1.2. APPLICATION TO THE CRYSTAL SYSTEMS

Simplified formulae:

$$V = (\mathbf{abc}) = \begin{bmatrix} \begin{vmatrix} a^2 & 0 & 0 \\ 0 & b^2 & 0 \\ 0 & 0 & c^2 \end{vmatrix} \end{bmatrix}^{1/2} = abc, \tag{1.1.1.1c}$$

$$a^* = \frac{1}{a}, \quad b^* = \frac{1}{b}, \quad c^* = \frac{1}{c}, \quad \alpha^* = \beta^* = \gamma^* = 90^\circ,$$

$$(1.1.1.3c)$$

$$V^* = (\mathbf{a}^* \mathbf{b}^* \mathbf{c}^*) = \begin{bmatrix} \begin{vmatrix} a^{*2} & 0 & 0 \\ 0 & b^{*2} & 0 \\ 0 & 0 & c^{*2} \end{vmatrix} \end{bmatrix}^{1/2}$$
$$= a^* b^* c^* = a^{-1} b^{-1} c^{-1}, \tag{1.1.1.4c}$$

$$a = \frac{1}{a^*}, \quad b = \frac{1}{b^*}, \quad c = \frac{1}{c^*}, \quad \alpha = \beta = \gamma = 90^\circ, \quad (1.1.1.7c)$$

$$t^2 = u^2 a^2 + v^2 b^2 + w^2 c^2, (1.1.2.1c)$$

$$r^{*2} = h^2 a^{*2} + k^2 b^{*2} + l^2 w^{*2}, (1.1.2.2c)$$

$$\frac{a^2u}{h} = \frac{b^2v}{k} = \frac{c^2w}{l},$$
 (1.1.2.12c)

$$\mathbf{t}_1 \cdot \mathbf{t}_2 = u_1 u_2 a^2 + v_1 v_2 b^2 + w_1 w_2 c^2, \tag{1.1.3.4c}$$

$$\mathbf{r}_{1}^{*} \cdot \mathbf{r}_{2}^{*} = h_{1}h_{2}a^{*2} + k_{1}k_{2}b^{*2} + l_{1}l_{2}c^{*2}. \tag{1.1.3.7c}$$

Table 1.2.4.1. Assignment of integers $s \le 100$ to pairs h, k with $s = h^2 + k^2$

Each pair h, k represents all eight pairs which result from permutation and different sign combinations.

S	h k	S	h k	S	h k
1	1 0	32	4 4	68	8 2
2	1 1	34	5 3	72	6 6
4	2 0	36	6 0	73	8 3
5	2 1	37	6 1	74	7 5
8	2 2	40	6 2	80	8 4
9	3 0	41	5 4	81	9 0
10	3 1	45	6 3	82	9 1
13	3 2	49	7 0	85	9 2
16	4 0	50	7 1		7 6
17	4 1		5 5	89	8 5
18	3 3	52	6 4	90	9 3
20	4 2	53	7 2	97	9 4
25	5 0	58	7 3	98	7 7
	4 3	61	6 5	100	10 0
26	5 1	64	8 0		8 6
29	5 2	65	8 1		
			7 4		

$$\frac{u}{h} = \frac{v}{k} = \frac{c^2 w}{a^2 l},\tag{1.1.2.12d}$$

$$\mathbf{t}_1 \cdot \mathbf{t}_2 = (u_1 u_2 + v_1 v_2)a^2 + w_1 w_2 c^2, \tag{1.1.3.4d}$$

$$\mathbf{r}_1^* \cdot \mathbf{r}_2^* = (h_1 h_2 + k_1 k_2) a^{*2} + l_1 l_2 c^{*2}. \tag{1.1.3.7d}$$

1.2.4. Tetragonal crystal system

Metrical conditions: a = b; c arbitrary;

 $\alpha = \beta = \gamma = 90^{\circ}$

Bravais lattice types: tP, $t\vec{l}$ Symmetry of lattice points: 4/mmm

Simplified formulae:

