scattering
processes. However, electrons that have lost energy of the order
of 1 eV or more can be subtracted experimentally by use of
electron energy filters (Krahl et al., 1990; Krivanek et al., 1992)
which are commercially available. Measurement can be made
also of the complete scattering function Iðu; Þ, but such studies
have been rare. Another significant improvement to quantitative
measurement of diffuse electron scattering is offered by new
recording devices: slow-scan charge-couple-device cameras
(Krivanek & Mooney, 1993) and imaging plates (Mori et al.,
1990).

There are some advantages in the use of electrons which make
it uniquely valuable for particular applications.
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Fig. 4.3.1.1. Comparison between the kinematical inelastic scattering (full
line) and elastic scattering (broken) for electrons and X-rays. Values for
silicon [Freeman (1960) and IT C (2004)].† Deceased.



4.4. Scattering from mesomorphic structures

By P. S. Pershan

4.4.1. Introduction

The term mesomorphic is derived from the prefix ‘meso-’, which
is defined in the dictionary as ‘a word element meaning middle’,
and the term ‘-morphic’, which is defined as ‘an adjective
termination corresponding to morph or form’. Thus, meso-
morphic order implies some ‘form’, or order, that is ‘in the
middle’, or intermediate between that of liquids and crystals. The
name liquid crystalline was coined by researchers who found it to
be more descriptive, and the two are used synonymously. It
follows that a mesomorphic, or liquid-crystalline, phase must
have more symmetry than any one of the 230 space groups that
characterize crystals.

A major source of confusion in the early liquid-crystal litera-
ture was concerned with the fact that many of the molecules that
form liquid crystals also form true three-dimensional crystals with
diffraction patterns that are only subtly different from those of
other liquid-crystalline phases. Since most of the original meso-
morphic phase identifications were performed using a ‘misci-
bility’ procedure, which depends on optically observed changes in
textures accompanying variation in the sample’s chemical
composition, it is not surprising that some three-dimensional
crystalline phases were mistakenly identified as mesomorphic.
Phases were identified as being either the same as, or different
from, phases that were previously observed (Liebert, 1978; Gray
& Goodby, 1984), and although many of the workers were very
clever in deducing the microscopic structure responsible for the
microscopic textures, the phases were labelled in the order of
discovery as smectic-A, smectic-B etc. without any attempt to
develop a systematic nomenclature that would reflect the
underlying order. Although different groups did not always
assign the same letters to the same phases, the problem is now
resolved and the assignments used in this article are commonly
accepted (Gray & Goodby, 1984).

Fig. 4.4.1.1 illustrates the way in which increasing order can be
assigned to the series of mesomorphic phases in three dimensions
listed in Table 4.4.1.1. Although the phases in this series are the

most thoroughly documented mesomorphic phases, there are
others not included in the table which we will discuss below.

The progression from the completely symmetric isotropic
liquid through the mesomorphic phases into the crystalline
phases can be described in terms of three separate types of order.
The first, or the molecular orientational order, describes the fact
that the molecules have some preferential orientation analogous
to the spin orientational order of ferromagnetic materials. In
the present case, the molecular quantity that is oriented is a
symmetric second-rank tensor, like the moment of inertia or the
electric polarizability, rather than a magnetic moment. This is the
only type of long-range order in the nematic phase and as a
consequence its physical properties are those of an anisotropic
fluid; this is the origin of the name liquid crystal. Fig. 4.4.1.2(a) is
a schematic illustration of the nematic order if it is assumed that
the molecules can be represented by oblong ellipses. The average
orientation of the ellipses is aligned; however, there is no long-
range order in the relative positions of the ellipses. Nematic
phases are also observed for disc-shaped molecules and for
clusters of molecules that form micelles. These all share the
common properties of being optically anisotropic and fluid-like,
without any long-range positional order.

The second type of order is referred to as bond orientational
order. Consider, for example, the fact that for dense packing of
spheres on a flat surface most of the spheres will have six
neighbouring spheres distributed approximately hexagonally
around it. If a perfect two-dimensional triangular lattice of
indefinite size were constructed of these spheres, each hexagon
on the lattice would be oriented in the same way. Within the last
few years, we have come to recognize that this type of order, in
which the hexagons are everywhere parallel to one another, is
possible even when there is no lattice. This type of order is
referred to as bond orientational order, and bond orientational
order in the absence of a lattice is the essential property defining
the hexatic phases (Halperin & Nelson, 1978; Nelson & Halperin,
1979; Young, 1979; Birgeneau & Litster, 1978).

