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Dual-space iterative algorithms are algorithms that use alternating modifications

of the trial scattering density distribution in direct and reciprocal space to find a

solution to the phase problem. The heart of the dual-space algorithms is the

iteration scheme: the recipe for combining the modifications in both spaces. An

equally important aspect is also the precise definition of these modifications.

Numerous iteration schemes exist and these can be combined with an equally

rich selection of modifications, leading to a wide range of algorithms. The most

well known and the most studied, although by far not the only one, is the charge-

flipping algorithm. Dual-space iterative algorithms have found applications in

many crystallographic problems. The principal applications in various fields are

described with sections devoted to routine structure solution, the solution of the

structures of incommensurately modulated crystals and quasicrystals, and

structure solution from powder diffraction data.

1. Introduction

After the first structure solutions which used symmetry

arguments and trial-and-error methods, the Patterson method

became the first systematically used approach to structure

solution. When the statistical relationships between the

reflection intensities and their phases were discovered by

Cochran, Sayre, Karle, Hauptman and many others in the

1950s and 1960s, a rich field of direct methods was developed

[see e.g. Giacovazzo (1998) for an overview of the subject].

The continuous development and growing power of direct

methods made them a leading tool for ab initio structure

solution, and their dominance seemed to be incontestable.

The development of crystallographic methods received an

important new impulse with the advent of powerful desktop

computers. Suddenly, computationally expensive approaches

became available to everybody, and methods could be devel-

oped that make heavy use of computationally demanding

techniques, such as Fourier transformation. The fruits of this

revolution are numerous. Direct methods were combined with

density modifications in direct space to produce the ‘Shake

and Bake’ (SnB) method (Weeks et al., 1993). A flavour of

direct methods based on Patterson-function arguments was

developed (Rius, 1993) and later transformed into an algo-

rithm cycling between direct and Fourier space (Rius et al.,

2007; Rius & Frontera, 2008; Rius, 2012). The ‘revenge of the

Patterson function’ was announced (Burla et al., 2004, 2006),

combining the superposition minimum function method

(Buerger, 1959) with new analysis and computer power, and

applying the method to ab initio phasing of macromolecular

crystals. Yet another algorithm, called VLD (Burla et al., 2010,

2011a,b, 2012b), is based on an iterative application of

difference-Fourier synthesis and real-space density modifica-

tion techniques.
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Next to all these algorithms, a class of so-called dual-space

algorithms emerged. This name might be somewhat confusing,

because many if not all of the algorithms mentioned in the

previous paragraph are in certain sense dual-space. However,

in the dual-space algorithms sensu stricto, neither of the two

spaces plays a dominant role – neither the operation in direct

space nor in the Fourier space is, even in principle, capable of

solving the structure alone.

The iterative dual-space phasing algorithms have gained

considerable interest in the crystallographic community over

the last few years. Among them the best known is the charge

flipping algorithm (CFA, Oszlányi & Sütő, 2004). While not

the first published algorithm of this kind, it sparked consid-

erable interest in iterative dual-space methods for structure

solution, and has marked the beginning of a broad interest in

and development of this field in crystallography. Another

algorithm that gained considerable popularity thanks to its

implementation in the computer program SHELXT is the

algorithm called intrinsic phasing (IPA; Sheldrick, 2015).

This chapter describes the dual-space iterative algorithms,

summarizes their development and gives an overview of

applications of these algorithms to crystallographic problems.

It is an updated and extended version of the review by Pala-

tinus (2013), which summarized the field up to then. The text is

organized as follows. First, a general overview of dual-space

algorithms in phase retrieval is presented with a focus on

algorithms relevant for crystallography. Then a detailed

description of the charge flipping algorithm and its variants is

provided, followed by sections on two important special

topics: symmetry and missing data. Finally, applications of the

algorithms are described in sections devoted to general

structure solution, modulated structures, powder diffraction

data and macromolecules. This chapter deals only with algo-

rithms used for ab initio phasing from data with atomic reso-

lution. An important part of the application of dual-space

algorithms concerns the phasing of macromolecular structures

from data that do not reach atomic resolution. Although the

basic principles are similar, the low resolution of macro-

molecular data poses specific challenges and requires addi-

tional information to be used in the phasing process, like the

assumption of an existence of molecular envelope or non-

crystallographic symmetry. This part is not covered in this text

and the reader is referred to the review by Millane & Lo

(2013) or the chapter of International Tables for Crystal-

lography Volume C by Millane (2023).

2. Dual-space algorithms in phase retrieval

The problem of phase retrieval is omnipresent in various fields

of physics and engineering (Millane, 1990). The problem is

usually formulated in the general space of square-integrable

functions, but for our purposes let us limit the definition to a

discretely sampled signal in Euclidean space En of dimension

n (n = 3 for a typical crystal structure). Let � = {�i, i = 1 . . . Np}

be a (generally complex-valued) function sampled on a

discrete n-dimensional grid comprising Np pixels. Let �̂ be its

(discrete) Fourier transform. Let M = {hj, j = 1 . . . Nh} be the

independent set of vectors hj, for which Fourier magnitudes

jFoðhjÞj ¼ jF
o
j j are known from experiment. For the most

general case of phase retrieval of a complex object, all vectors

hj are independent. If � is a real-valued function, then the

Fourier coefficients F(h) and F(� h) must be complex conju-

gate, and only half of all hj are independent. Further reduction

of the number of independent vectors hj may occur if crystal

symmetry is applied.

With these definitions, the phase retrieval problem can be

formulated as: find � or an approximation to �, given the set of

known Fourier magnitudes (magnitude constraint). This

problem does not have a unique solution, as the constraint

ratio �, i.e. the ratio of the amount of information available

and amount of information needed, equals 1/2 (Elser &

Millane, 2008; Millane & Arnal, 2015; Elser et al., 2018).

Therefore, additional information about � is necessary. This

additional information can be the support (i.e. a subset of �i is

assumed to be zero), positivity (�i > 0 for all i), atomicity (the

signal in � is composed of a set of discrete peaks) or any other

piece of information. Since this additional information is in all

practical applications defined in the direct space of �, not in its

Fourier space, it will be denoted as the direct-space constraint.

The set of all � that fulfil the constraint is called the

constraint set. Let us denote by S the set of all � matching

this direct-space constraint, and by R the set of all � such

that j�̂jj ¼ jF
o
j j; j ¼ 1 . . . Nh, i.e. matching the magnitude

constraint. Then the phase retrieval problem can be simply

stated as: find some � from S \ R. If such � exists, the problem

is called consistent. If the intersection of S and R is empty, the

problem does not have a solution and is called inconsistent. In

such a case, it may still be useful to search for � such that the

sum of its distances to the nearest points in S and R is minimal.

With this formulation it becomes obvious that the phase

retrieval problem is a specific case of the general constraint

satisfaction problem, where the two (or more) constraints

need not be specifically the magnitude and direct-space

constraint. A special, mathematically more easily tractable

case is the convex feasibility problem, where all the constraints

are convex. A constraint set A is convex if for any two

elements of the constraint set the following statement is valid:

�; �0 2 A) �þ cð�0 � �Þ 2 A for c 2 ½0; 1�: ð1Þ

The convexity of the constraints allows important conclusions

to be made about the properties and convergence of algo-

rithms proposed for the solution of the convex feasibility

problem. Algorithms exist that always converge to a solution

of this problem. Unfortunately, the magnitude constraint

central to the phase retrieval problem is obviously non-

convex, and the results of the convex optimization theory

cannot be carried over to the phase retrieval problem.

