International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 2.3, p. 75

Section 2.3.5.3. Other X-ray sources

W. Parrisha and J. I. Langfordb

a IBM Almaden Research Center, San Jose, CA, USA, and bSchool of Physics & Astronomy, University of Birmingham, Birmingham B15 2TT, England

2.3.5.3. Other X-ray sources

| top | pdf |

The remarkable properties of synchrotron-radiation sources, which produce very high intensity parallel beams of continuous `white' radiation, are described in Subsection 4.2.1.5[link] , and their use in powder diffraction in Section 2.3.2[link].

Fluorescent sources produced by primary X-ray tube excitation of a selected element have the advantage of a wide range of wavelengths but have too low brightness to be useful for powder diffraction. The intensity is 2–3 orders of magnitude lower than an X-ray tube source (Parrish, Lowitzsch & Spielberg, 1958[link]).

Radionuclides that decay by K-electron capture and produce X-rays (e.g. Mn Kα from 55Fe) have too low brightness for use in powder diffraction. They are often used to calibrate detectors and to measure the stability of a counting system (Dyson, 1973[link]).

References

First citation Dyson, N. A. (1973). X-rays in atomic and nuclear physics. London: Longman.Google Scholar
First citation Parrish, W., Lowitzsch, K. & Spielberg, N. (1958). Fluorescent sources for X-ray diffractometry. Acta Cryst. 11, 400–405.Google Scholar








































to end of page
to top of page