The third type of order is the positional order of an indefinite
lattice of the type that defines the 230 space groups of conven-
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Table 4.4.1.1. Some of the symmetry properties of the series of three-
dimensional phases described in Fig. 4.4.1.1

The terms LRO and SRO imply long-range or short-range order, respectively, and
QLRO refers to ‘quasi-long-range order’ as explained in the text.

Phase

Molecular
orientation
order within
layer

Bond
orientation
order

Positional order

Normal
to layer

Within
layer

Smectic-A (SmA) SRO SRO SRO SRO

Smectic-C (SmC) LRO LRO† SRO SRO

Hexatic-B LRO† LRO QLRO SRO

Smectic-F (SmF) LRO LRO QLRO SRO

Smectic-I (SmI) LRO LRO QLRO SRO

Crystalline-B (CrB) LRO LRO LRO LRO

Crystalline-G (CrG) LRO LRO LRO LRO

Crystalline-J (CrJ) LRO LRO LRO LRO

Crystalline-E (CrE) LRO LRO LRO LRO

Crystalline-H (CrH) LRO LRO LRO LRO

Crystalline-K (CrK) LRO LRO LRO LRO

† Theoretically, the existence of LRO in the molecular orientation, or tilt, implies that there
must be some LRO in the bond orientation and vice versa.

Fig. 4.4.1.1. Illustration of the progression of order throughout the sequence
of mesomorphic phases that are based on ‘rod-like’ molecules. The shaded
section indicates phases in which the molecules are tilted with respect to the
smectic layers.



4. DIFFUSE SCATTERING AND RELATED TOPICS

for the intensities IlðRhkÞ from the data IðR;ZÞ on the diffraction
pattern. The parameters llat, laxial and �0, as well as the cell
constants and possibly other parameters, can also be refined
as part of the profile-fitting procedure using nonlinear
optimization.

A suite of programs for processing fibre diffraction data
is distributed (and often developed) by the Collaborative
Computational Project for Fibre and Polymer Diffraction
(CCP13) in the UK (http://www.ccp13.ac.uk/) (Shotton et al.,
1998).

4.5.2.6. Structure determination

4.5.2.6.1. Overview

Structure determination in fibre diffraction is concerned with
determining atomic coordinates or some other structural para-
meters, from the measured cylindrically averaged diffraction
data. Fibre diffraction analysis suffers from the phase problem
and low resolution (diffraction data rarely extend beyond 3 Å
resolution), but this is no worse than in protein crystallography
where phases derived from, say, isomorphous replacement or
molecular replacement, coupled with the considerable stereo-
chemical information usually available on the molecule under
study, together contribute enough information to lead to precise
structures. What makes structure determination by fibre diffrac-
tion more difficult is the loss of information owing to the
cylindrical averaging of the diffraction data. However, in spite of
these difficulties, fibre diffraction has been used to determine,
with high precision, the structures of a wide variety of biological
and synthetic polymers, and other macromolecular assemblies.
Because of the size of the repeating unit and the resolution of the
diffraction data, methods for structure determination in fibre
diffraction tend to mimic those of macromolecular (protein)
crystallography, rather than small-molecule crystallography
(direct methods).

For a noncrystalline fibre one can determine only the mole-
cular structure from the continuous diffraction data, whereas for
a polycrystalline fibre one can determine crystal structures from
the Bragg diffraction data. However, there is little fundamental
difference between methods used for structure determination
with noncrystalline and polycrystalline fibres. For partially crys-
talline fibres, little has so far been attempted with regard to
rigorous structure determination.

As is the case with protein crystallography, the precise
methods used for structure determination by fibre diffraction
depend on the particular problem at hand. A variety of tools are
available and one selects from these those that are appropriate
given the data available in a particular case. For example, the
structure of a polycrystalline polynucleotide might be determined
by using Patterson functions to determine possible packing
arrangements, molecular model building to define, refine and
arbitrate between structures, difference Fourier synthesis to
locate ions or solvent molecules, and finally assessment of the
reliability of the structure. As a second example, to determine the
structure of a helical virus, one might use isomorphous replace-
ment to obtain phase estimates, calculate an electron-density
map, fit a preliminary model and refine it using simulated
annealing alternating with difference Fourier analysis, and assess
the results. The various tools available, together with indications
of where and how they are used, are described in the following
sections.

Although a variety of techniques are used to solve structures
using fibre diffraction, most of the methods do fall broadly into
one of three classes that depend primarily on the size of the
helical repeat unit. The first class applies to molecules whose
repeating units are small, i.e. are represented by a relatively small
number of independent parameters or degrees of freedom (after
all stereochemical constraints have been incorporated). The

structure can then be determined by an exhaustive exploration of
the parameter space using molecular model building. The first
example above would belong to this class. The second class of
methods is appropriate when the size of the helical repeating unit
is such that its structure is described by too many variable
parameters for the parameter space to be explored a priori. It is
then necessary to phase the fibre diffraction data and construct
an electron-density map into which the molecular structure can
be fitted and then refined. The second example above would
belong to this class. The second class of methods therefore mimics
conventional protein crystallography quite closely. The third class
of problems applies when the structure is large, but there are too
few diffraction data to attempt phasing and the usual determi-
nation of atomic coordinates. The solution to such problems
varies from case to case and usually involves modelling and
optimization of some kind.