Nevertheless, it is useful to compare the algorithms developed

in these two frameworks. Analysis of the convex versions of

the algorithms gives valuable insight into the relationships

between various algorithms proposed in phase retrieval.

The formulation of constraints plays an important role in

the specification of the algorithms. Let us summarize the

specific forms of the magnitude and direct-space constraints
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encountered in crystallographic phase retrieval. The basic

form of the magnitude constraint set was defined above as the

set of all � such that �̂j ¼ jF
o
j j for all hj 2 M. The recipe to

transform an arbitrary set of values of � into a set that belongs

to the constraint set is called a projection operator or projector,

and the operation itself is called projection. In order to be well

defined, the projection is required to be distance-minimizing,

i.e. the change of � needed to bring it onto the constraint set

must be the smallest possible. Operations that do not satisfy

this condition, but still transform � to a point in the constraint

set are called pseudoprojections.

The basic projector onto the magnitude constraint set can

be defined as follows:

Fnew
j ¼

ðjFo
j j=jF

old
j jÞF

old
j if hj 2 M;

Fold
j if hj =2 M:

�

ð2Þ

�new is then obtained as an inverse Fourier transform of

fFnew
j g. In other words, the new � is obtained from the old by

replacing the known Fourier magnitudes with the observed

ones, keeping all phases and the unknown Fourier magnitudes

intact.1 However, alternative variants of this basic scheme

have been proposed and used. Elser (2003b) proposed placing

an upper bound on the magnitude of unknown Fourier coef-

ficients:

Fnew
j ¼

ðjFo
j j=jF

old
j jÞF

old
j if hj 2 M;

cðjFbound
j j=jFold

j jÞF
old
j if hj =2 M and

jFold
j j> cjFbound

j j;

Fold
j otherwise:

8
>><

>>:

ð3Þ

In crystallography, suitable jFbound
j j can be conveniently

estimated from the Wilson statistics as the expected mean

Fourier amplitude for structure factors with the given |hj|. For

normalized Fourier magnitudes (E values), Fbound = 1 for all j.

If c goes to infinity, this operator transforms to (2). Another

special instance of this operator is the case c = 0:

Fnew
j ¼

ðjFo
j j=jF

old
j jÞF

old
j if hj 2 M;

0 if hj =2 M:

�

ð4Þ

Yet another variant has been devised for practical appli-

cations. The Fourier magnitudes |Fo| are known only for

associated scattering vectors up to a certain length hmax. The

sphere of known |Fo| is denoted the resolution sphere. In

practical applications, the set M of scattering vectors with

known Fourier magnitudes rarely covers all vectors in the

resolution sphere. For example, the forward scattering inten-

sity, F(000), is never measured. Such missing data inside the

resolution sphere require a treatment different from unmea-

sured data at high resolution. For this purpose, a combination

of projector (3) for data inside the resolution sphere and (4)

outside the resolution sphere is useful:

Fnew
j ¼

ðjFo
j j=jF

old
j jÞF

old
j if hj 2 M;

cðjFbound
j j=jFold

j jÞF
old
j if hj =2 M; hj < hmax

and jFold
j j> cjFbound

j j;

Fold
j if hj =2 M; hj < hmax

and jFold
j j< cjFbound

j j;

0 otherwise:

8
>>>>>><

>>>>>>:

ð5Þ

Again, the constant c can be set infinite, in which case the

second condition is never met and the rule reduces to leaving

all unmeasured magnitudes inside the resolution sphere

unchanged, and setting everything outside the resolution

sphere to zero.

Equation (5) has a very important special case, namely c =

1 and hmax so small that the only coefficient with h< hmax is

the coefficient F(0). This case corresponds essentially to

equation (4), but instead of constraining F(0) to zero, it is left

unchanged by the projector. This form was used in the original

article on the CFA (Oszlányi & Sütő, 2004):

Fnew
j ¼

ðjFo
j j=jF

old
j jÞF

old
j if hj 2 M;

Fold
j if hj ¼ 0;

0 otherwise:

8
<

:
ð6Þ

Among direct-space constraints, the most studied constraint

in phase retrieval is the support constraint. This constraint can

be applied if some part of � is known or assumed to be zero.

This is a relevant constraint in single-particle imaging and in

macromolecular crystallography. However, in most crystal-

lographic applications the distribution of scattering density in

the unit cell is usually unknown, and no support constraint can

be defined. In the absence of a known support, the positivity of

the electron density can still be exploited, and the positivity

constraint can be conveniently defined. The corresponding

projector is very simple:

�new
i ¼

�old
i if �i � 0;

0 if �i < 0:

�

ð7Þ

Such an operation has been frequently used in macro-

molecular crystallography as a part of phase extension and

refinement procedures (solvent flattening; Wang, 1985). For ab

initio crystal-structure determination, however, if was found

that a more aggressive density modification technique is

needed:

�new
i ¼

�old
i if �i � �;

0 if �i < �;

�

�> 0: ð8Þ

Introduction of the free parameter � gives the algorithms

more freedom to find a balance between the perturbing and

stabilizing effect of the operation. Such an operation is the

basis of some of the electron-density modification (EDM)

techniques used in direct methods (e.g. Giacovazzo & Siliqi,

1997). In the context of ab initio structure solution by dual-

space methods, it was first proposed by Shiono & Woolfson

(1992), and it is in the background of the charge-flipping

operation. As noted e.g. in Oszlányi & Sütő (2008), this

operation is not distance-minimizing, i.e. it is not a projection

in the strict sense, but a pseudoprojection. It is important to

international tables
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1 The expression is, strictly speaking, undefined for jFold
j j ¼ 0. In such a case

the phase of Fnew
j is undefined and it must be selected, e.g. set to zero. For

simplicity, we do not treat this case explicitly in equation (2) and the following.
In practice, jFold

j j is essentially never exactly zero.



note that while projections onto convex constraint sets are

uniquely defined, the number of possible pseudoprojections is

in general infinite. The choice of a particular pseudoprojection

instead of a projection is therefore to a large extent arbitrary.

Its choice is, typically, not based on any fundamental theory,

but on the practical observation that that particular choice

performs well in practice. For the sake of simplicity, we will not

make an explicit distinction between true distance-minimizing

projections and pseudoprojections in this text, where this is

not explicitly needed.

Operation (8) lends itself to a modification, which is not

possible with (7), namely

�new
i ¼

�old
i if j�ij � �;

0 if j�ij < �:

�

ð9Þ

This constraint does not impose positivity on �, but only

eliminates low-density regions. It can be understood as a

‘dynamical support’ constraint, where, unlike in the standard

support constraint, the support is newly identified at every

iteration cycle as the region with small density. This operation

is at the basis of the band-flipping approach (Oszlányi & Sütő,

2007). An asymmetric interval of the eliminated region is also

possible and useful if the negative and positive signals in the

density are of unequal strength (Whitfield & Coelho, 2016):

�new
i ¼

�old
i if �i � �þ or �i � �� ;

0 if �� <�i <�þ:

�

ð10Þ

Another direct-space constraint used in crystallography is

the atomicity constraint. This constraint is less easily

expressed by a simple recipe, but, in rough terms, the corre-

sponding projector consists of selecting a prescribed number

of peaks in �, and setting to zero all pixels outside these peaks

(Elser, 2003b; Feng, 2012). A very special type of the atomicity

constraint is used in the IPA. The corresponding operation

consists of locating the peaks in �, placing a Gaussian with unit

volume at the positions of the peaks, and multiplying � by the

mask formed by these Gaussians (Sheldrick, 2015). Although

this operation is not a projection, as the resulting density does

not have a specific property that would define it, it is closely

related to an atomicity projection because the result of the

operation is a set of discrete, sharp peaks, and all negative

densities are set to zero.