V = (abc) =
$$\begin{bmatrix} a^2 & 0 & 0 \\ 0 & a^2 & 0 \\ 0 & 0 & c^2 \end{bmatrix}^{1/2} = a^2c, \qquad (1.1.1.1d)$$

$$a^* = b^* = \frac{1}{a}, \quad c^* = \frac{1}{c}, \quad \alpha^* = \beta^* = \gamma^* = 90^\circ, \quad (1.1.1.3d)$$

$$V^* = (\mathbf{a}^* \mathbf{b}^* \mathbf{c}^*) = \begin{bmatrix} \begin{vmatrix} a^{*2} & 0 & 0 \\ 0 & a^{*2} & 0 \\ 0 & 0 & c^{*2} \end{bmatrix}^{1/2}$$
$$= a^{*2} c^* = a^{-2} c^{-1}, \tag{1.1.1.4d}$$

$$a = b = \frac{1}{a^*}, \quad c = \frac{1}{c^*}, \quad \alpha = \beta = \gamma = 90^\circ,$$
 (1.1.1.7d)

$$t^2 = (u^2 + v^2)a^2 + w^2c^2, (1.1.2.1d)$$

$$r^{*2} = (h^2 + k^2)a^{*2} + l^2c^{*2} = sa^{*2} + l^2c^{*2}$$
 (1.1.2.2d)

with

$$s = h^2 + k^2.$$

For each value of $s \le 100$, all corresponding pairs h, k are listed in Table 1.2.4.1.

1.2.5. Trigonal and hexagonal crystal system

1.2.5.1. Description referred to hexagonal axes

Metrical conditions: a = b; c arbitrary $\alpha = \beta = 90^{\circ}$; $\gamma = 120^{\circ}$

Bravais lattice types: hP, hR

Symmetry of lattice points: 6/mmm (hP), $\bar{3}m$ (hR) Simplified formulae:

$$V = (\mathbf{abc}) = \begin{bmatrix} \begin{vmatrix} a^2 & -\frac{1}{2}a^2 & 0\\ -\frac{1}{2}a^2 & a^2 & 0\\ 0 & 0 & c^2 \end{bmatrix}^{1/2} = \frac{1}{2}\sqrt{3} \ a^2c, \ (1.1.1.1e)$$

$$a^* = b^* = \frac{2}{3}\sqrt{3}\frac{1}{a}, \quad c^* = \frac{1}{c}, \alpha^* = \beta^* = 90^\circ, \quad \gamma^* = 60^\circ,$$
(1.1.1.3e)

$$V^* = (\mathbf{a}^* \mathbf{b}^* \mathbf{c}^*) = \begin{bmatrix} a^{*2} & \frac{1}{2} a^{*2} & 0 \\ \frac{1}{2} a^{*2} & a^{*2} & 0 \\ 0 & 0 & c^{*2} \end{bmatrix}^{1/2}$$
$$= \frac{1}{2} \sqrt{3} \ a^{*2} c^* = \frac{2}{3} \sqrt{3} \ a^{-2} c^{-1}, \tag{1.1.1.4e}$$

$$a = b = \frac{2}{3}\sqrt{3}\frac{1}{a^*}, \quad c = \frac{1}{c^*}, \quad \alpha = \beta = 90^\circ, \quad \gamma = 120^\circ,$$

$$(1.1.1.7e)$$

$$t^{2} = (u^{2} + v^{2} - uv)a^{2} + w^{2}c^{2}, (1.1.2.1e)$$

$$r^{*2} = (h^2 + k^2 + hk)a^{*2} + l^2c^{*2} = sa^{*2} + l^2c^{*2}$$
 (1.1.2.2e)

with

1. CRYSTAL GEOMETRY AND SYMMETRY

Table 1.2.5.1. Assignment of integers $s \le 100$ to pairs h, k with $s = h^2 + k^2 + hk$

Each pair h, k represents in addition the pairs k, -h-k and -h-k, h, the permutations of these three, and the six corresponding centrosymmetrical pairs.