An important parameter in structure determination by fibre
diffraction is the degree of overlap (that results from the
cylindrical averaging) in the data. This parameter is equal to the
number of significant terms in equation (4.5.2.17) or the number
of independent terms in equation (4.5.2.24), and depends on the
position in reciprocal space and, for a polycrystalline fibre, the
space-group symmetry. The number of degrees of freedom in a
particular datum is equal to twice this number (since each
structure factor generally has real and imaginary parts), and is
denoted in this section by m. Determination of the GnlðRÞ from
the cylindrically averaged data IlðRÞ therefore involves separ-
ating the m=2 amplitudes jGnlðRÞj and assigning phases to each.
The electron density can be calculated from the GnlðRÞ using
equations (4.5.2.7) and (4.5.2.11).

4.5.2.6.2. Helix symmetry, cell constants and space-group
symmetry

The first step in analysis of any fibre diffraction pattern is
determination of the molecular helix symmetry uv. Only the zero-
order Bessel term contributes diffracted intensity on the meri-
dian, and referring to equation (4.5.2.6) shows that the zero-order
term occurs only on layer lines for which l is a multiple of u.
Therefore, inspection of the distribution of diffraction along the
meridian allows the value of u to be inferred. This procedure is
usually effective, but can be difficult if u is large, because the first
meridional maximum may be on a layer line that is difficult to
measure. This difficulty was overcome in one case by Franklin &
Holmes (1958) by noting that the second Bessel term on the
equator is n ¼ u, estimating G00ðRÞ using data from a heavy-atom
derivative (see Section 4.5.2.6.6), subtracting this from I0ðRÞ, and
using the behaviour of the remaining intensity for small R to infer
the order of the next Bessel term [using equation (4.5.2.14)] and
thence u.

Referring to equations (4.5.2.6) and (4.5.2.14) shows that the
distribution of Rmin for 0< l< u depends on the value of v.
Therefore, inspection of the intensity distribution close to the
meridian often allows v to be inferred. Note, however, that the
distribution of Rmin does not distinguish between the helix
symmetries uv and uu�v. Any remaining ambiguities in the helix
symmetry need to be resolved by steric considerations, or by
detailed testing of models with the different symmetries against
the available data.

For a polycrystalline system, the cell constants are determined
from the ðR;ZÞ coordinates of the spots on the diffraction pattern
as described in Section 4.5.2.6.4. Space-group assignment is based
on analysis of systematic absences, as in conventional crystal-
lography. However, in some cases, because of possible overlap of
systematic absences with other reflections, there may be some
ambiguity in space-group assignment. However, the space group
can always be limited to one of a few possibilities, and ambiguities
can usually be resolved during structure determination (Section
4.5.2.6.4).
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4.6. Reciprocal-space images of aperiodic crystals

By W. Steurer‡ and T. Haibach

4.6.1. Introduction

The discovery of materials with icosahedral diffraction symmetry
(Shechtman et al., 1984) was the main reason for the reassessment
of the definition of crystallinity and for the introduction of the
concept of aperiodic crystals. The first aperiodic crystal, i.e. a
material with Bragg reflections not located only at reciprocal-
lattice nodes, was identified long before (Dehlinger, 1927). In the
following decades a wealth of incommensurately modulated
phases and composite crystals were discovered. Nevertheless,
only a few attempts have been made to develop a crystallography
of aperiodic crystals; the most powerful of these was the higher-
dimensional approach (see de Wolff, 1974, 1977; Janner &
Janssen, 1979, 1980a,b; de Wolff et al., 1981). In fact, incom-
mensurate structures can be easily described using the higher-
dimensional approach and also, fully equivalently, in a dual way:
as a three-dimensional (3D) combination of one or more periodic
basic structures and one or several modulation waves (de Wolff,
1984). However, with the discovery of quasicrystals and their
noncrystalline symmetries, the latter approach failed and
geometrical crystallography including the higher-dimensional
approach received new attention. For more recent reviews of the
crystallography of all three types of aperiodic crystals see van
Smaalen (1995), of incommensurately modulated structures see
Cummins (1990), of quasicrystals see Steurer (1990, 1996), of
quasicrystals and their crystalline approximants see Goldman &
Kelton (1993) and Kelton (1995). Textbooks on quasicrystals
have been written by Janot (1994) and Senechal (1995).