Whatever the exact constraint and the recipe for the

projector, it can be symbolically denoted as P, and the trans-

formation of the image then as �new = P�old, where P is an

operator acting on �. Such operators can be combined to yield

more complicated transformations. A particularly important

combination of projections is a so-called overprojection,

R� ¼ ð1þ �ÞP � �I; ð11Þ

where I is the identity operator. Geometrically, such over-

projection means that the shift from � to P� is continued in the

same direction by a fraction � of the original distance from �

to P�. The special case of � = 1 is called a reflector, and will be

denoted R without an explicit superscript:

R :¼ R1 ¼ 2P � I: ð12Þ

We are now equipped to review the different algorithms

suggested in the literature for phase retrieval, and specifically

for crystal structure solution. In some works, the iterative

phase retrieval algorithms are described as explicit schemes

for pixelwise obtaining � of cycle n + 1 from � of cycle n. Such

recipes do not explicitly separate the combination of projec-

tors acting on � from the exact definition of the projector, and

sometimes even cannot be expressed in the form of a combi-

nation of projectors acting on �. Another approach to describe

the algorithms is to define the iteration scheme in terms of

operators acting on �(n) to obtain �(n+1), and define the exact

form of the operators separately. Where possible, we will

adopt this second approach, and we will point out cases where

this approach leads to difficulties. Explicit flowcharts of the

most important algorithms are then summarized in Fig. 1.

The basic algorithm is the alternating application of the

magnitude and direct-space projections. Expressed as an

iteration scheme, this algorithm can be written as

�ðnþ1Þ ¼ PMPD�
ðnÞ: ð13Þ

Here PM denotes the magnitude projector, and PD the direct-

space projector. As for all algorithms that will be presented in

this section, the iteration typically starts from a random

starting image, but that is not strictly necessary, and starting

from a non-random starting point changes these algorithms

from phase retrieval to phase refinement or phase extension

algorithms. This simple algorithm is known in the phase

retrieval community as the Gerchberg–Saxton (Gerchberg &

Saxton, 1972) or error-reduction algorithm (Fienup, 1982), and

as the POCS (projections onto convex sets) for convex feasi-

bility problems (Censor & Zenios, 1997). In crystallography,

this algorithm was used in conjunction with projection (8)

under the name low-density elimination (LDE; Shiono &

Woolfson, 1992). This method was developed as a phase

extension method for macromolecular crystallography, but the

authors added a short comment stating that one of the test

structures could be solved ab initio from random phases. This

seems to be the first published record of a crystal structure

solved ab initio by dual-space methods, although this possi-

bility was considered much earlier, for example in the ground-

breaking paper by Fienup (1982). A detailed account of the

performance of LDE in ab initio solution is given in Matsugaki

& Shiono (2001).

The Gerchberg–Saxton/error-reduction/LDE algorithm is

known to be prone to stagnation at false solutions. One way of

reducing the risk of stagnation is to replace the projectors by

reflectors. Replacing the direct-space projector PD by the

corresponding reflector yields this algorithm:

�ðnþ1Þ ¼ PMRD�
ðnÞ: ð14Þ

This is the iteration scheme of the basic CFA (Oszlányi &

Sütő, 2004), with RD being the reflector of (8) and PM being

the magnitude projection (6). As noted by Wu et al. (2004b),

this algorithm is a special case of Fienup’s output–output

algorithm [Fienup (1982), equation (43) with � = 2 and with �

being the set of all pixels, where �i < �].
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Figure 1
Explicit schemes of the most important dual-space algorithms. Projections (6) and (8) were used for PM and PD, respectively. �, !, ’ and  are
intermediate images, �̂, !̂, ’̂ and  ̂ are their Fourier transforms, respectively. The schemes correspond to equations (14) (CFA), (18) (HIO), (23) (AAR)
and (20) (DM).



A symmetric counterpart of this algorithm is the following

scheme:

�ðnþ1Þ ¼ PDRM�
ðnÞ: ð15Þ

Here the reflector is applied in reciprocal space. This scheme is

used in the IPA (Sheldrick, 2015). However, in the presented

algorithm the recommended (and default) value of � in RM is 2

and not 1. The phase retrieval algorithm of Feng (2012) also

resembles very much this type of algorithm, although the

operator in Fourier space uses a special version of the Fourier

coefficients, yielding the operator

Fnew
j ¼

ð2jFo
j j

2 � jFold
j j

2ÞFold
j if hj 2 M

0 if hj =2 M:

�

ð16Þ

The structure of this operator resembles a reflector, but it is

not a reflector in a strict sense.

Another logical extension of the iteration scheme is to

replace both projectors by reflectors:

�ðnþ1Þ ¼ RMRD�
ðnÞ: ð17Þ

It turns out that this scheme is difficult to use because of its

instability. The perturbation induced by the alternating

reflectors is too strong, and the solutions are not stable. This

scheme has been made to work only by replacing the magni-

tude reflector by a special ‘partial reflector’ [see Section 3 and

equation (29)].

In their pioneering work, Fienup (1982) proposed a set of

even more complicated iterations schemes, of which the

hybrid input–output (HIO) algorithm proved to be the most

successful. The hybrid input–output algorithm was defined

as an explicit recipe for pixelwise obtaining �new from �old.

Adapted to our notation, this scheme reads

�
ðnþ1Þ
i ¼

ðPM�
ðnÞÞi if ðPDPM�

ðnÞÞi ¼ PM�
ðnÞ
i ;

�
ðnÞ
i � �ðPM�

ðnÞÞi otherwise;

�

ð18Þ

where � is a free parameter of the algorithm, and (PD�
(n))i

means the ith pixel of the image PD�
(n). This algorithm cannot

be expressed in a form of an operator acting on �(n) (Bauschke

et al., 2003). Only if the direct-space constraint is the support

constraint (or another constraint, for which the projector is a

linear operator) can the HIO algorithm be expressed as a

fixed-point operator (Bauschke et al., 2002, 2003):

�ðnþ1Þ ¼ fPD½ð1þ �ÞPM � I� þ I � �PMg�
ðnÞ

¼ 1
2 fRD½RM þ ð� � 1ÞPM� þ I þ ð1 � �ÞPMg�

ðnÞ:

ð19Þ

If the second form of the iteration scheme (19) is combined

with the positivity constraints and not the support constraint,

yet another algorithm, called hybrid projection reflection

(HPR), is obtained (Bauschke et al., 2003). The HIO algo-

rithm, or elements thereof, has been used in crystallographic

phase retrieval schemes (Wu et al., 2006; Lei, 2007).

Another algorithm that bears a strong relationship to the

HIO algorithm was proposed by Elser (2003b) and named

the difference map (DM). It is a three-parameter algorithm

defined by the following scheme:

�ðnþ1Þ ¼ I þ � PDR
�M

M � PMR
�D

D

� �� �
�ðnÞ: ð20Þ

In the original work (Elser, 2003b), the optimal values of

parameters �M and �D were estimated to be equal to �� 1 and

� �� 1, respectively. In subsequent work (Elser, 2003c), a

slightly different choice of �D was suggested. It can be easily

shown (Elser, 2003b) that, for the case of support constraint

only, the HIO algorithm is a special case of the DM with �M =

�� 1 and �D = � 1. This equivalence, however, does not hold for

the positivity or atomicity constraint. The difference map was

demonstrated to work for structure solution (Elser, 2003a).