S	h k	S	h k	S	h k
1 3 4 7 9 12 13 16 19 21 25 27 28	1 0 1 1 2 0 2 1 3 0 2 2 3 1 4 0 3 2 4 1 5 0 3 3 4 2	31 36 37 39 43 48 49 52 57 61 63 64	5 1 6 0 4 3 5 2 6 1 4 4 7 0 5 3 6 2 7 1 5 4 6 3 8 0	67 73 75 76 79 81 84 91 93 97	7 2 8 1 5 5 6 4 7 3 9 0 8 2 9 1 6 5 7 4 8 3 10 0

$$s = h^2 + k^2 + hk.$$

For each value of $s \le 100$, all corresponding pairs h, k are listed in Table 1.2.5.1.

$$\frac{2u - v}{2h} = \frac{2v - u}{2k} = \frac{c^2 w}{a^2 l},$$
 (1.1.2.12e)

$$\mathbf{t}_1 \cdot \mathbf{t}_2 = (u_1 u_2 + v_1 v_2 - \frac{1}{2} u_1 v_2 - \frac{1}{2} u_2 v_1) a^2 + w_1 w_2 c^2, \quad (1.1.3.4e)$$

$$\mathbf{r}_1^* \cdot \mathbf{r}_2^* = (h_1 h_2 + k_1 k_2 + \frac{1}{2} h_1 k_2 + \frac{1}{2} h_2 k_1) a^{*2} + l_1 l_2 c^{*2}. \quad (1.1.3.7e)$$

1.2.5.2. Description referred to rhombohedral axes

Metrical conditions: $a = b = c; \alpha = \beta = \gamma$ Bravais lattice type: hRSymmetry of lattice points: $\bar{3}m$

Simplified formulae:

$$V = (\mathbf{abc}) = \begin{bmatrix} a^2 & a^2 \cos \alpha & a^2 \cos \alpha \\ a^2 \cos \alpha & a^2 & a^2 \cos \alpha \\ a^2 \cos \alpha & a^2 \cos \alpha & a^2 \end{bmatrix}^{1/2}$$
$$= a^3 [1 - 3\cos^2 \alpha + 2\cos^3 \alpha]^{1/2}$$
$$= 2a^3 \left[\sin \frac{3}{2}\alpha \sin^3 \frac{\alpha}{2} \right]^{1/2}, \qquad (1.1.1.1f)$$

$$\cos \frac{\alpha^*}{2} = \cos \frac{\beta^*}{2} = \cos \frac{\gamma^*}{2} = \frac{1}{2 \cos \alpha/2},$$

$$a^* = b^* = c^* = \frac{1}{a \sin \alpha \sin \alpha^*},$$
(1.1.1.3f)

$$= \begin{bmatrix} a^{*2} & a^{*2} \cos \alpha^* & a^{*2} \cos \alpha^* \\ a^{*2} \cos \alpha^* & a^{*2} & a^{*2} \cos \alpha^* \\ a^{*2} \cos \alpha^* & a^{*2} \cos \alpha^* & a^{*2} \end{bmatrix}^{1/2}$$

$$= a^{*3} [1 - 3\cos^2 \alpha^* + 2\cos^3 \alpha^*]^{1/2}$$

$$= 2a^{*3} \left[\sin \frac{3}{2} \alpha^* \sin^3 \frac{\alpha^*}{2} \right]^{1/2}, \qquad (1.1.1.4f)$$

Table 1.2.5.2. Asssignment of integers $s_1 \le 50$ to triplets h, k, l with $s_1 = h^2 + k^2 + l^2$ and to integers $s_2 = hk + hl + kl$

Each triplet h, k, l represents all twelve triplets resulting from permutation and/or simultaneous change of all signs.