According to the traditional crystallographic definition, an
ideal crystal corresponds to an infinite 3D periodic arrangement
of identical structure motifs. Its symmetry can be described by
one of the 230 3D space groups. Mathematically, a periodic
structure can be generated by the convolution of a function
representing the structure motif with a lattice function. The
structure motif can be given, for instance, by the electron-density
distribution �ðrÞ of one primitive unit cell of the structure. The
lattice function gðrÞ is represented by a set of � functions at the
nodes r ¼

P3
i¼1kiai of a 3D lattice � with basis ai, i ¼ 1; . . . ; 3,

and ki 2 Z (Z is the set of integer numbers). In reciprocal space,
this convolution corresponds to the product of the Fourier
transform GðHÞ of the lattice function gðrÞ and the Fourier
transform FðHÞ ¼

R
v�ðrÞ expð2�iH � rÞ dr of the structure motif

�ðrÞ. GðHÞ is represented by the reciprocal lattice �� decorated
with � functions on the reciprocal-lattice nodes H ¼

P3
i¼1hia

�
i ,

with the reciprocal-basis vectors a�i , i ¼ 1; . . . ; 3, defined by
ai � a

�
j ¼ �ij and hi 2 Z. The product GðHÞ � FðHÞ is called the

weighted reciprocal lattice; the weights are given by the structure
factors FðHÞ. Thus, the characteristic feature of an ideal crystal in
direct and reciprocal space is the existence of a lattice. In direct
space, this lattice is decorated with identical structure motifs
preserving translational and point symmetry in the framework of
space-group symmetry. In reciprocal space, only the point
symmetry between structure factors is maintained. The Fourier
spectrum (or Fourier image, i.e. the Fourier transform) of the
electron-density distribution of an ideal crystal consists of a
countably infinite set of discrete Bragg peaks with a strictly
defined minimum distance.

This crystal definition can be generalized to n> 3 dimensions.
A d-dimensional (dD) ideal aperiodic crystal can be defined as a
dD irrational section of an n-dimensional (nD, n> d) crystal with

nD lattice symmetry. The intersection of the nD hypercrystal with
the dD physical space is equivalent to a projection of the
weighted nD reciprocal lattice �� ¼ H ¼

Pn
i¼1hid

�
i jhi 2 Z

� �

onto the dD physical space. The resulting set (Fourier module)
M� ¼ Hk ¼

Pn
i¼1hia

�
i jhi 2 Z

� �
is countably dense. Countably

dense means that the dense set of Bragg peaks can be mapped
one-to-one onto the set of natural numbers. Hence, the Bragg
reflections can be indexed with integer indices on an appropriate
basis. The Fourier module of the projected reciprocal-lattice
vectors Hk has the structure of a Zmodule of rank n. A Zmodule
is a free Abelian group, its rank n is given by the number of free
generators (rationally independent vectors). The dimension of a
Z module is that of the vector space spanned by it. The vectors a�i
are the images of the vectors d�i projected onto the physical space
Vk. Thus, by definition, the 3D reciprocal space of an ideal
aperiodic crystal consists of a countably dense set of Bragg
reflections only. Contrary to an ideal crystal, a minimum distance
between Bragg reflections does not exist in an aperiodic one. In
summary, it may be stressed that the terms aperiodic and periodic
refer to properties of crystal structures in dD space. In nD space,
as considered here, lattice symmetry is always present and,
therefore, the term crystal is used.

Besides the aperiodic crystals mentioned above, other classes
of aperiodic structures with strictly defined construction rules
exist (see Axel & Gratias, 1995). Contrary to the kind of
aperiodic crystals dealt with in this chapter, the Fourier spectra of
aperiodic structures considered in the latter reference are
continuous and contain only in a few cases additional sharp
Bragg reflections (� peaks).

Experimentally, the borderline between aperiodic crystals and
their periodic approximations (crystalline approximants) is not
sharply defined. Finite crystal size, static and dynamic disorder,
chemical impurities and defects broaden Bragg peaks and cause
diffuse diffraction phenomena. Furthermore, the resolution
function of the diffraction equipment is limited.