The specific form of the magnitude constraint was that of

equation (3), and the direct-space constraint was the atomicity.

For some reason this algorithm has never become very

popular in crystallography, while it has found more applica-

tions in the phase retrieval of non-periodic objects.

When the special value of � = 1 is used in the second

equality of equation (19), we obtain a particularly simple

expression:

�ðnþ1Þ ¼ 1
2
ðRDRM þ IÞ�ðnÞ: ð21Þ

This algorithm was first proposed and analysed by Douglas

& Rachford (1956) for the solution of differential equations,

and adapted for convex sets by Lions & Mercier (1979). In the

phase retrieval context it was suggested and analysed by

Bauschke et al. (2004) under the name averaged alternating

reflections (AAR). The AAR algorithm has the interesting

property that, under certain circumstances, it is an important

special case of both the HIO algorithm and the difference

map. More specifically, assuming PD is a linear operator, the

AAR algorithm is the HIO algorithm with � = 1, and the

difference map algorithm with � = 1, �D = � 1 and �M = 1.

Moreover, if, in addition to PD, PM is also assumed to be linear

(keep in mind that this is not the case for the magnitude

projection), Elser’s difference map with the recommended

parameters �M = �� 1 and �D = � �� 1 becomes a weighted

average of two symmetric versions of AAR:

�ðnþ1Þ ¼
1þ �

2

1

2
ðRDRM þ IÞ

� �

�ðnÞ

þ
1 � �

2

1

2
ðRMRD þ IÞ

� �

�ðnÞ: ð22Þ

These relationships cannot be carried over directly to phase

retrieval, where the magnitude constraint and often also the

direct-space constraints are not linear. Nevertheless, they

indicate that all these algorithms have a closely related

structure.

Scheme (21) has a closely related symmetric counterpart,

also obtained from (22) with � = � 1:

�ðnþ1Þ ¼
1

2
ðRMRD þ IÞ�ðnÞ: ð23Þ

The two schemes are very similar, but they are not the same

because the magnitude and direct-space constraints have a

very different structure. The latter scheme was used by

Oszlányi & Sütő (2011) and shown to be superior to the
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original CFA, especially when dealing with low-resolution

data (Oszlányi & Sütő, 2011; van der Lee, 2013).

So far, we have not considered the consistency of the phase

retrieval problem, and we have assumed that the solution

exists. However, crystallographic phase retrieval is most often

inconsistent. This is caused by the limited resolution of the

diffraction data and by the presence of noise in the data.

Moreover, if constraint (8) or some of its variants are used, the

problem is inconsistent, because we are approximating the

true � by a function which does not assume values between 0

and �. The same is true for atomicity constraints, which assume

zero density outside of a limited number of pixels. For

inconsistent problems, the AAR, HIO, DM and related algo-

rithms have a tendency to diverge from the solution (March-

esini, 2007; Fig. 2). This leads to a frequently observed

problem of wandering of the iterates away from the solution.

The error-reduction algorithm and the CFA do not diverge,

and stay close to the optimal point (i.e. at the place with the

shortest distance between the constraint sets), but they suffer

from stagnation at local distance minima (Fig. 2c). An inter-

esting algorithm that does not diverge for inconsistent

problems, but inherits most of the ability of the AAR-related

algorithms to escape from the local minima, is the relaxed

alternating averaged reflection (RAAR) algorithm (Luke,

2005). This algorithm is a one-parameter relaxation of the

AAR algorithm:

�ðnþ1Þ ¼ 1
2
�ðRDRM þ IÞ þ ð1 � �ÞPM�

ðnÞ: ð24Þ

This algorithm has a fixed point, even if the corresponding

problem is inconsistent, and as such appears to be a very

attractive variant of applications in crystallography. Skubák

(2018) applied this algorithm to the solution of heavy-atom

substructures from anomalous difference data and found it

better performing than the standard CFA. The best value of

the parameter � was found empirically to be 0.82. It is possible

that in contexts other than heavy-atom substructures the

optimal � might be different.

Realistic phase retrieval problems operate in spaces of very

large dimension. It is, however, very enlightening to observe

the behaviour of the algorithms for a simple, two-pixel

problem, which can be represented in a plane. Several of the

presented algorithms (ER, the CFA, AAR, RAAR, DM) were

used to solve a simple problem in two dimensions, where the

two constraint sets are represented by two curves. Fig. 2 shows

the results for a convex consistent problem, a non-convex

consistent problem with multiple solutions and a non-convex

inconsistent problem. Each symbol in the plots shows an

iterate of the algorithms. Successive iterates are connected

with a line, forming a path. For the convex consistent problem

(Fig. 2a), all algorithms converge to the correct solution. For

the non-convex consistent problem (Fig. 2b), ER and the CFA

stagnate at local minima. However, the CFA is able to avoid

some of the local minima, and approaches the solution more

than ER. All other algorithms find one of the solutions. The

non-convex inconsistent problem is the most challenging. ER

and the CFA approach the solution, but stagnate at local

minima. Again, the CFA avoids some of the minima that are

trapping the ER algorithm. The AAR, HIO and DM algo-

rithms all diverge from the solution. The RAAR algorithm

converges close to the solution, and a point very close to the

solution would be found by a single application of one of the
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Figure 2
Convergence of selected dual-space algorithms on a two-dimensional
example. (a) Two convex constraint sets with intersection. (b) Two non-
convex constraint sets with several intersections. (c) Two non-convex
constraint sets without intersection (unfeasible problem). All iterations
start from the same point in the right-hand part of the plots. Symbols
represent the actual iterates, the dotted lines connect consecutive iterates.
ER = error-reduction algorithm (13), CFA = charge flipping algorithm
(14), AAR = averaged alternating reflections (21), RAAR = relaxed
averaged alternating reflections (24), DM = difference map [(20), with �M

= �� 1, �D = � �� 1].



projections. More details of the behaviour of various algo-

rithms for general phase retrieval problems are discussed in an

excellent overview by Marchesini (2007).

Most of the algorithms presented so far can be regarded as

special cases of a general, six-parameter iteration scheme of

the following form:

�ðnþ1Þ ¼ ð1 � �1 � �2ÞI þ �1 R
�D;1

D R
�M;1

M

� �
þ �2 R

�M;2

M R
�D;2

D

� �� �
�ðnÞ:

ð25Þ

Table 1 gives the parameters of this general algorithm that

correspond to the algorithms presented in this section. The

only algorithm that cannot be represented as a special case of

the above scheme is the general form of the HIO algorithm

[equation (18)] and the HPR algorithm [equation (19) with the

positivity constraint].

This overview of algorithms should provide an idea of the

complexity of the field, and point out the similarities, but also

the differences, between the algorithms. The flowcharts of the

most important algorithms are summarized in Fig. 1. The

overview should also make it clear that the potential and

performance of various algorithms in a crystallographic

context is far from being entirely understood and explored.

3. Variants of the basic algorithm

In the previous section, various phase retrieval algorithms

were reviewed. Although several algorithms have been

applied to crystallographic problems, the charge-flipping-

based algorithms remain the most studied. This section

therefore provides a detailed overview of variants and flavours

of the CFA. Many of the findings on the CFA might apply also

to other dual-space algorithms.