_				_					-					
<i>s</i> ₁	s_2	h	k	l	<i>s</i> ₁	s_2	h	k	l	<i>s</i> ₁	s_2	h	k	l
1	0	1	0	0	24	-12	-4	2	2	38	-19	-5	3	2
2		-1_{1}	1	0		-4 20	4 4	$-\frac{2}{2}$	2 2		-11	-6 5	1	1
3	$\begin{array}{c} 1 \\ -1 \end{array}$	$\frac{1}{-1}$	1 1	0 1	25	$\frac{20}{-12}$	-4 -4	3	0		-1	5 6	$-3 \\ -1$	2
	3	1	1	1		0	5	0	0		-	5	3	-2
4	0	2	0	0	26	12	4	3	0		13	6	1	1
5	$-2 \\ 2$	$-2 \\ 2$	1 1	0	26	$-13 \\ -11$	-4 4	$\frac{3}{-3}$	1 1	40	$\frac{31}{-12}$	5 -6	3 2	2
6	-3^{2}	-2^{-2}	1	1		-5	-5	1	0	70	12	6	2	0
	-1	2 2	-1	1		5	5	1	0	41	-20	-5	4	0
8	5 -4	$-2 \\ -2$	1 2	1		19	4 4	3	$-1 \\ 1$		-16	−6 −4	2	1
٥	-4 4	$\frac{-2}{2}$	2	0	27	_9	- 5	1	1		-8	- 4	-2^{-4}	1
9	-4	-2	2	1		-	-3	3	3			4	4	-3
	0	3	0	0		-1	5	-1	1		4	6	2	-1
	8	2 2	2 2	$-1 \\ 1$		11 27	5	1 3	1 3		20	6 5	2	1
10	-3	-3^{2}	1	0	29	-14	-4	3	2		40	4	4	3
	3	3	1	0		-10	-5	2	0	42	-21	-5	4	1
11	$-5 \\ -1$	$-3 \\ 3$	$\frac{1}{-1}$	1 1		-2	4 4	$-3 \\ 3$	$-2 \\ -2$		-19	5 5	-4 4	$\frac{1}{-1}$
	-1 7	3	1	1		$\frac{-2}{10}$	5	2	0		29	5	4	1
12	-4	-2	2	2		26	4	3	2	43	-21	-5	3	3
10	12	2	2	2	30	-13	-5	2	1		_9	5	-3	3
13	$-6 \\ 6$	$-3 \\ 3$	2 2	0		$-7 \\ 3$	5 5	$-2 \\ 2$	$\begin{array}{c} 1 \\ -1 \end{array}$	44	39 -20	5 -6	3 2	3 2
14	_7	-3	2	1		17	5	2	1	77	_4	6	-2	2
	-5	3	-2	1	32	-16	-4	4	0		28	6	2	2
	1 11	3	2 2	$-1 \\ 1$	33	$\frac{16}{-16}$	4 -5	4 2	0 2	45	$-22 \\ -18$	$-5 \\ -6$	4	2
16	0	4	0	0	33	-10	-3 -4	4	1		-10	_6 5	-4	2
17		-3	2	2		-4	5	-2	2		2	5	4	-2
	-4	-4	1	0		8	4	4	-1		18	6	3	0
	4	3 4	$-2 \\ 1$	2		24	5 4	2 4	2	46	38 - 21	5 -6	4	2
	16	3	2	2	34	-15	-5	3	0	70	-15	6	-3	1
18	-9	-3	3	0			-4	3	3		9	6	3	-1
	$-7 \\ -1$	-4 4	1 -1	1		-9 15	4 5	$-3 \\ 3$	3	48	27 - 16	6 -4	3 4	1 4
	-1 9	4	-ı 1	1 1		33	3 4	3	3	40	-16 48	-4 4	4	4
		3	3	0	35	-17	-5	3	1	49	-24	-6	3	2
19	_9	-3	3	1		-13	5	-3	1		-12	6	-3	2
	3 15	3	3	$-1 \\ 1$		7 23	5 5	3	$-1 \\ 1$		0	7 6	0	$\begin{array}{c} 0 \\ -2 \end{array}$
20	-8	-4	2	0	36	-16	-4	4	2		36	6	3	$\frac{-2}{2}$
	8	4	2	0		0	6	0	0	50	-25	-5	5	0
21	$-10 \\ -6$	-4 4	$-2 \\ -2$	1		32	4 4	4 4	$-2 \\ 2$		$-23 \\ -17$	$-5 \\ 5$	4 -4	3
	_6 2	4	$\frac{-2}{2}$	1 -1	37	-6	-6	4	0		-17	-7	-4 1	0
	14	4	2	1		6	6	1	0			5	4	-3
22	-9	-3	3	2							7	7	1	0
	-3 21	3	3	$-2 \\ 2$							25 47	5 5	5 4	0
	۷1	5	5	_							т,	5	7	5