However, the concept of describing an aperiodic structure as a
dD physical-space section of an nD crystal (see Section 4.6.2) is
only useful if it significantly simplifies the description of its
structural order. Thus, depending on the shape of the atomic
surfaces, which gives information on the atomic ordering,
incommensurately modulated structures (IMSs, Sections 4.6.2.2
and 4.6.3.1), composite structures (CSs, Sections 4.6.2.3 and
4.6.3.2), or quasiperiodic structures (QSs, Sections 4.6.2.4 and
4.6.3.3) can be obtained from irrational cuts. The atomic surfaces
are continuous ðn� dÞ-dimensional objects for IMSs and CSs,
and discrete ðn� dÞ-dimensional objects for QSs. A class of
aperiodic crystals with discrete fractal atomic surfaces also exists
(Section 4.6.2.5). In this case the Hausdorff dimension (Haus-
dorff, 1919) of the atomic surface is not an integer number and
smaller than n� d. The most outstanding characteristic feature
of a fractal is its scale invariance: the object appears similar to
itself ‘from near as from far, that is, whatever the scale’ (Gouyet,
1996).

To overcome the problems connected with experimental
resolution, the translational symmetry of periodic crystals is used
as a hard constraint in the course of the determination of their
structures. Hence, space-group symmetry is taken for granted and
only the local atomic configuration in a unit cell (actually,
asymmetric unit) remains to be determined. In reciprocal space,
this assumption corresponds to a condensation of Bragg reflec-
tions with finite full width at half maximum (FWHM) to � peaks
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5.1. Dynamical theory of X-ray diffraction

By A. Authier

5.1.1. Introduction

The first experiment on X-ray diffraction by a crystal was
performed by W. Friedrich, P. Knipping and M. von Laue in 1912
and Bragg’s law was derived in 1913 (Bragg, 1913). Geometrical
and dynamical theories for the intensities of the diffracted X-rays
were developed by Darwin (1914a,b). His dynamical theory took
into account the interaction of X-rays with matter by solving
recurrence equations that describe the balance of partially
transmitted and partially reflected amplitudes at each lattice
plane. This is the first form of the dynamical theory of X-ray
diffraction. It gives correct expressions for the reflected inten-
sities and was extended to the absorbing-crystal case by Prins
(1930). A second form of dynamical theory was introduced by
Ewald (1917) as a continuation of his previous work on the
diffraction of optical waves by crystals. He took into account the
interaction of X-rays with matter by considering the crystal to be
a periodic distribution of dipoles which were excited by the
incident wave. This theory also gives the correct expressions for
the reflected and transmitted intensities, and it introduces the
fundamental notion of a wavefield, which is necessary to under-
stand the propagation of X-rays in perfect or deformed crystals.
Ewald’s theory was later modified by von Laue (1931), who
showed that the interaction could be described by solving
Maxwell’s equations in a medium with a continuous, triply
periodic distribution of dielectric susceptibility. It is this form
which is most widely used today and which will be presented in
this chapter.

The geometrical (or kinematical) theory, on the other hand,
considers that each photon is scattered only once and that the
interaction of X-rays with matter is so small it can be neglected. It
can therefore be assumed that the amplitude incident on every
diffraction centre inside the crystal is the same. The total
diffracted amplitude is then simply obtained by adding the
individual amplitudes diffracted by each diffracting centre, taking
into account only the geometrical phase differences between
them and neglecting the interaction of the radiation with matter.
The result is that the distribution of diffracted amplitudes in
reciprocal space is the Fourier transform of the distribution of
diffracting centres in physical space. Following von Laue (1960),
the expression geometrical theory will be used throughout this
chapter when referring to these geometrical phase differences.

The first experimentally measured reflected intensities were
not in agreement with the theoretical values obtained with the
more rigorous dynamical theory, but rather with the simpler
geometrical theory. The integrated reflected intensities calculated
using geometrical theory are proportional to the square of the
structure factor, while the corresponding expressions calculated
using dynamical theory for an infinite perfect crystal are
proportional to the modulus of the structure factor. The inte-
grated intensity calculated by geometrical theory is also propor-
tional to the volume of the crystal bathed in the incident beam.
This is due to the fact that one neglects the decrease of the
incident amplitude as it progresses through the crystal and a
fraction of it is scattered away. According to geometrical theory,
the diffracted intensity would therefore increase to infinity if the
volume of the crystal was increased to infinity, which is of course
absurd. The theory only works because the strength of the
interaction is very weak and if it is applied to very small crystals.
How small will be shown quantitatively in Sections 5.1.6.5 and
5.1.7.2. Darwin (1922) showed that it can also be applied to large
imperfect crystals. This is done using the model of mosaic crystals

(Bragg et al., 1926). For perfect or nearly perfect crystals, dyna-
mical theory should be used. Geometrical theory presents
another drawback: it gives no indication as to the phase of the
reflected wave. This is due to the fact that it is based on the
Fourier transform of the electron density limited by the external
shape of the crystal. This is not important when one is only
interested in measuring the reflected intensities. For any problem
where the phase is important, as is the case for multiple reflec-
tions, interference between coherent blocks, standing waves etc.,
dynamical theory should be used, even for thin or imperfect
crystals.