The first and obvious improvement of the efficiency of the

algorithm is not related to the algorithm itself, but to the data

employed. The original paper on the CFA (Oszlányi & Sütő,

2004) used as an input the magnitudes of the standard, non-

normalized Fourier coefficients. Using normalized Fourier

coefficients (the E values) yields sharper maps and thus a

much better performance of the algorithm. This general

knowledge was quantitatively probed by Oszlányi & Sütő

(2008), who showed, on a selected example, a reduction of the

number of iteration steps by about two orders of magnitude

upon introducing normalized Fourier coefficients. Other dual-

space algorithms (Lei, 2007; Feng, 2012) directly employ the

normalized coefficients. In the IPA, the magnitudes entering

the iteration are a mix between normalized and unnormalized

structure-factor amplitudes in the form G = EqF1� q, with q

being a user-defined parameter with a default value of 0.5.

As described in the previous section, the original version of

the CFA employed the iteration scheme (14) with the

magnitude projection (6) and direct-space projection (8).

Owing to its crucial role in the CFA, we give here the corre-

sponding reflector of (8) explicitly:

�new
i ¼

�old
i if �i � �;

� �old
i if �i < �:

�

ð26Þ

This is the so-called charge-flipping operation, which gave

the algorithm its name. The exact form of the magnitude

constraint (6) is important. For example, replacing the

constraint by the closely related form (2) has a devastating

effect on the efficiency of the algorithm. The zero Fourier

coefficient F(0) also deserves special attention. This coefficient

is not known experimentally. In the original formulation of the

CFA [ equation (6)] it was left unconstrained. The variant with

constraining F(0) to zero [i.e. using projector (4)] was also

sometimes used (Palatinus, 2004; Coelho, 2007a; Zhou &

Harris, 2008). However, leaving the F(0) coefficient uncon-

strained seems to be the most efficient approach. If left

unconstrained, the abrupt drop of the value of F(0) can also be

used as an indicator of the convergence of the iteration

(Oszlányi & Sütő, 2004).

The parameter � is the single free parameter of the basic

algorithm. Its value on an absolute scale differs from one

problem to another. However, it was shown (Oszlányi & Sütő,

2008) that � can be conveniently expressed in terms of the

standard deviation of the reconstructed density:

� ¼ ked�ð�Þ; ð27Þ

where �(�) is the standard deviation of the distribution of the

density values. The optimal value of ked was shown to be most

often between 0.9 and 1.3.

Soon after the publication of the algorithm, first applica-

tions and improvements of the algorithm appeared. Wu et al.

(2004a), along with the first application to experimental data,

proposed to replace the constant � in the charge-flipping

operation by a dynamical � determined newly every cycle so

that a constant number of pixels is flipped. While this modi-

fication does not seem to have an important effect for most

structure-solution problems, it appears to have a stabilizing

effect for problems where the solution is less stable.

Naturally, most efforts concentrated on the improvement of

the phasing power of the algorithm. These attempts focused

either on the modification of the constraints or of the iteration

scheme. The first class involves the so-called �-half variant

(Oszlányi & Sütő, 2005), where the magnitude constraint is

modified to [cf. equation (6)]
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Table 1
Dual-space iterative algorithms expressed as instances of the general
iteration scheme (25).

� is the free parameter of the algorithms.

�1 �M,1 �D,1 �2 �M,2 �D,2

Gerchberg–Saxton/error reduction 1 0 0 0 – –

Original CFA 1 0 1 0 – –

Intrinsic phasing† 1 �M,1 0 0 – –

HIO‡ � �� 1 0 � � 0 � 1

DMx � �� 1 0 � � 0 � �� 1

AAR} 1/2 1 1 0 – –

AAR, equation (23) 0 – – 1/2 1 1

RAAR �/2 1 1 1 � � 0 � 1

† The recommended value of �M,1 is 2. ‡ Strictly valid only for support constraint.

x With optimal parameters derived from the assumption of locally orthogonal constraint

sets. } And also HPR with � = 1, equation (21).



Fnew
j ¼

ðjFo
j j=jF

old
j jÞF

old
j if hi 2 M and strong;

Fold
j expð�2 iÞ if hj 2 M and weak;

0 otherwise:

8
<

:
ð28Þ

The threshold between weak and strong reflections is selected

so that a certain fraction of the reflections – typically 20–30%

– are treated as weak. This modification dramatically improves

the performance of the algorithm.

Another improvement of the operation on the Fourier

magnitudes was the replacement of the simple magnitude

projection by this operation (Oszlányi & Sütő, 2008):

Fnew
j ¼

ð2jFo
j j � jF

old
j jÞ expð2�i’old

j Þ if hj 2 M;

0 otherwise:

�

ð29Þ

Here ’old
j is the phase of the coefficient Fold

i . It can be regarded

as a standard F + �F Fourier synthesis used commonly in

macromolecular crystallography. This operator resembles a

reflector, but a true reflector would have to change the sign of

all unobserved Fourier coefficients (hj =2 M). The authors

recommend that a limit is imposed on the change of |Fj| so that

jFo
j j � W< jFnew

j j< jF
o
j j þW, where W is a new free para-

meter of the algorithm. In some sense this variant changes the

iteration scheme from the standard CFA scheme (14) to (17).

The damping introduced by the parameter W and by not

applying the operation to unobserved reflections is necessary

to ensure that this algorithm does not suffer from the

instability typical for the iteration scheme (17). This modifi-

cation provided similar or somewhat better results than the

�-half variant on a test organic structure (Oszlányi & Sütő,

2008). A very similar reciprocal-space operation is used in the

IPA.

The modifications described so far aimed at the improve-

ment of the efficiency of the algorithm. A variant called band

flipping (Oszlányi & Sütő, 2007) instead aims at lifting the

requirement of the positivity of the direct-space constraint. It

employs the ‘dynamical support’ constraint (9) instead of the

standard constraint (8). The dynamical support constraint

does not enforce positivity of �. The action of the corre-

sponding reflector (the band-flipping operator) is to change

the sign of all pixels with � � < �i < �. This variant has a

weaker phasing power than the standard variant, but is

applicable to neutron scattering densities with negative scat-

terers (Oszlányi & Sütő, 2007), or to the reconstruction of

difference electron densities, and hence to the solution of

superstructures (Palatinus et al., 2011). An asymmetric

interval for the flipping proved to be useful in the solution of

structures from neutron diffraction (Eq. 10 of Whitfield &

Coelho, 2016).

Oszlányi & Sütő (2011) combined the charge-flipping

operation with the AAR iteration scheme (23). It was shown

that the AAR iteration scheme clearly outperforms the stan-

dard charge-flipping scheme. The improvement is especially

striking for low-resolution data. However, the tests were

performed on synthetic, noise-free data. The advantage of the

AAR algorithm over the standard CFA is less striking for

experimental, noisy data, owing to the tendency of the AAR

scheme to diverge for inconsistent problems (Marchesini,

2007). The advantage for low-resolution data, however,

remains visible even in experimental data (van der Lee, 2013).

The challenge of the dual-space algorithms is finding the

balance between the perturbation strength and stability of the

solution at convergence. One possibility to influence this

balance is to design a moderately perturbing algorithm, but

add additional perturbation in the projection step, i.e. repla-

cing the perfect projection operation with an operation that

adds additional perturbation or suppresses certain unwanted

features in the density. A prominent example of this strategy

are so-called omit maps. Omit maps are frequently used in

macromolecular crystallography to remove model bias.