$$\cos\frac{\alpha}{2} = \cos\frac{\beta}{2} = \cos\frac{\gamma}{2} = \frac{1}{2\cos\alpha^*/2},$$

$$a = b = c = \frac{1}{a^*\sin\alpha^*\sin\alpha},$$
(1.1.1.7f)

$$t^{2} = (u^{2} + v^{2} + w^{2})a^{2} + 2(uv + uw + vw)a^{2}\cos\alpha, \quad (1.1.2.1f)$$

1.2. APPLICATION TO THE CRYSTAL SYSTEMS

$$r^{*2} = (h^2 + k^2 + l^2)a^{*2} + 2(hk + hl + kl)a^{*2}\cos\alpha^*$$

= $s_1a^{*2} + 2s_2a^{*2}\cos\alpha^*$ (1.1.2.2f)

with

$$s_1 = h^2 + k^2 + l^2$$
 and $s_2 = hk + hl + kl$.

For each value of $s_1 \le 50$, all corresponding values of s_2 and all triplets h, k, l are listed in Table 1.2.5.2.

$$\frac{u}{h} + \frac{v+w}{h}\cos\alpha = \frac{v}{k} + \frac{u+w}{k}\cos\alpha = \frac{w}{l} + \frac{u+v}{l}\cos\alpha,$$
(1.1.2.12f)

$$\mathbf{t}_{1} \cdot \mathbf{t}_{2} = (u_{1}u_{2} + v_{1}v_{2} + w_{1}w_{2})a^{2}$$

$$+ (u_{1}v_{2} + u_{2}v_{1} + u_{1}w_{2} + u_{2}w_{1}$$

$$+ v_{1}w_{2} + v_{2}w_{1})a^{2}\cos\alpha,$$

$$(1.1.3.4f)$$

$$\mathbf{r}_{1}^{*} \cdot \mathbf{r}_{2}^{*} = (h_{1}h_{2} + k_{1}k_{2} + l_{1}l_{2})a^{*2} + (h_{1}k_{2} + h_{2}k_{1} + h_{1}l_{2} + h_{2}l_{1} + k_{1}l_{2} + k_{2}l_{1})a^{*2}\cos\alpha^{*}.$$

$$(1.1.3.7f)$$

1.2.6. Cubic crystal system

Metrical conditions: $a = b = c; \alpha = \beta = \gamma = 90^{\circ}$

Bravais lattice types: cP, cI, cFSymmetry of lattice points: m3m Simplified formulae:

$$V = (\mathbf{abc}) = \begin{bmatrix} \begin{vmatrix} a^2 & 0 & 0 \\ 0 & a^2 & 0 \\ 0 & 0 & a^2 \end{bmatrix}^{1/2} = a^3, \tag{1.1.1.1g}$$

$$a^* = b^* = c^* = \frac{1}{a}, \quad \alpha^* = \beta^* = \gamma^* = 90^\circ,$$
 (1.1.1.3g)