Until the 1940s, the applications of dynamical theory were
essentially intensity measurements. From the 1950s to the 1970s,
applications were related to the properties (absorption, inter-
ference, propagation) of wavefields in perfect or nearly perfect
crystals: anomalous transmission, diffraction of spherical waves,
interpretation of images on X-ray topographs, accurate
measurement of form factors, lattice-parameter mapping. In
recent years, they have been concerned mainly with crystal optics,
focusing and the design of monochromators for synchrotron
radiation [see, for instance, Batterman & Bilderback (1991)], the
location of atoms at crystal surfaces and interfaces using the
standing-waves method, determination of phases using multiple
reflections [for reviews of n-beam diffraction, see Weckert &
Hümmer (1997) and Chang (2004); for recent determinations of
phases, see Chang et al. (2002), Mo et al. (2002), Weckert et al.
(2002), Shen & Wang (2003)], characterization of the crystal
perfection of epilayers and superlattices by high-resolution
diffractometry [see, for instance, Tanner (1990) and Fewster
(1993)], etc.

Modern developments include the extension of dynamical
theory to time-dependent phenomena (Chukhovskii & Förster,
1995; Shastri et al., 2001; Graeff, 2002a,b, 2004; Malgrange &
Graeff, 2003; Sondhauss & Wark, 2003; Adams, 2004) and the
study of the influence of the coherence of the source (Yamazaki
& Ishikawa, 2002, 2004).

For reviews of dynamical theory, see Zachariasen (1945), von
Laue (1960), James (1963), Batterman & Cole (1964), Authier
(1970), Kato (1974), Brümmer & Stephanik (1976), Pinsker
(1978), Authier et al. (1996), Authier & Malgrange (1998), and
Authier (2005). Topography is described in Chapter 2.7 of IT C
(2004), in Tanner (1976) and in Tanner & Bowen (1992). For the
use of Bragg-angle measurements for accurate lattice-parameter
mapping, see Hart (1981). For online calculations in the case of
multiple diffraction, grazing incidence or for strained crystals, see
http://sergey.gmca.aps.anl.gov.

A reminder of some basic concepts in electrodynamics is given
in Section A5.1.1.1 of the Appendix.

5.1.2. Fundamentals of plane-wave dynamical theory

5.1.2.1. Propagation equation

The wavefunction 
 associated with an electron or a neutron
beam is scalar while an electromagnetic wave is a vector wave.
When propagating in a medium, these waves are solutions of a
propagation equation. For electrons and neutrons, this is Schrö-
dinger’s equation, which can be rewritten as

�
þ 4�2k2ð1þ �Þ
 ¼ 0; ð5:1:2:1Þ
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5.2. Dynamical theory of electron diffraction

By A. F. Moodie, J. M. Cowley† and P. Goodman†

5.2.1. Introduction

Since electrons are charged, they interact strongly with matter, so
that the single scattering approximation has a validity restricted
to thin crystals composed of atoms of low atomic number.
Further, at energies of above a few tens of keV, the wavelength of
the electron is so short that the geometry of two-beam diffraction
can be approximated in only small unit cells.

It is therefore necessary to develop a scattering theory specific
to electrons and, preferably, applicable to imaging as well as to
diffraction. The development, started by Born (1926) and Bethe
(1928), and continuing into the present time, is the subject of an
extensive literature, which includes reviews [for instance: Howie
(1978), Humphreys (1979)] and historical accounts (Goodman,
1981), and is incorporated in Chapter 5.1. Here, an attempt will
be made to present only that outline of the main formulations
which, it is hoped, will help the nonspecialist in the use of the
tables. No attempt will be made to follow the historical devel-
opment, which has been tortuous and not always logical, but
rather to seek the simplest and most transparent approach that is
consistent with brevity. Only key points in proofs will be sketched
in an attempt to display the nature, rather than the rigorous
foundations of the arguments.

5.2.2. The defining equations

No many-body effects have yet been detected in the diffraction of
fast electrons, but the velocities lie well within the relativistic
region. The one-body Dirac equation would therefore appear to
be the appropriate starting point. Fujiwara (1962), using the
scattering matrix, carried through the analysis for forward scat-
tering, and found that, to a very good approximation, the effects
of spin are negligible, and that the solution is the same as that
obtained from the Schrödinger equation provided that the rela-
tivistic values for wavelength and mass are used. In effect a
Klein–Gordon equation (Messiah, 1965) can be used in electron
diffraction (Buxton, 1978) in the form

r2 b þ
8�2mjej’

h2
 b þ

8�2m0jejW

h2
1þ
jejW

2m0c2

� �

 b ¼ 0:

Here, W is the accelerating voltage and ’, the potential in the
crystal, is defined as being positive. The relativistic values for
mass and wavelength are given by m ¼ m0ð1� v2=c2Þ

�1=2, and
taking ‘e’ now to represent the modulus of the electronic charge,
jej,

� ¼ h½2m0eWð1þ eW=2m0c2Þ�
�1=2;

and the wavefunction is labelled with the subscript b in order to
indicate that it still includes back scattering, of central impor-
tance to LEED (low-energy electron diffraction).