Oszlányi & Süto (2016) analysed the effect of resetting parts

of � to 0 at every nth iteration (n between 1 and 10). The most

efficient of the tested variants turned out to be dividing the

unit cell by a randomly oriented and randomly positioned

plane into two equally large halves, and setting to zero one

of the halves. This apparently drastic perturbation improves

the efficiency of the CFA and turns also other, less well

performing variants like LDE into viable phasing algorithms.

The random omit procedure is also an integral part of the IPA.

In the stage of construction of the mask consisting of Gaus-

sians placed at the peaks of �, a small number of these

Gaussians are removed at random, creating an additional

perturbation in the iteration.

Another example is the modification introduced by Coelho

(2007a), who proposed replacing the charge-flipping operation

(26) by the recipe

�new
i ¼

�þ ð�old
i � �Þ

1=2
if �i � �;

� �old
i if �i <�:

�

ð30Þ

This operation has the effect of damping the highest maxima

in the density and thus avoiding false solutions consisting of a

single very large peak (known as a ‘uranium atom solution’).

The simplicity of the CFA makes it easy to combine it with

other iterations schemes or completely different solution

strategies. The CFA was combined with histogram matching in

powder diffraction (Section 7.3). Coelho (2007a) combined

the CFA with the tangent formula (i.e. classical direct

methods) to obtain an algorithm that merges the two worlds.

The algorithm proposed by Coelho contains several modifi-

cations with respect to the original algorithm, but the principal

one is the introduction of the tangent formula in the Fourier-

space modification step. Instead of keeping the phases of the

Fourier coefficients intact [cf. equation (2)], they are shifted

towards phases obtained by the application of the tangent

formula. With this approach, a substantial improvement of

performance was obtained. This algorithm was implemented

in the crystallographic suite TOPAS (Coelho, 2007b).

4. Dual-space algorithms and symmetry

The potential use of the symmetry information in the dual-

space algorithms, especially in the CFA, has been subject to a

recurring debate over the years. All major publications on

dual-space structure solution methods (Matsugaki & Shiono,
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2001; Elser, 2003b; Oszlányi & Sütő, 2004; Sheldrick, 2015)

note that symmetry has not been used in their tests, and Elser

(2003b) and Oszlányi & Sütő (2004) express the hope that the

proper use of symmetry will improve the power of the algo-

rithms. On the one hand, one could argue that the symmetry is

already implicitly contained in the data, and adding it expli-

citly does not provide additional information. On the other

hand, the hope for improvement was driven by the observa-

tion that by explicitly introducing phase relationships due to

the space-group symmetry in the iteration, the number of

phases that needs to be determined in the iteration is reduced.

This would mean a reduction of the dimension of the search

space by a factor approaching the order of the space group, i.e.

up to 48 for some cubic space groups.

Interestingly, apart from specific exceptions discussed later,

an improvement by using symmetry was never accomplished,

and application of the algorithms without any symmetry

constraints remains the most efficient approach. Although no

mathematically rigorous analysis of the problem has yet been

published, an intuitive explanation of this fact is available. If

symmetry is imposed on the density, then all features must

develop from a random density exactly at the positions

determined by symmetry. Without symmetry restrictions (i.e.

‘in the space group P1’), the structure can develop anywhere

in the unit cell, giving the algorithm much more freedom to

randomly develop a ‘seed’ of the correct structure, and to

converge to a complete solution from that seed. Moreover, the

parameter � of the flipping operation must be set to find a

balance between the perturbing effect of the operation and

the stability at the solution. If the symmetry is fixed – for

simplicity, let us consider just the presence of an inversion

centre at the origin – all Fourier-coefficient phases are fixed to

either 0 or �. Switching the phases of important reflections

from 0 to � requires an extremely strong perturbation of the

density in real space. If � is set so high as to permit such

changes, it will be too high to stabilize the iteration at the

solution. If � is smaller, the phases of the most important

reflections will be fixed and the iteration will stagnate. Inter-

estingly, a similar observation was also made in the framework

of direct methods (Sheldrick & Gould, 1995; Burla et al., 2000)

and a procedure called RELAX, which relaxes the symmetry

constraints on the structure (Burla et al., 2002), has become a

standard part of the structure solution process in the program

SIR2011 (Burla et al., 2012a) and later.

An apparent contradiction to the arguments just stated

is the method due to Eggeman et al. (2009), which

used symmetry-enhanced charge flipping to solve a two-

dimensional structure from zonal electron diffraction data.

The approach is the following: first run the CFA in P1 for a

couple of cycles, and then symmetrize the density regularly

every few cycles. This approach stabilized and improved the

solution. But the contradiction is only apparent. In the parti-

cular case of two-dimensional electron diffraction data, the

problem is not to reach convergence. The structure is very

simple to solve, but it is difficult to stabilize the solution owing

to the limited accuracy and limited amount of data. In such

cases, applying the symmetry may indeed help to find the best

solution and stabilize it by adding more constraints to the

problem. A similar effect can be expected for structures solved

from powder diffraction data. Indeed, a possibility to partially

or completely impose the symmetry on the current iterate has

been implemented in the charge-flipping routine of the

program TOPAS Academic (Coelho, 2007b), and is reported

to have a stabilizing effect on the structure solution from low-

resolution or powder diffraction data (Coelho, 2012). Partially

imposing the symmetry on the iterates has also been used by

Coelho (2021) in a work focused on the ab initio solution of

protein structures by the CFA. In this work, enforcing the

symmetry in the iterates during iteration is interpreted as

narrowing the searched phase space, but increasing the radius

of convergence of the iteration. The narrowed phase-space

search is compensated by several other modifications of the

basic algorithm that increase the perturbation strength and

thus broaden the searched phase space.

The fact that the algorithm performs best without any

symmetry restrictions can be turned into an advantage. If the

solution is found without symmetry restrictions, then it can be

analysed for the presence of symmetry elements, and the most

probable space group of the structure can be deduced after the

solution (Palatinus & van der Lee, 2008; Sheldrick, 2015). This

approach is fundamentally different from the standard space-

group determination using the symmetry and systematic

absences in diffraction data, because it uses the phased Fourier

coefficients and not just their magnitudes. It thus does not

suffer from the ambiguities present in the standard approach,

and allows, for example, an unambiguous discrimination

between space groups differing only by the presence/absence

of an inversion centre. This approach, on the other hand, is

less sensitive to small deviations from higher symmetry, which

can often be reliably revealed in Fourier space. Ideally, the

best estimate of the space-group symmetry should be obtained

by combining both methods.

5. The problem of missing data

Incomplete diffraction data are a severe problem for the

structure solution process regardless of the solution method.

Several methods have been devised to overcome the problem.

The missing coefficients can be extrapolated by imposing

positivity on the Patterson map (Karle & Hauptman, 1964;

Langs, 1998) or estimated using probabilistic formulae relating

the unknown magnitudes either to the experimental obser-

vations (David, 1987; Cascarano et al., 1991; Xu & Hauptman,

2000) or to the Fourier magnitudes of a model density

(Caliandro et al., 2005a,b, 2009).