$$V^* = (\mathbf{a}^* \mathbf{b}^* \mathbf{c}^*) = \begin{bmatrix} \begin{vmatrix} a^{*2} & 0 & 0 \\ 0 & a^{*2} & 0 \\ 0 & 0 & a^{*2} \end{vmatrix} \end{bmatrix}^{1/2} = a^{*3} = a^{-3},$$
(1.1.1.4g)

$$a = b = c = \frac{1}{a^*}, \quad \alpha = \beta = \gamma = 90^\circ,$$
 (1.1.1.7g)

$$t^2 = (u^2 + v^2 + w^2)a^2,$$
 (1.1.2.1g)

$$r^{*2} = (h^2 + k^2 + l^2)a^{*2} = sa^{*2}$$
 (1.1.2.2g)

with

$$s = h^2 + k^2 + l^2$$
.

For each value of $s \le 100$, all corresponding triplets h, k, l are listed in Table 1.2.6.1.

$$\frac{u}{h} = \frac{v}{k} = \frac{w}{l},\tag{1.1.2.12g}$$

$$\mathbf{t}_1 \cdot \mathbf{t}_2 = (u_1 u_2 + v_1 v_2 + w_1 w_2)a^2, \tag{1.1.3.4g}$$

$$\mathbf{r}_1^* \cdot \mathbf{r}_2^* = (h_1 h_2 + k_1 k_2 + l_1 l_2) a^{*2}. \tag{1.1.3.7g}$$

Table 1.2.6.1. Assignment of integers $s \le 100$ to triplets h, k, l with $s = h^2 + k^2 + l^2$

Each triplet represents all 48 triplets resulting from permutations and sign combinations.

S	h k l	S	h k l	S	h k l	S	h k l	S	h k l	S	h k l
1	100	25	5 0 0	42	5 4 1	59	7 3 1	74	8 3 1	88	664
2	1 1 0		4 3 0	43	5 3 3		5 5 3		7 5 0	89	922
2 3	1 1 1	26	5 1 0	44	6 2 2	61	650		7 4 3		8 5 0
4 5	200		4 3 1	45	6 3 0		6 4 3	75	7 5 1		8 4 3
5	2 1 0	27	5 1 1		5 4 2	62	7 3 2		5 5 5		762
6 8	2 1 1		3 3 3	46	6 3 1		6 5 1	76	662	90	930
8	2 2 0	29	5 2 0	48	4 4 4	64	800	77	8 3 2		8 5 1
9	3 0 0		4 3 2	49	700	65	8 1 0		6 5 4		7 5 4
	2 2 1	30	5 2 1		6 3 2		7 4 0	78	7 5 2	91	931
10	3 1 0	32	4 4 0	50	7 1 0		6 5 2	80	8 4 0	93	8 5 2
11	3 1 1	33	5 2 2		5 5 0	66	8 1 1	81	900	94	932
12	2 2 2		4 4 1		5 4 3		7 4 1		8 4 1		763
13	3 2 0	34	5 3 0	51	7 1 1		5 5 4		7 4 4	96	8 4 4
14	3 2 1		4 3 3		5 5 1	67	7 3 3		6 6 3	97	940
16	400	35	5 3 1	52	6 4 0	68	8 2 0	82	910		665
17	4 1 0	36	600	53	7 2 0		6 4 4		8 3 3	98	941
	3 2 2		4 4 2		6 4 1	69	8 2 1	83	911		8 5 3
18	4 1 1	37	6 1 0	54	7 2 1		7 4 2		7 5 3		770
	3 3 0	38	6 1 1		6 3 3	70	6 5 3	84	8 4 2	99	933
19	3 3 1		5 3 2		5 5 2	72	8 2 2	85	920		771
20	4 2 0	40	6 2 0	56	6 4 2		660		760		7 5 5
21	4 2 1	41	6 2 1	57	7 2 2	73	8 3 0	86	921	100	10 0 0
22	3 3 2		5 4 0		5 4 4		661		7 6 1		860
24	4 2 2		4 4 3	58	7 3 0				6 5 5		