In more compact notation,

½r2 þ k2ð1þ ’=WÞ� b ¼ ðr
2 þ k2 þ 2k
’Þ b ¼ 0: ð5:2:2:1Þ

Here k ¼ jkj is the scalar wavenumber of magnitude 2�=�, and
the interaction constant 
 ¼ 2�me�=h2. This constant is
approximately 10�3 for 100 kV electrons.

For fast electrons, ’=W is a slowly varying function on a scale
of wavelength, and is small compared with unity. The scattering
will therefore be peaked about the direction defined by the
incident beam, and further simplification is possible, leading to a
forward-scattering solution appropriate to HEED (high-energy
electron diffraction).

5.2.3. Forward scattering

A great deal of geometric detail can arise at this point and,
further, there is no generally accepted method for approximation,
the various procedures leading to numerically negligible differ-
ences and to expressions of precisely the same form. Detailed
descriptions of the geometry are given in the references.

The entrance surface of the specimen, in the form of a plate, is
chosen as the x, y plane, and the direction of the incident beam is
taken to be close to the z axis. Components of the wavevector are
labelled with suffixes in the conventional way; K0 ¼ kx þ ky is the
transverse wavevector, which will be very small compared to kz.
In this notation, the excitation error for the reflection is given by

�h ¼
K2

0 � jK0 þ 2�hj2

4�jkzj
:

An intuitive method argues that, since ’=W � 1, then the
component of the motion along z is little changed by scattering.
Hence, making the substitution  b ¼  expfikzzg and neglecting
@2 =@z2, equation (5.2.2.1) becomes

@ 

@z
¼ i

1

2kz

ðr2
x; y þ K2

0Þ þ 
’

� �

 ; ð5:2:3:1Þ

where

r2
x; y �

@2

@x2
þ
@2

@y2
;

and  ðx; y; 0Þ ¼ expfiðkxxþ kyyÞg.
Equation (5.2.3.1) is of the form of a two-dimensional time-

dependent Schrödinger equation, with the z coordinate replacing
time. This form has been extensively discussed. For instance,
Howie (1966) derived what is essentially this equation using an
expansion in Bloch waves, Berry (1971) used a Green function in
a detailed and rigorous derivation, and Goodman & Moodie
(1974), using methods due to Feynman, derived the equation as
the limit of the multislice recurrence relation. A method due to
Corones et al. (1982) brings out the relationship between the
HEED and LEED equations. Equation (5.2.2.1) is cast in the
form of a first-order system,

@

@z

 b
@ b

@z

 !

¼
0 1

�ðr2
x; y þ k2 þ 2k
’Þ 0

� �  b
@ b

@z

 !

:
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5.3. Dynamical theory of neutron diffraction

By M. Schlenker and J.-P. Guigay

5.3.1. Introduction

Neutron and X-ray scattering are quite similar both in the
geometry of scattering and in the orders of magnitude of the basic
quantities. When the neutron spin is neglected, i.e. when dealing
with scattering by perfect nonmagnetic crystals, the formalism
and the results of the dynamical theory of X-ray scattering can be
very simply transferred to the case of neutrons (Section 5.3.2).
Additional features of the neutron case are related to the neutron
spin and appear in diffraction by magnetic crystals (Section
5.3.3). The low intensities available, coupled with the low
absorption of neutrons by most materials, make it both necessary
and possible to use large samples in standard diffraction work.
The effect of extinction in crystals that are neither small nor bad
enough to be amenable to the kinematical approximation is
therefore very important in the neutron case, and will be
discussed in Section 5.3.4 together with the effect of crystal
distortion. Additional possibilities arise in the neutron case
because the neutrons can be manipulated from outside through
applied fields (Section 5.3.5). Reasonably extensive tests of the
predictions of the dynamical theory of neutron diffraction have
been performed, with the handicap of the very low intensities of
neutron beams as compared with X-rays: these are described in
Section 5.3.6. Finally, the applications of the dynamical theory in
the neutron case, and in particular neutron interferometry, are
reviewed in Section 5.3.7.