The dual-space algorithms are a Fourier-based technique,

and thus the problem of an incomplete data set is probably

even more critical here than in other methods. In the original

formulation of the CFA, the magnitude constraint had the

form (6), i.e. all unmeasured Fourier magnitudes except for

F(0) were reset to zero. This severely hampers the algorithm’s

performance, even if only a few important low-order Fourier

magnitudes are missing. A partial remedy to the problem is to

replace the projection (6) by projection (5), possibly with
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infinite c. This modification solves the problem of missing low-

order data to a large extent. For cases of an extreme amount of

missing data, Palatinus et al. (2007) proposed a method based

on the optimization of the Patterson function by the maximum

entropy method (MEM). The optimization of the Patterson

map by MEM leads to an estimation of the missing Fourier

magnitudes, which can then be used as experimental data in

the charge-flipping iteration. Using this technique, test struc-

tures could be solved with more than 50% of the reflections

missing inside the resolution sphere. The method is, however,

relatively tedious, time consuming and not very efficient in

extrapolating the data to higher resolution.

Compared with the standard algorithm with the constraint

(5), significant improvement of performance with missing data

was reported with the AAR variant (Oszlányi & Sütő, 2011).

The published tests show that in some cases the AAR algo-

rithm can solve purely organic, non-centrosymmetric struc-

tures from low-resolution data (dmin = 1.5 Å), while the

standard algorithm fails already slightly above dmin = 1.2 Å.

For centrosymmetric structures, solution from data with dmin =

1.6 Å was easily possible with AAR, while it was very difficult

or impossible with the standard CFA. A beneficial effect of the

AAR scheme was confirmed on a large set of experimental

data sets by van der Lee (2013).

In the IPA, the problem of an incomplete data set is less

severe. The replacement of the peaks in the iterate by the

idealized Gaussian peaks provides the additional information

about the electron density that automatically leads to an

effective estimation of the missing Fourier amplitudes. This

approach is very efficient, but it may fail in the rare cases when

the correct electron density is not composed dominantly from

isolated round maxima, for example in cases of severe

disorder in the structure.

6. Software

No modern computing method can hope for widespread usage

without publicly available software implementing the method.

It is likely that one of the key reasons for the success of the

CFA is that a rich collection of such software is available.

Quickly after publication, the CFA has become available for

users as a module in the crystallographic software package

PLATON (Spek, 2003), and in the computer program

BayMEM (van Smaalen et al., 2003). The CFA is also imple-

mented in the program TOPAS (Coelho, 2007b). This

program contains an implementation with several special

features (Coelho, 2007a, 2021). It is focused on structure

solution from powder diffraction data and includes the

powder CFA with histogram matching (Section 7.3), but can

also be used with single-crystal data. Another program for

structure solution using dual-space algorithms is Superflip

(Palatinus & Chapuis, 2007). This program allows the appli-

cation of the CFA in arbitrary dimensions, allowing the solu-

tion of ordinary periodic structures as well as modulated

structures and quasicrystals (see Section 7.2). The program

also contains many of the modifications of the charge

flipping algorithm described in Section 3 and the symmetry-

determination algorithm due to Palatinus & van der Lee

(2008). It also contains the general, six-parameter iteration

scheme [equation (25)], allowing the application of a wide

variety of iterative algorithms (Table 1). The IPA (intrinsic

phasing algorithm) is implemented in the popular structure

determination program SHELXT (Sheldrick, 2015). This

program is optimized for the solution of small-molecule crystal

structures, contains its own symmetry determination algorithm

and provides an advanced algorithm for the chemical inter-

pretation of the obtained electron density.

7. Applications

7.1. General structure solution

When the CFA was published, the authors themselves were

quite sceptical about its competitiveness with state-of-the-art

software and methods. The popularity and widespread use of

the dual-space algorithms have proved that these algorithms

are competitive. It is essentially impossible to say which

phasing algorithm is the best in general. Different problems

may require different approaches and algorithms. Ideally, the

practicing crystallographer should be familiar with a whole set

of methods, and combine them to get the best results. van der

Lee (2013) tested an automated structure solution workflow

on a large set of standard crystal structures using various

methods and programs, and found that, statistically, the ability

to find a solution is comparable for direct methods and the

CFA, but the best results can be obtained by combining the

results from both approaches. It is clear now that dual-space

algorithms have become quite popular. The first application of

the CFA to experimental data was presented by Wu et al.

(2004a), followed by the solution of an interesting, albeit

already known, structure with strong pseudosymmetry

(Oszlányi et al., 2006). The method gained broader acceptance

after it became available in user-friendly crystallographic

software (Section 6). The first published periodic structure

solved by the CFA and not known previously appears to

be sodium trifluoromethanesulfonate acetonitrile solvate,

published in January 2007 (Meffre et al., 2007). Interestingly,

unknown aperiodic structures solved by the LDE algorithm

had already been published in 2001 and solutions from the

CFA were published in 2006 (Section 7.2). The number of

solved structures has grown steadily since 2007. A boost in the

popularity of dual-space algorithms came with the publication

of the intrinsic phasing method implemented in the program

SHELXT (Sheldrick, 2015).

7.2. Incommensurately modulated structures and quasicrys-

tals

For solving periodic structures, dual-space methods are one

of several possibilities. For aperiodic structures, the situation is

different. Aperiodic structures – incommensurately modu-

lated structures or quasicrystals (Janssen et al., 2007; van

Smaalen, 2007) – are usually described in higher-dimensional

superspace, where the atoms are not point-like objects, but are

extended along the perpendicular dimensions, forming so-
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called atomic domains. Although extensions of direct methods

to modulated structures have been proposed (Hao et al., 1987;

Xiang et al., 1990; Fan et al., 1993), they have not reached wide

use in practice, and modulated structures used to be solved in

a two-step procedure. First, the average structure was solved

from the main reflections only, and then the modulation was

determined essentially by trial and error. In quasicrystal

research, the situation was similar, and insight into the struc-

tures of quasicrystals was often gained through the solution of

approximant structures. The advent of dual-space methods

changed the situation a lot. They do not impose any restriction

on the form of the reconstructed scattering density, and can

thus be directly generalized to superspace. The generalization

is very straightforward. Nothing at all needs to be changed in

the iteration scheme or in the form of the magnitude or

positivity constraints [equations (6) and (8)]. The only differ-

ence is that � is sampled not on a three-dimensional grid, but

on a (3 + d)-dimensional grid, where d depends on the rank of

the modulation.

The first successful attempts to solve quasicrystal structures

with dual-space algorithms employed the LDE algorithm

(Takakura et al., 2001). The possibility of applying the CFA to

incommensurately modulated structures was demonstrated

very soon after its publication (Palatinus, 2004). It was

demonstrated that the algorithm can solve many modulated

structures directly in superspace without the need to first

determine the average structure. Soon the method was

successfully applied to the first unknown modulated structures

(Zúñiga et al., 2006; Palatinus et al., 2006). The method was

also quickly applied to decagonal quasicrystals (Fleischer &

Steurer, 2007; Strutz & Steurer, 2007; Katrych et al., 2007).

The intrinsic phasing method cannot be directly generalized

to superspace because of the specific direct-space operation,

which assumes atomicity of the scattering density. As atoms in

the superspace scattering density form extended domains

rather than discrete maxima, this step cannot be applied.

7.3. Powder diffraction data

Structure solution from powder diffraction data is a difficult

problem for all but very simple structures. Most of the new

structures are nowadays solved by direct-space methods,

which employ global minimization techniques to optimize the

structure model against a powder diffraction pattern (for

an overview see e.g. Černý & Favre-Nicolin, 2007). The

complexity of these approaches, however, tends to grow

exponentially with the number of degrees of freedom in the

model. Therefore, they are very well suited for structures with

large known molecular fragments or other motifs. Cases where

the complexity of the structure makes it inaccessible for these

techniques are still not rare.

