International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 1.4, p. 21

Section 1.4.3.1. Symmetry of the Patterson function

A. J. C. Wilsona

a St John's College, Cambridge CB2 1TP, England

1.4.3.1. Symmetry of the Patterson function

| top | pdf |

In Volume A of International Tables, the symmetry of the Patterson synthesis is derived in two stages. First, any glide planes and screw axes are replaced by mirror planes and the corresponding rotation axes, giving a symmorphic space group (Subsection 1.4.2.1[link]). Second, a centre of symmetry is added. This second step involves the tacit assumption of Friedel's law, and should not be taken if any atomic scattering factors have appreciable imaginary components. In such cases, the symmetry of the Patterson synthesis will not be that of one of the 24 centrosymmetric symmorphic space groups, as given in Volume A, but will be that of the symmorphic space group belonging to the arithmetic crystal class to which the space group of the structure belongs. There are thus 73 possible Patterson symmetries.

An equivalent description of such symmetries, in terms of 73 of the 1651 dichromatic colour groups, has been given by Fischer & Knop (1987[link]); see also Wilson (1993[link]).

References

First citation Fischer, K. F. & Knop, W. E. (1987). Space groups for imaginary Patterson and for difference Patterson functions in the lambda technique. Z. Kristallogr. 180, 237–242.Google Scholar
First citation Wilson, A. J. C. (1993). Laue and Patterson symmetry in the complex case. Z. Kristallogr. 208, 199–206.Google Scholar








































to end of page
to top of page