5.3.2. Comparison between X-rays and neutrons with spin
neglected

5.3.2.1. The neutron and its interactions

An excellent introductory presentation of the production,
properties and scattering properties of neutrons is available
(Scherm & Fåk, 1993, and other papers in the same book). A
stimulating review on neutron optics, including diffraction by
perfect crystals, has been written by Klein & Werner (1983).
X-rays and neutrons are compared in terms of the basic quan-
tities in Table 4.1.3.1 of IT C (2004), where Chapter 4.4 is devoted
to neutron techniques.

The neutron is a massive particle for which the values relevant
to diffraction are: no electric charge, rest mass m ¼
1:675� 10�27 kg, angular momentum eigenvalues along a given
direction �h- =2 (spin 1

2) and a magnetic moment of �1.913
nuclear magneton, meaning that its component along a
quantization direction z can take eigenvalues �z ¼

	0:996� 10�26 A m2. The de Broglie wavelength is � ¼ h=p
where h is Planck’s constant (h ¼ 2�h- ¼ 6:625� 10�34 J s) and p
is the linear momentum; p ¼ mv in the nonrelativistic approx-
imation, which always applies in the context of this chapter, v
being the neutron’s velocity. The neutron’s wavelength, �, and
kinetic energy, Ec, are thus related by � ¼ h=ð2mEcÞ

1=2, or,
in practical units, � ½Å� ¼ 9:05=ðEc ½meV�Þ1=2. Thus, to be of
interest for diffraction by materials, neutrons should have kinetic
energies in the range 100 to 102 meV. In terms of the velocity,
� ½Å� ¼ 3:956=ðv ½km s�1�Þ.

Neutron beams are produced by nuclear reactors or by spal-
lation sources, usually pulsed. In either case they initially have an
energy in the MeV range, and have to lose most of it before they
can be used. The moderation process involves inelastic inter-
actions with materials. It results in statistical distributions of

energy, hence of velocity, close to the Maxwell distribution
characteristic of the temperature T of the moderator. Frequently
used moderators are liquid deuterium (D2, i.e. 2H2) at 25 K, heavy
water (D2O) at room temperature and graphite allowed to heat
up to 2400 K; the corresponding neutron distributions are termed
cold, thermal and hot, respectively.

The interaction of a neutron with an atom is usually described
in terms of scattering lengths or of scattering cross sections. The
main contribution corresponding to the nuclear interaction is
related to the strong force. The interaction with the magnetic
field created by atoms with electronic magnetic moments is
comparable in magnitude to the nuclear term.

5.3.2.2. Scattering lengths and refractive index

The elastic scattering amplitude for scattering vector s, f ðsÞ, is
defined by the wave scattered by an object placed at the origin
when the incident plane wave is 
i ¼ A exp½iðk0 � r� !tÞ�,
written as 
s ¼ A½ f ðsÞ=r� exp½iðkr� !tÞ� with k ¼ jk0j ¼

jk0 þ sj ¼ 2�=�. In the case of the strong-force interaction with
nuclei, the latter can be considered as point scatterers because
the interaction range is very small, hence the scattering amplitude
is isotropic (independent of the direction of s). It is also inde-
pendent of � except in the vicinity of resonances. It is conven-
tionally written as �b so that most values of b, called the
scattering length, are positive. A table of experimentally
measured values of the scattering lengths b is given in IT C for
the elements in their natural form as well as for many individual
isotopes. It is apparent that the typical order of magnitude is the
fm (femtometre, i.e. 10�15 m, or fermi), that there is no systematic
variation with atomic number and that different isotopes have
very different scattering lengths, including different signs. The
first remark implies that scattering amplitudes of X-rays and of
neutrons have comparable magnitudes, because the characteristic
length for X-ray scattering (the scattering amplitude for forward
scattering by one free electron) is R ¼ 2:8 fm, the classical
electron radius. The second and third points explain the impor-
tance of neutrons in structural crystallography, in diffuse scat-
tering and in small-angle scattering. Scattering of neutrons by
condensed matter implies the use of the bound scattering lengths,
as tabulated in IT C. The ‘free’ scattering length, used in some
presentations, is obtained by multiplying the bound scattering
lengths by A=ðAþ 1Þ, where A is the mass of the nucleus in
atomic units.

A description in terms of an interaction potential is possible
using the Fermi pseudo-potential, which in the case of the nuclear
interaction with a nucleus at r0 can be written as VðrÞ ¼
ðh2=2�mÞb�ðr� r0Þ, where � denotes the three-dimensional Dirac
distribution.

Refraction of neutrons at an interface can be conveniently
described by assigning a refractive index to the material, such
that the wavenumber in the material, k, is related to that in a
vacuum, k0, by k ¼ nk0. Here

n ¼ 1�
�2

�V

X

i

bi

 !1=2

;

where the sum is over the nuclei contained in volume V. With
typical values, n is very close to 1 and 1� n ¼ ð�2=2�VÞ
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