The application of truly ab initio methods to structure

solution from powder data is hindered by the fact that the one-

dimensional powder diffraction pattern contains overlapping

peaks, and hence the intensities of individual reflections are

not known. This problem of reflection overlap is central to

solution from powder diffraction data. The first method

addressing the overlap problem in combination with charge

flipping was proposed by Wu et al. (2006). The key difference

of their method from the basic algorithm was the addition of

an intensity-repartitioning step during the Fourier-space part

of the iteration cycle. In this step, instead of the standard

operation (6) the following modification is used:2

Fnew
j ¼

ðjFo
j j=jF

old
j jÞF

old
j if hj 2 M and not overlapped;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

overlap

jFo
j j

2

P

overlap

jFold
j j

2

v
u
u
u
u
t Fold

j if hj 2 M and overlapped;

0 otherwise:

8
>>>>>><

>>>>>>:

ð31Þ

The second possibility is employed if certain reflections belong

to a group of overlapping reflections, and thus only a sum of

their intensities is known. Then the magnitude of Fold
j is not

replaced by the experimental magnitude Fo
j (which is not

known), but it is only scaled so that the sum of all jFnew
j j

2

within one overlap group is constant and equal to the sum of

jFo
j j

2 known from the experiment. Note that this operation,

despite its apparent complexity, is still a projection in the strict

sense (i.e., distance minimizing). The method was shown to

work on a series of simple test cases and on two unknown

structures of tetragonal tungsten bronzes.

Another approach to the repartitioning problem was

adopted by Baerlocher et al. (2007b). In order to obtain a

more reliable partitioning of the overlapped reflections, the

charge-flipping iteration was combined with additional

external information, namely with the known histogram of the

density. The histogram matching procedure was first adopted

in macromolecular crystallography as part of the phase

refinement process (Zhang & Main, 1990), but here it was

employed to update both the phases and intensities of the

overlapping reflections. The powder charge-flipping scheme is

shown in Fig. 3. The histogram matching procedure is applied

after every n cycles of the basic charge-flipping iteration, n

being typically 10–50. The current density values are modified

by a piecewise linear transformation to match the expected

density histogram. Such modified density is Fourier-

transformed to yield a new set of Fourier coefficients FHM
j .

Then an operation analogous to equation (31) is performed,

but using FHM
j instead of Fold

j for the repartitioning:

Fnew
j ¼

ðjFo
j j=jF

HM
j jÞF

HM
j if hj 2 M and not overlapped;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
overlap jF

o
j j

2

P
overlap jF

HM
j j

2

s

FHM
j if hj 2 M and overlapped;

0 otherwise:

8
>>><

>>>:

ð32Þ

Thus the overlapped reflections are repartitioned so that

the sum of their squared magnitudes equals the experimen-
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2 In the original publication (Wu et al., 2006), the factor in the

second of the three options in equation (31) is incorrectly defined
as

P
overlap jF

o
j j=
P

overlap jF
old
j j. This is a typographical error in the

publication, and the form presented here in equation (31) is the correct
form used in the algorithm (Wu, 2012, personal communication).



tally determined sum, but their ratios correspond to the ratios

of FHM
j obtained after the histogram matching step. As the

histogram matching procedure is expected to improve the

current �, the ratios of the Fourier magnitudes of the over-

lapped reflections should also be improved, and the whole

procedure should lead to a better repartitioning of the over-

lapped intensities. After the histogram matching step, the

standard charge-flipping iteration continues with the updated

magnitudes of the Fourier coefficients.

This method was shown to be a very powerful extension of

the standard CFA. Baerlocher et al. (2007b) have demon-

strated the solution of several structures, ranging from rela-

tively simple ones to quite complex structures like the zeolite

ZSM-5 with 38 atoms in asymmetric unit (288 in the unit cell).

This method was then successfully used to solve a number of

structures, mainly of zeolites and other framework materials

(Massüger et al., 2007; Koyama et al., 2008; Xie et al., 2009;

McCusker et al., 2009; Liu et al., 2009; Park et al., 2011;

Gándara et al., 2012; Šišak Jung et al., 2014; Nakazawa et al.,

2017; Bette et al., 2018).

It is worth noting that most of the variants and improve-

ments of the basic CFA described in Section 3 are not useful

for powder diffraction data. Even the most complex structures

solved from powder data would be very easy to solve from

single-crystal data. What is needed is more external informa-

tion that allows augmentation of the degraded intensity

information in the powder diagram. Histogram matching goes

in this direction, as well as the application of symmetry

constraints during the iteration (see Section 4).

Some of the most complex zeolite structures could be

elucidated from powder diffraction data by the CFA combined

with histogram matching and with additional phase informa-

tion retrieved from high-resolution transmission electron

microscopy (Baerlocher et al., 2007a, 2008; Sun et al., 2009).

However, in this context the dual-space algorithms are not,

strictly speaking, used as ab initio phasing algorithms, but

more as a powerful phase extension algorithm. Detailed

description of these procedures is thus outside of the scope of

this text.

7.4. Macromolecular crystallography

Ab initio structure solution of macromolecular crystals is

very challenging owing to the large number of mainly light

atoms in the unit cell and generally low-resolution diffraction

data. With low-resolution data, the atomicity of the corre-

sponding density map is not guaranteed, and the amount of

nearly zero electron density is insufficient for the use of the

positivity projection alone in dual-space algorithms. Millane

(2023) describes the approaches used to phase macro-

molecular structures by dual-space algorithms in this case. If

high-resolution data are available, methods for ab initio

phasing of macromolecular crystals exist (Weeks & Miller,

1999; Foadi et al., 2000; Burla et al., 2004, 2006; Sheldrick,

2008). The CFA was shown to be applicable in these cases, too,

if at least a couple of heavy atoms (calcium or heavier) are

present (Dumas & van der Lee, 2008; Coelho, 2021).

Another common task in macromolecular crystallography is

the solution of heavy-atom substructures from anomalous or

isomorphous difference data. Such data can be understood as

very noisy data corresponding only to the heavy-atom

substructure. Dumas & van der Lee (2008) applied the CFA

with the standard iteration scheme to a selection of five such

data sets comprising between 8 and 120 heavy atoms in the

asymmetric unit, and a complete solution was found in all of

them. Skubák (2018) used the standard CFA and the RAAR

iteration scheme on a test set of 169 experimental anomalous

difference data sets. It was found that the RAAR scheme

outperformed the standard scheme and allowed a successful

solution of 142 of the test cases.

8. Summary

Dual-space algorithms are still a relatively young class of

phasing algorithm, yet they have already established them-

selves in the portfolio of tools for the solution of the phase

problem. Many variations of the algorithms exist and

numerous applications testify to their usefulness. The main

problem in the further development of phase retrieval algo-

rithms is that no solid mathematical theory is available that

would allow the determination of the perfect algorithm. A lot

of insight can be gained from the analogies with the convex

optimization theory, but the results are not directly applicable.

Moreover, an algorithm is not just an iteration scheme, but a
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Figure 3
The flowchart for the powder CFA with histogram matching. For a
detailed description of the histogram matching step see Baerlocher et al.
(2007b), equations (1), (2) and (3).



combination of the iteration scheme and the exact definition

of the constraints and projections. A successful algorithm is a

fine balance between all components, and a small, seemingly

unimportant change can result in a change of efficiency by

several orders of magnitude.
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